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Introduction
Cannabis sativa is one of society’s oldest cultivated plants, 
with records of its propagation and use dating back thousands 
of years. Due to widespread consumption for medicinal and 
recreational purposes, the manner in which the chemical con-
stituents in cannabis produce their pharmacological effects 
has been the subject of considerable interest and investiga-
tion. Initially, the production of crude but concentrated forms, 
such as hashish and tinctures, showed that the pharmacologi-
cally active chemical constituents could be isolated and stud-
ied. As a result, the molecular structures of the unique 
compounds in cannabis (the phytocannabinoids) and their 
associated pharmacological activities were further defined. 
These efforts culminated in the structural elucidation of the 
principal psychoactive constituent, Δ9-THC (Figure 1), and 
facilitated the discovery of extremely potent synthetic can-
nabimimetic compounds, identification of their specific 
receptors and mechanisms of action, and further elucidation 
of the underlying biochemical systems through which can-
nabinoids exert their pharmacological actions. This article is 
an overview of the current understanding of the biomolecular 
basis for the pharmacological effects of cannabis and Δ9-
THC–like cannabimimetics in humans. Emphasis is on (1) 
the types of cannabinoid receptors and their anatomical dis-
tribution; (2) the endogenous lipid signaling molecules that 
interact with these receptors (the endocannabinoids); (3) the 
enzymes and cellular processes involved in the synthesis, lib-
eration, and degradation of the primary endocannabinoids 
N-arachidonoylethanolamine (anandamide) and 2-arachi-
donoylglycerol; and (4) the role of the endocannabinoid 

system in the modulation of cellular signaling processes and 
neuronal excitability in areas of the brain effecting central 
nervous system function and behavior.

Cannabinoid Receptors
Although interest in the pharmacology of cannabis dates back 
several millennia, unequivocal evidence supporting the exist-
ence of specific cannabinoid receptors in the central nervous 
system (CNS) of animals began to accumulate only recently. In 
the 1980s, extremely potent synthetic compounds (Figure 2) 
with cannabimimetic activity in laboratory animals were shown 
to have rigorous structure-activity relationships, including ste-
reoselectivity.1–4 Further indication of the interaction of can-
nabinoids with specific receptor proteins was revealed through 
their ability to dose-dependently inhibit adenylate cyclase  
in a pertussis toxin–sensitive fashion that correlated with  
their pharmacological potency in laboratory animals.5–7 
Radiolabeling of the potent synthetic cannabinoid CP-55,940 
provided proof of a saturable, high-affinity stereoselective bio-
molecular site in rat brain whose binding affinity for cannabi-
noids correlated to both the inhibition of adenylate cyclase in 
vitro and analgesic activity in vivo.8 Autoradiography studies 
subsequently revealed the anatomical distribution of these 
high-affinity binding sites in the CNS9–13 and peripheral tis-
sues.14 The pattern and density of distribution of the binding 
sites for cannabinoids in the brains of rats, dogs, monkeys, and 
humans were exceptional, with extremely high concentrations 
in the basal ganglia, hippocampus, cerebral cortex, and cerebel-
lum (Figure 3). The widespread distribution of binding sites in 
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the CNS correlates with the diverse effects of cannabinoids 
observed in laboratory animals and humans, including altera-
tions in movement (eg, locomotor activity, coordination, and 
catalepsy), feeding and satiety (“the munchies”), learning, 
memory, and affective states. The unique pattern of distribu-
tion facilitated the cloning, sequencing, and identification of a 
7-transmembrane-spanning G protein–coupled cannabinoid 
receptor (GPCR) in the brain (CB1) that was shown to be 
responsible for many of the diverse pharmacological actions of 
cannabinoids.15–17 A second receptor (CB2) was subsequently 
cloned and sequenced and found to be expressed in mac-
rophages in the marginal zone of spleen and in other cells with 
immunological function.18 While other receptors are substrates 
for certain cannabinoids, CB1 and CB2 are most closely associ-
ated with the pharmacological actions of Δ9-THC and other 
psychoactive cannabinoids in humans.

The CB1 and CB2 subtypes couple preferentially to G pro-
teins of the Gi and Go classes.7,19–21 The GPCR signal trans-
duction pathway serves to amplify intracellular processes in 
response to the formation of the ligand-bound receptor com-
plex. On binding of a cannabinoid ligand, the conformational 
equilibrium of the GPCR is altered. A cannabinoid agonist 
alters the receptor conformations into those that activate the 

trimeric G protein, causing Gα to bind a molecule of guanine 
triphosphate (GTP) and dissociate from the other two G protein 
subunits. The activated G protein subunits disengage from the 
receptor and modulate signal amplification pathways involving 
several downstream effector proteins, including inhibition of 
specific adenylate cyclases and voltage-dependent calcium 
channels, and activation of inwardly rectifying potassium chan-
nels and several mitogen-activated protein kinases (with some 
variation depending on cell type, levels of receptor expression, 
and endogenous tone or constitutive activity; see Figure 4). 
Cannabinoid ligands can vary in their intrinsic activity or effi-
cacy in producing conformational changes that result in a sub-
sequent receptor-mediated response, with full agonists 
producing a maximal cellular response, partial agonists an 
intermediate response, antagonists no response (but reducing 
or blocking the effect of another ligand), and inverse agonists 
decreasing the constitutive activity of the receptor signaling 
complex, that is, driving the basal level of responsiveness nega-
tive, which is opposite to the effect of agonists. For example, 
Δ9-THC is a partial agonist with respect to its ability to stimu-
late GTP binding through the CB1 receptor compared with 
CP-55,940, which is a full agonist.22–24 This may help explain 
why smoking “Spice” and other synthetic cannabinoid–con-
taining herbal formulations causes more severe panic attacks 
and other adverse effects than smoking cannabis.

The discovery of the CB1-selective receptor inverse agonist 
SR141716A (rimonabant) (Figure 5)26,27 permitted the effects 
of Δ9-THC and opposing endogenous cannabinoid function to 
be further illuminated. For example, this compound was shown 
to produce physical withdrawal signs in rats made tolerant to 
the effects of Δ9-THC.28 Many of the central effects produced 
by Δ9-THC, such as increased food consumption and impaired 
learning and memory, were attenuated by SR141716A,29,30 
providing further evidence of mediation through CB1. 

Figure 1. Δ9-THC, the principal psychoactive constituent in Cannabis 

sativa.

Figure 2. Four potent synthetic cannabinoids.
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Furthermore, treatment with SR141716A alone enhanced spa-
tial memory,31 decreased food consumption,32 and produced 
other pharmacological effects indicative of its ability to act as 
an inverse agonist or reverse existing endocannabinoid tone at 
the CB1 receptor. SR141716A also blocked the discriminative 
stimulus effects of Δ9-THC in rodents and reduced the rein-
forcing effects and reinstatement of palatable food33–35 and 
other drugs of abuse in animal self-administration models, 

including heroin,36 cocaine,37 nicotine,34,38,39 and ethanol.33,40 
The CB2-selective inverse agonist SR144528 (Figure 5) was 
identified by the same research group at Sanofi41 and shown to 
be a useful probe for cannabinoid-mediated effects in immune 
function.42

Cannabinoid receptors also contain allosteric sites that bind 
small molecules that alter receptor structure and function—
that is, allosteric modulators. Allosteric sites are topographi-
cally distinct from those bound by orthosteric agonists (eg, 
Δ9-THC and CP-55,940) and antagonists (eg, SR141716A 
and SR144528). When allosteric modulators bind to the allos-
teric site, they alter the conformational equilibrium of the 
receptor, which affects the ability of the receptor to bind com-
pounds at the orthosteric site and couple to signal transduction 
molecules. Thus, allosteric modulators may either positively or 
negatively modulate the affinity or efficacy of orthosteric ago-
nists and antagonists. Both positive and negative allosteric 
modulators (Figure 6) of cannabinoid receptors produce phar-
macological effects distinct from those produced by orthosteric 
ligands.43–51 Theoretically, allosteric modulators possess no 
basal activity in the absence of orthosteric ligands. Because of 
this, allosteric modulators might provide more selective spatial 
and temporal signaling,52 exerting their effects only in the 

Figure 3. Radioligand autoradiograph of specific binding of [3H]

CP-55,940 to a sagittal section of rat brain, showing high CB1 receptor 

densities in the hippocampus, basal ganglia, and cerebellum.

Figure 4. Cannabinoid receptor signaling and trafficking. Modified and reproduced with permission from Al-Hasani and Bruchas.25
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presence of orthosteric ligands such as endocannabinoids, 
which are transiently released on demand and removed from 
their sites of action by enzymatic hydrolysis or cellular uptake. 
Thus, this fine-tuning of endogenous ligand signaling through 
orthosteric binding sites, instead of directly activating or block-
ing the receptor, may provide a promising alternative strategy 
for treating cannabinoid receptor–mediated disorders. 
However, as some compounds might bind to the allosteric site 
and act alone to alter the receptor’s inherent coupling to signal-
ing molecules (constitutive activity and signaling bias), it is also 
possible for compounds to act as allosteric agonists and allos-
teric inverse agonists, exerting their effects in the absence of an 
orthosteric ligand.53,54 Interestingly, there are phytocannabi-
noids in cannabis,47 as well as endogenous chemical constitu-
ents found in humans,49,55,56 that have been reported to produce 
allosteric modulation of cannabinoid receptor function.

Endogenous Cannabinoid Signaling Molecules 
(Endocannabinoids)
The sequencing and cloning of the cannabinoid receptors and 
the availability of high-affinity radiolabeled ligands facilitated 
the screening and identification of endocannabinoids that act as 
cannabinoid receptor modulators. The first endocannabinoid, 
anandamide (Figure 7), was isolated and identified in the por-
cine brain.57,58 It was shown to have an affinity (Ki) of approxi-
mately 50 nM for the CB1 receptor57 and a much lower affinity 
of 1600 nM for CB2.19 Another endocannabinoid lipid, 2-ara-
chidonoylglycerol (2-AG), was isolated and identified in canine 
gut and shown to bind to both CB1 and CB2 with Ki values of 
approximately 500 and 1400 nM, respectively.59 Like Δ9-THC, 

both compounds inhibit adenylate cyclase in isolated mouse 
spleen cells and electrically evoked contractions of the mouse 
vas deferens and produce the typical tetrad of pharmacological 
effects after intravenous administration in mice: antinocicep-
tion, immobility, reduction in spontaneous activity, and reduc-
tion in rectal temperature.57,59–61 2-Arachidonoylglycerol is 
generally considered to be an orthosteric full agonist and anan-
damide an orthosteric partial agonist at both cannabinoid 
receptor subtypes in most tissues and signal transduction 
assays.62,63 Many other endogenous and synthetic lipids have 
since been shown to interact with cannabinoid receptors.

Anandamide is derived from the precursor N-arachidonoyl 
phosphatidylethanolamine, which is synthesized by the rela-
tively nonselective enzyme N-acyltransferase.64,65 In the brain, 
anandamide and other N-acylethanolamines are released “on 
demand” in an activity-dependent manner by enzymatic cleav-
age of lipid precursors by phospholipase D66 and other distinct 
biochemical pathways.67–69 When released from the mem-
brane, these lipids are typically bound reversibly to carrier or 
transport proteins called fatty acid–binding proteins.70 
N-acylethanolamines distributed in this way can act as diverse 
cellular signaling molecules in neural and nonneural tissues. 
Anandamide and other fatty acid amides are primarily degraded 
through the actions of fatty acid amide hydrolases (FAAHs).71–

73 Inhibitors of FAAH activity lead to increased levels of anan-
damide and other fatty acid amides and prostamides in tissues 
and biological fluids. Anandamide is also a substrate for 
metabolism through cyclooxygenase 2 (COX-2), resulting in 
the production of bioactive prostamides. Inhibition of FAAH 
and/or COX-2 increases endocannabinoid tone and is recog-
nized as having therapeutic potential distinct from that availa-
ble with exogenous receptor agonists of cannabinoid receptors.74 
FAAH (−/−) knockout mice have elevated levels of ananda-
mide in the brain and demonstrate analgesia that is reversed by 
the CB1 antagonist SR141716A.75 Moreover, several FAAH 
inhibitors have analgesic and anti-inflammatory activity in ani-
mal models76,77 and have been tested in clinical trials for a vari-
ety of therapeutic end points.78,79 However, there is heightened 
awareness of the risks for significant adverse events with this 
relatively indirect approach to cannabinoid therapeutics after a 
fatality, and severe neurologic disorders were encountered in 
clinical trials of the FAAH inhibitor BIA 10-2474.80 Although 
this compound is suspected to have a prolonged and broad 

Figure 5. The CB1- and the CB2-selective inverse agonists SR141716A 

(left) and SR144528 (right).

Figure 6. CB1 allosteric modulators. Org 27569 (left) and PSNCBAM-1 (right) display positive binding cooperativity with the orthosteric agonist CP-55,940 

for CB1 receptor binding as would positive allosteric modulators, but reduce the efficacy of orthosteric agonists in several in vitro functional assays.
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spectrum of activity at hydrolases compared with more selec-
tive FAAH inhibitors (such as PF-3845 by Pfizer and JNJ-
42165279 by Janssen),81 the underlying biochemical 
mechanisms involved in the toxic cerebral syndrome remain 
largely unknown.82

2-Arachidonoylglycerol is also an integral signaling compo-
nent of lipid membranes but is produced, liberated, and 
degraded in a manner different from that of anandamide. In 
neuronal tissues, the synthesis of 2-AG begins with the precur-
sor phosphatidylinositol 4,5-bisphosphate and proceeds via a 
diacylglycerol (DAG) intermediate that is cleaved to 2-AG by 
one of 2 diacylglycerol lipases, DAGLα or DAGLβ.83,84 It 
appears likely that the DAG intermediate of 2-AG is synthe-
sized on demand following

•• Depolarization-induced activation of voltage-gated Ca2+ 
channels, wherein the increased intracellular Ca2+ con-
centration facilitates cleavage of phosphotidylcholine 
(PC) by phospholipase D to phosphatidic acid (PA), and 
subsequent removal of the phosphate group via PA phos-
phatase, to yield DAG;

•• Activation of Gq/11-coupled receptors, such as metabo-
tropic glutamate receptors and muscarinic acetylcholine 
receptors, coupled to phospholipase C (PLCβ)-mediated 
generation of DAG;

•• Increase in DAG through activation of PLCγ-coupled 
tyrosine kinase–linked growth factor receptors;

•• Combinations of these biochemical pathways.85,86

Most of the DAG in the brain is enzymatically degraded 
by monoacylglycerol lipase (MAGL), and even modest sys-
tematic inhibition of MAGL can profoundly enhance 2-AG 
concentrations and effects. Acute inhibition of MAGL activ-
ity potentiates CB1 receptor signaling87 and produces ago-
nist-like effects in laboratory animals.88 However, both 
chronic pharmacological inhibition89 and genetic deletion90 
of MAGL produce functional reductions in CB1 receptor 
signaling (ie, β-arrestin 2–mediated desensitization) rather 
than activation.86,91 The alpha/beta domain–containing 
hydrolase 6, alpha/beta domain–containing hydrolase 12, 
COX-2, and FAAH enzymes can also participate in the deg-
radation of 2-AG.92,93

The Multifaceted Functioning of the 
Endocannabinoid System
The neuronal endocannabinoid system involves the concerted 
actions of endocannabinoids, cannabinoid receptors, and the 
enzymes responsible for the synthesis and degradation of 
endocannabinoids. In the CNS, most CB1 receptors function 
to modulate neurotransmitter release and are present in par-
ticularly high concentrations in preterminal axon segments and 
axon terminals while being sparsely distributed in the active 
zone of the synapse94 (Figure 8). The enzymes involved in 
endocannabinoid biosynthesis and degradation are also hetero-
geneously distributed throughout the brain in a manner con-
sistent with their function.95 In the hippocampus, for example, 
the DAGLα isoform is concentrated on dendritic spine heads 
of pyramidal cells and produces 2-AG that participates in ret-
rograde synaptic signaling with presynaptic CB1 receptors 
located on afferent terminals, which serves to adjust neuro-
transmitter release as a function of postsynaptic activity.96 
Monoacylglycerol lipase is found in laminar and punctate 
staining patterns on the afferent axon terminals instead of the 
postsynaptic structures at the ultrastructural level, demonstrat-
ing the post- and presynaptic segregation of the primary 
enzymes responsible for synthesis and elimination of 2-AG, 
respectively, in the human hippocampus. The anatomical 
arrangement is consistent with the endocannabinoid-mediated 
retrograde regulation of neuronal activity and synaptic plastic-
ity in the cortex, hippocampus, amygdala, and dorsal striatum 
involved in executive function, perception, integration, learn-
ing, memory, extinction, recall, and habit.86 Inhibition of syn-
aptic transmission by CB1 agonists has been demonstrated in 
diverse regions of the central and peripheral nervous systems, 
involving glutamatergic, GABAergic, noradrenergic, choliner-
gic, and other neurotransmitters.97 For instance, the cannabi-
noid receptor also functions in the peripheral (although still 
neuronal) and central (spinal and supraspinal) levels in the pain 
pathway. Even at the subcortical level where CB1 density is 
relatively sparse, the endocannabinoid system regulates the 
release of hypothalamic orexigenic and anorexigenic signals 
and modulates activity in mesolimbic dopaminergic incentive 
pathways and opioidergic hedonic circuits controlling motiva-
tion for and perceived value of rewards such as palatable food.98 
The CB2 receptor is expressed to a much lower extent in 

Figure 7. The endocannabinoids arachidonoylethanolamine (anandamide, left) and 2-arachidonoylglycerol (2-AG, right).
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neurons in the mammalian CNS. In particular, CB2 messenger 
RNA and receptor protein have been found in several brain 
stem regions, including the dorsal motor nucleus of the vagus, 
the nucleus ambiguus, and the spinal trigeminal nucleus. 
Although CB2 signaling has putative roles in addiction and 
behavior, its impact in CNS functions and pathologies is less 
certain than that of the CB1 system.99

Components of the endocannabinoid system are also dis-
tributed throughout the periphery and in several nonneuronal 
tissues, where they participate in a range of physiological and 
pathological processes. For instance, endocannabinoid signal-
ing in the gastrointestinal tract, adipocytes, liver, kidney, skele-
tal muscle cells, and pancreas contributes to the control of 
intestinal motility, nutrient intake, energy storage, metabolism, 
and elimination processes involved in homeostasis.101,102 In the 
male and female reproductive systems, endocannabinoid sign-
aling functions along with hormones in the control of fertil-
ity.103 Cannabinoid receptors are also found on several immune 
cell types and within organs (eg, spleen and thymus) with 
immune system function14,104 that can produce and degrade 
endocannabinoids. Endocannabinoid tone and exogenous can-
nabinoid agents such as Δ9-THC modulate cytokine (eg, tumor 
necrosis factor-α, interleukin-1β, interleukin-6, interleukin-12, 
and interleukin-10) and chemokine production, the expression 
of adhesion molecules, and the migration, proliferation, and 
apoptosis of cells.105,106 Thus, the endocannabinoid system also 

provides an integral component in the regulation of the cell 
cycle, immune system function, and inflammation. For exam-
ple, the expression of CB2 is increased in activated astrocytes, 
reactive microglia, oligodendrocytes, perivascular microglia, 
and neural progenitor cells, making the CB2 receptor a particu-
larly interesting biochemical target for the development of 
therapeutics for cancer, neuroinflammatory and neurodegen-
erative diseases, ischemic trauma, and stroke.107

Conclusions and Future Directions
Many advances in our understanding of the receptors, bio-
chemicals, and enzyme systems composing the endocannabi-
noid system have been made in the past few decades. Because 
of the widespread distribution and diverse functioning of the 
system components, the effects observed during its modula-
tion or dysregulation can be numerous and varied. The neuro-
modulatory role of the system and its actions in the control of 
energy balance (at the level of both food intake/satiety and 
peripheral storage and metabolism) are two of the most well-
characterized effects observed in humans. Individuals increas-
ing their endogenous cannabinoid tone with cannabis or 
cannabinoids experience altered sensations, perceptions, cog-
nition, learning, memory, and behavior. The pharmacological 
effects of either herbal cannabis or Δ9-THC vary in intensity 
with dose and route of administration and are modulated to 
some degree by the modest affinity and efficacy of the partial 

Figure 8. Neuronal endocannabinoid system. Reproduced with permission from Lu and Mackie.100
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agonist Δ9-THC. The subjective effects are often perceived as 
pleasant or euphoric, but increased appetite and antiemetic 
effects are the only clinically approved therapeutic indications 
for synthetically derived Δ9-THC (as dronabinol, trade name 
Marinol) in the United States, and it remains a scheduled 
substance because of its abuse liability. Consumption of illicit 
herbal products (eg, “Spice”) containing synthetic cannabimi-
metic alkylindoles with high affinity and efficacy at CB1 and 
CB2 receptors can produce extreme alteration in the subjec-
tive effects observed in humans, leading to panic, confusion, 
anxiety, and other undesirable effects quite dissimilar from 
Δ9-THC. Chronic repeated exposure to cannabinoid agonists 
can alter receptor signal transduction and trafficking path-
ways (eg, receptor internalization and downregulation/desen-
sitization) in a process of adaptation that can lead to tolerance, 
dependence, and withdrawal upon abstinence. CB1 receptor 
expression levels and availability in homeostatic and mes-
olimbic reward regions are inversely related to body mass 
index across individuals with and without food intake disor-
ders.98 Obese individuals decreasing their endogenous can-
nabinoid tone with the human-use formulation of the inverse 
agonist SR141716A (rimonabant) tended to lose weight and 
have improved biological markers of diabetes mellitus.108–111 
However, the drug was removed from the market because of 
treatment-associated depression and suicidal ideation that 
could be associated with its inverse agonist activity in the 
mesolimbic reward system.98,109,110,112,113

It should be emphasized that the integration and function 
of the various components of the endocannabinoid system are 
complex and that modulation influences diverse physiological 
processes that continue to be identified and further character-
ized. As a result, our understanding of drug use, addiction, 
obesity, and other pathological conditions for which endocan-
nabinoid-based therapeutics might be targeted continues to 
increase dramatically. Moreover, because of the multifaceted 
functioning of the system, opportunities for advances in thera-
peutic agents that directly or indirectly affect CB1 and CB2 
receptors (eg, medicinal cannabis and synthetic Δ9-THC) are 
unlikely to provide clinical advantage in the absence of unwanted 
side effects. Nevertheless, it should also be recognized that the 
continued investigation of the endocannabinoid system pro-
vides a knowledge-based foundation for cannabis use/abuse and 
the development of more selective, effective, safe therapeutic 
agents. For example, compounds that selectively target CB1 but 
do not cross the blood-brain barrier could eliminate CNS 
effects, such as abuse liability, yet retain peripheral effects on 
energy storage and utilization. Therefore, further investigation 
and development of endocannabinoid system modulators 
appear to be well -warranted and promising.
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