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Genetic Ablation of Nrf2/Antioxidant Response Pathway
in Alexander Disease Mice Reduces Hippocampal Gliosis
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Abstract

In Alexander disease (AxD) the presence of mutant glial fibrillary acidic protein (GFAP), the major intermediate filament of
astrocytes, triggers protein aggregation, with marked induction of a stress response mediated by the transcription factor,
Nrf2. To clarify the role of Nrf2 in AxD, we have crossed Gfap mutant and transgenic mouse models into an Nrf2 null
background. Deletion of Nrf2 eliminates the phase Il stress response normally present in mouse models of AxD, but causes
no change in body weight or lifespan, even in a severe lethal model. AxD astrocytes without Nrf2 retain features of
reactivity, such as expression of the endothelin-B receptor, but have lower Gfap levels, a decrease in p62 protein and
reduced iron accumulation, particularly in hippocampus. Microglial activation, indicated by Ibal expression, is also
diminished. Although the Nrf2 response is generally considered beneficial, these results show that in the context of AxD,
loss of the antioxidant pathway has no obvious negative effects, while actually decreasing Gfap accumulation and
pathology. Given the attention Nrf2 is receiving as a potential therapeutic target in AxD and other neurodegenerative
diseases, it will be interesting to see whether induction of Nrf2, beyond the endogenous response, is beneficial or not in
these same models.
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Introduction To facilitate mechanistic studies of AxD pathogenesis, and
provide animal models suitable for testing potential therapies, we
5 ) X ' X have generated knock-in lines of mice carrying the most common
neurodegenerative disorder, typically affecting young children GFAP mutations found in human AxD (equivalent to R79H and
with early onset. The pathologic hallmark is widespread deposition R239H), and found that expression of mutant Gfap induces
of inclusion bOdleS, calleFl Rosenthal fibers in sub—p%al., perr formation of Rosenthal fibers, increases susceptibility to kainate
vascular, and peri-ventricular astrocytes, and consisting. of induced seizures [11], alters adult neurogenesis and leads to
aggregated GFAP and “other intermediate filament - proteins, deficits in learning (T.L. Hagemann, et al., manuscript in

ple.ctm,.ublqultm, 'small heat shock proteins, and likely (.)ther preparation). Altering Gfap expression either by production of
unidentified proteins [1-3]. Nearly all Alexander patients, . . .. .
mutant Gfap or simple over-expression induces multiple stress

g}cludmg thos}f with late onset J.uveml.e hf)r idlﬂt df.orms (?f thef pathways [11-15] that suggest specific strategies for therapy [16].
isease, carry heterozygous mutations within the coding region o In addition, expressing mutant Gfap in the context of elevated

t}ll)e genelfo(r}lg} :? P [A}L;j]h Thfsé mutactllons pretdlct .e)ipfr\_efssmrtl. of wild-type GFAP intensifies this stress response and results in
abnormal s which act in a dominant gain-of-function terminal seizures [11].

fashion [6]. . .
. . ] . . Nrf2 (otherwise known as Nfe2l2: nuclear factor, erythroid
Although AxD is genetically homogenous, there is considerable derived 2, like 2) is a transcription factor that binds to a short

variability in severity of disease even among individuals carryin, .. .

. - venty J b antioxidant response element (ARE) found in the promoters of a

identical mutations [7]. The common R79 and R239 mutations . . . . . .
number of detoxification genes including those involved in redox

cause both infantile and juvenile onset forms of the disease, and h . | b di boli A
R416W causes all three forms of the disorder, including adult [5]. omeostasis, glutathione turnover, and iron metabolism. As a

In some cases even individuals within the same family, carrying the
same mutation, show variability with mixed juvenile-adult . )
presentations, as has been found for D78E [8], S247P, and target genes, s.uch as Nqol, m both human brain _samplcs fr01.n
D417A [9], or may be completely asymptomatic as with L331P Al.exander patients as we.ll as in GFAP over-expressing transgem.c
[10]. Perhaps the rare mutations show variable penetrance, or .rmcc.[lQ]. On‘c mech.am:sr.n by which Nrf2 might _bc clevated is
there are genetic modifiers that influence the course of disease. impairment of the ubiquitin-proteasome system [17], a common

Alexander disease (AxD) in its most common form is a fatal

group, these genes are up-regulated in response to oxidative stress.
Previously we have found increased expression of Nrf2-regulated
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feature of protein aggregation disorders that is found in AxD as
well [13,18]. Nrf2 is regulated through two degradation domains,
Neh2 and Neh6, by association with E3 ubiquitin ligase adaptor
proteins Keapl and B-TrCP respectively. Keapl, in response to
oxidative stress, undergoes a conformational change that interferes
with targeting Nrf2 for ubiquitination, and therefore proteasomal
degradation [19]. In contrast, recognition of the Neh6 domain by
B-TrCP is redox independent and mediated by serine/threonine
glycogen synthase kinase, GSK-3B [20,21]. Under normal
conditions, GSK-3 is relatively inactive, and Keap] is responsible
for directing Nrf2 degradation. Under conditions of stress, Nrf2 is
activated by release from Keapl, however phosphorylation by
GSK-3f can again tag Nrf2 for ubiquitination and degradation.
Proteasome dysfunction and accumulation of misfolded proteins as
observed in AxD [18] would not only lead to oxidative inactivation
of Keapl, but also prohibit effective clearing of ubiquitinated
Nrf2.

As with many aspects of the cellular stress response, the Nrf2
pathway may lead to both beneficial and harmful effects. Nrf2
expression in the mouse appears overall to provide a protective
response in the CNS. For instance, Nrf2-null animals show
increased susceptibility to ischemic injury in the brain [22], and
enhancing Nrf2 expression in astrocytes confers protection against
both toxic and genetic insults to astrocytes and to neighboring
neurons [23-28]. In contrast, constitutive activation of Nrf2 leads
to a lethal phenotype in Keapl knockout mice [29], and a recent
report shows harmful effects for sustained Nrf2 activation in a
transgenic model of protein aggregation cardiomyopathy [30]. To
gain insight into the role of Nrf2-regulated genes in the
pathogenesis of AxD, we have examined the consequences of
placing the Alexander models in an Nrf2-null background.

In this report, we show that loss of Nrf2 in our AxD models has
surprisingly little effect on the overall health of the animals.
Rosenthal fiber distribution remains the same, despite reduced
expression of the Nrf2 regulated ubiquitin binding protein p62,
and both astrocytes and microglia are still reactive. However, we
observe that stress response genes unrelated to Nrf2 are down
regulated, including aB-crystallin (Cryab), ceruloplasmin (Cp), and
Gfap itself. In addition iron accumulation in astrocytes is also
reduced, suggesting that glia are less reactive and that the Nrf2
induced stress response is in part promoting pathology rather than
preventing it.

Materials and Methods

Ethics Statement and Animal Care and Use

This study was approved by the Animal Care and Use
Committee for the Graduate School at the University of
Wisconsin, Madison. All animals were cared for and used in
accordance with standards sct by the Committee. Gfap*/R2%°H
point mutant knock-in mice were maintained as heterozygotes
[11] either as a mixed strain (early generation backcross into
12956 from FVB/N, Figure 1) or C57BL/6] (>10 generations).
GFAP'™® [31] and ARE-hPAP transgenic mice [32] were
maintained as hemizygotes in FVB/N, and Nrf2 knockout mice
[33] were bred as homozygotes in strain C57BL/6]. Gap*/®2%¢1/
Nrf2™’" and GFAP"8/Nrf2™/" mice are F2 offspring derived
from cross mating into the Nrf2 null background.

Quantitative PCR

Mice were euthanized by COg asphyxiation, dissected, tissues
collected and frozen in liquid nitrogen. For initial analysis of Nrf2
and Nqol transcripts, total RNNA was extracted with Trizol
(Invitrogen, Carlsbad, CA) from half brains bisected at the midline
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(Figure 1). Subsequent analysis was performed with RNA
extracted from either olfactory bulb or hippocampus. Comple-
mentary DNA was synthesized from 1 nug RNA with Superscript II
(Invitrogen) and real-time PCR performed with SYBR Green
Master Mix on an ABI 7500 sequence detection system (Applied
Biosystems, Foster City, CA) as previously described [11]. Primer
sets for quantifying transcripts are included in Table 1.

Immunoblotting and Western Analysis

Tissues were collected as above and protein extracted by
homogenization in RIPA lysis buffer (20 mM Tris-HCI pH 7.5;
150 mM NaCl; 1 mM EDTA; 1% Triton-X-100; 0.5% sodium
deoxycholate; 0.1% SDS; 1 mM Pefabloc SC (Sigma); and
Complete Protease Inhibitor Cocktail (Roche Applied Science,
Indianapolis, IN)). Lysates were centrifuged 17,000 g at 4°C for 20
min, supernatant collected, and protein quantified with the BCA
assay (Thermo Scientific/Pierce Biotechnology, Rockford, IL).
Protein samples (15 pg) were electrophoresed on 10 or 15%
polyacrylamide gels, transferred to Immobilon-FL. membrane
(Millipore), and blocked with Odyssey blocking buffer (Li-Cor,
Lincoln, NE). Immunoblots were incubated with primary antibody
diluted in TBS with 0.05% Tween20 overnight at 4°C at the
following dilutions: 1:1000 anti-Ibal (Wako 019-19741, Osaka,
Japan), 1:2000 anti-SQSTM1/p62 (Abnova H00008878-MO1,
Taipei Taiwan), 1:2000 goat anti-FTL (Abnova PAB11455)
1:1000 rabbit anti-FTH1 (Cell Signaling #3998, Beverly, MA),
1:5000 mouse anti-GAPDH (Fitzgerald Industries 10R-G109A,
Acton, MA). Membranes were washed with TBS/Tween20 before
incubating with secondary antibodies: AlexakFluor 680 goat anti-
mouse (Invitrogen), DyLight 800 goat anti-rabbit (Thermo
Scientific) or IRDye 800CW donkey anti-goat IgG (Li-Cor)
1:10,000 in TBS/Tween20 for 2 hrs. Immunoblots were analyzed
with an Odyssey Infrared Imaging System (Li-Cor), and signal
intensity for proteins of interest normalized to that of Gapdh.

ELISA for Gfap

Gfap quantification by ELISA was carried out as previously
described [11,34] with some modifications. Briefly, samples were
homogenized in total lysis buffer (2% SDS/50 mM Tris-HCI
pH7.4/5 mM EDTA/1 mM Pefabloc SC/Complete Protease
Inhibitor Cocktail; 1:20 weight to volume), and boiled for 15 min.
Protein was quantified with the BCA assay and diluted to
approximately 0.5 pg/ml. Microtiter plates were coated with a
monoclonal antibody cocktail against GFAP (SMI-26, Covance,
Princeton, NJ) diluted 1:1000 in PBS overnight at 4°C.
Nonspecific binding of the capture antibody was blocked with
5% milk in PBS (BLOTTO, room temperature for 2 hrs) before
applying purified GFAP standard (RDI Division of Fitzgerald
Industries Intl, Concord, MA) or approximately 50 ng of protein
sample diluted in 0.05% Tween 20 in PBS (PBS/Tw20) with 1%
BSA. After incubating 2 hrs at room temperature, plates were
rinsed with PBS/Tw20 and rabbit polyclonal anti-GFAP applied
(DAKO Z334 at 0.2 ug/ml BLOTTO) overnight at 4°C for
detection. Plates were rinsed with PBS/Tw20 and incubated with
HRP conjugated goat anti-rabbit secondary (1:10,000 in BLOT-
TO, Sigma A6154) for 2 hrs at room temperature. After a final
rinse SuperSignal ELISA Femto Chemiluminescent Substrate
(Thermo Scientific/Pierce Biotechnology) was added and the
reaction quantified with a Turner Biosystems GloRunner Lumi-
nometer (Sunnyvale, CA).

Immunostaining

For immunohistochemistry, animals were anesthetized and

perfused transcardially with 10 ml phosphate buffered saline (PBS)
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Figure 1. Knockout of Nrf2 in Gfap mutant or transgenic mice eliminates ARE (antioxidant response element) activation. (A)
Quantitation of brain transcripts from Nrf2 and its target gene Nqo1 for both GFAP™ and Gfap™*?3%" mice (3 mos of age) shows reduced expression
in Nrf2"/~ background and further reduction in Nrf2~’". (C, D) Histochemical staining for alkaline phosphatase activity in GFAP™ mice crossed with
an ARE-alkaline phosphatase reporter line shows wide-spread activation of Nrf2 (C), whereas GFAP™9/Nrf2™/~ mice show virtually no ARE-reporter
activity (D; 6 wks of age). (B) Quantification of reporter activity in brains from either GFAP™ or GFAP*/"?3¢H mice shows a marked reduction in Nrf2*"/*
vs. Nrf2”/~ mice and virtually no detectable activity in Nrf2~/~ animals (3 mos of age). Error bars= standard deviation. For Gfap™* versus Gfap*/??3¢"
or GFAP™ comparisons (all Nrf2*/*), significance is indicated with a (*) plus sign. For Nrf2*"* vs Nrf2*'~ or ~/~ comparisons, significance is indicated by
an (¥) asterisk (unpaired t-test: * °" *p<<0.05; ** °" **p<0.01; ™ °" ***p<0,001, n=3).

doi:10.1371/journal.pone.0037304.g001

followed by 50 ml 4% paraformaldehyde in PBS, pH 7.4; brains
were removed, fixed overnight and then cryoprotected in 30%
sucrose. Tissues were frozen in OTC and 30 pum sagittal sections
were cut on a sliding microtome. Endogenous peroxidases were
blocked and tissues permeabilized as floating sections in 0.15%
hydrogen peroxide with 0.3% Triton-X-100 in PBS for 10 min,
followed by 5% normal donkey serum with 0.3% Triton-X-100 in
PBS for 2 h. Primary antibodies were diluted in PBS with 1.0%
BSA and 0.3% Triton-X-100 [1:500 mouse anti-GFAP, Millipore
MAB3402 (Billerica, MA); 1:500 rabbit anti-Ibal, Wako 019-
19741 (Osaka, Japan); 1:200 mouse anti-SQSTMI1/p62,
HO00008878-M01, Abnova (Taipei, Taiwan)] and tissues incubated
overnight at 4°C. Secondary antibodies were diluted in the same
[1:200 biotinylated anti-mouse or anti-rabbit, ABC kit, Vector

Labs (Burlingame, CA)] and incubated for 2 h. Sections were
incubated with ABC solution for 30 min followed by Vector SG
chromogen for 5 min. Between stages, sections were washed
thoroughly in PBS, and finally mounted on slides, dried and
coverslipped with Permount mounting media. Images were taken
with a Nikon Microphot equipped with a SPOT digital camera
(Diagnostic Instruments, Sterling Heights, MI).

For immunofluorescence, sections were prepared as described
above, blocked and permeabilized in 5% normal donkey serum
with 0.3% Triton-X-100 in PBS for 2 h. Primary antibodies were
diluted in PBS with 1% BSA and 0.3% Triton-X-100 [1:100 rat
anti-Macl, CD11b, Pharmingen (Franklin Lakes, NJ); 1:1,000
rabbit anti-Ferritin, Sigma F6136 (St Louis, MO); 1:200 mouse
anti-SQSTM1, Abnova H00008878-MO01 (Taipei City, Taiwan);

Table 1. Primer sets for quantitative PCR.
Probe Accession No. Forward Primer Reverse Primer
Nfe2l2 NM_010902 GATCCGCCAGCTACTCCCAGGTTG CAGGGCAAGCGACTCATGGTCATC
Nqo1 NM_008706 CGGTATTACGATCCTCCCTCAACA AGCCTCTACAGCAGCCTCCTTCAT
Cryab M63170 CCAGTTCTTCGGAGAGCACCT CTGTCCTTCTCCAAACGCATC
Cp NM_007752 CGAGCCGAAGAAGACGAGCACTT TCACCCCATGGGCATGTATTGAAT
Gfap NM_010277 CAACGTTAAGCTAGCCCTGGACAT CTCACCATCCCGCATCTCCACAGT
Fth1 NM_010239 GTGCGCCAGAACTACCACCAGGAC GCAAAGTTCTTCAGAGCCACATCATC
18SrRNA X00686 CGCCGCTAGAGGTGAAATTCT CGAACCTCCGACTTTCGTTCT
doi:10.1371/journal.pone.0037304.t001
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1:100 rabbit anti-endothelin-B receptor, Alomone Labs AER-002
(Jerusalem, Israel); 1:1000 rabbit anti-GFAP, Dako Z0334
(Carpinteria, CA) or 1:500 mouse anti-GFAP, Millipore
MAB3402] and incubated at 4°C overnight; secondary antibodies
were diluted in the same (1:50 FITC conjugated donkey anti-rat
IgG, Sigma; 1:500 AlexaFluor-546 or -488 donkey anti-rabbit or-
mouse IgG, Invitrogen) and incubated for 2 h. Sections were
mounted on slides and coverslipped with VectaSheild mounting
media (Vector Labs) and images taken with a Nikon C1 scanning
confocal microscope.

Iron and Alkaline Phosphatase Histochemistry

To detect differences in iron distribution or activation of the
ARE-hPAP reporter within the brain, tissues were collected and
processed as previously described [11]: with a modified Per!’s stain
to detect iron [35] or with the substrate BCIP to detect alkaline
phosphatase activity.

Alkaline Phosphatase Reporter Assay

To quantify alkaline phosphatase activity resulting from
activation of the ARE-hPAP reporter, tissues were homogenized
in CHAPS lysis buffer (50 mM Tris-HCI pH 7.5/5 mM MgCly/
100 mM NaCl/4% CHAPS) and centrifuged at 17,000 g for 20
min at 4°C. Supernatants were collected and protein quantified
with the BCA assay. Samples were diluted to 100 pg/ml, 25 ul
added to 75 pul 200 mM diethanolamine (DEA) in a microtiter
plate, and heated for 20 min at 65°C to inactivate endogenous
alkaline phosphatase activity. At room temperature, 100 pl
chemiluminescent substrate CSPD with Emerald enhancer (2x;
Tropix- Applied Biosystems, Bedford, MA) in 5 mM MgCly/
150 mM DEA was added to each well, and incubated at room
temperature for 20 min. Enzyme activity was quantified with a
GloRunner Microplate Luminometer.

Results

Mouse models of Alexander disease were crossed into an
Nrf2™’~ null background to determine the role of the phase II
stress response activated by this transcription factor in AxD
pathology. Nrf2 knockout mice have a targeted deletion of part
of exon 4 and all of exon 5. This includes the cap-n-collar,
DNA binding, and leucine zipper domains [33]. The AxD
models include two lines of mice: 1) an R236H point mutation
knock-in of the endogenous mouse Gfap gene (GfapHR%GH),
mimicking a common mutation in humans with the disease
(R239H), and 2) a transgenic model over-expressing wild-type
human GFAP (GFAP'®). Both lines present Rosenthal fibers
(RF), the hallmark pathology of AxD in astrocytes, and a
decrease in body weight, with GFAP'® mice being the more
severely affected of the two models. The phase II stress
response, as measured with a reporter line expressing alkaline
phosphatase (hPAP) under the control of an antioxidant
response element (ARE), and confirmed by quantifying a
number of transcripts from genes regulated by Nrf2, is elevated
in both lines with a pattern of activation following the
distribution of RF throughout the CNS [11,12].

Loss of Nrf2 Activated Stress Response does not Change
the General Phenotype of AxD Mice

Both Gfap™®***" and GFAP'® mice show a decrease in body
weight compared to wild-type littermates. After crossing either line
into an Nrf2 null background, no further differences in weight or
lifespan up to 6 months were observed (data not shown). To
confirm the loss of Nrf2 expression in these mice, brain transcripts
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were quantified by real-time PCR with a probe recognizing coding
sequence from exons 2—3. Even though non-functional transcripts
from the mutant allele include sequences from exons 2 and 3,
heterozygous knockout mice showed approximately 50% less Nrf2
transcript, whereas homozygous knockouts show a 90% reduction,
indicating that the targeted transcript is unstable in agreement
with the original report [33] (Figure 1A). Expression of Nqol, a
notable target of Nrf2 activation, is significantly elevated in both
Gfap™®2*™ and GFAP™® mice [11,12], but Nqgol expression is
reduced to that of wild-type mice in both Gfap*®2%H /N2 =/~
and GFAP"8/Nrf2™/~ animals (Figure 1A).

The same genetic combinations were crossed with the ARE-
hPAP reporter line expressing alkaline phosphatase regulated by
the antioxidant response element (ARE) from the rat Nqol gene.
Expression of the reporter was reduced by more than half in
Nrf2"~ heterozygotes, and completely absent in Nrf2 ™/~ animals
(Figure 1B, C, D).

Most experiments were performed with both Gfap
GFAPT® models, but for this report, we focus on the Gfap
point mutant since it more closely replicates the molecular defect
of the human disorder. Although the two models differ in severity,
both show a similar response to the loss of Nrf2.

R236H
+/R236 and

+/R236H

Astrocyte Reactivity is Reduced in AxD Models without
Nrf2 Induced Stress Response

To determine whether the lack of Nrf2 affects astrocyte
reactivity, we analyzed the response in hippocampus and olfactory
bulb, regions that show high levels of RF, Gfap expression and
Nrf2 induced stress response in Gfap™®#**™ mice. Nrf2 null AxD
mice demonstrate RFs in these regions, similar to their Nrf2*/*
counterparts (Figure 2A, hippocampus shown). Gfap transcripts
and protein were lower in hippocampus from Gfap™®?*H/
Nrf2~/~ mice, but still above that of Gfap** mice (Figure 2B),
and astrocytes retain a hypertrophied morphology indicative of
reactive glia (Figure 2C). The endothelin-B receptor (Endbrl), an
additional marker of gliosis, is expressed by astrocytes in both
Glap™R#H/Nef2™*  and  Gfap™®PH/Nr2™/"  mice
(Figure 2E,F), compared to wild-type Gfap™*/Nrf2** mice
where Endbrl localizes mostly with the vasculature (Figure 2D).

As predicted from our analysis of brain transcripts (Figure 1A)
Ngol levels in Gfap™®***H/Nrf2™/~ hippocampus were reduced
to that of wild-type animals (Figure 2G). However, transcripts for
aB-crystallin (Cryab), a small heat shock protein and component
of RF, and ceruloplasmin (Cp), an astrocyte expressed ferroxidase
and acute phase response protein, were also reduced in
hippocampus (Figure 2G), and neither are known to be regulated
by Nrf2. In olfactory bulb from Gfap™®***H/Nrf2™/~ mice,
Ngqol transcripts were reduced to wild-type levels, but neither
Gfap nor Cryab showed significant reductions. Ceruloplasmin
however was reduced by 24% between Gfap*®*H/Nrf2*/* and
Gfap™®**H/Nrf2 ™/~ mice (data not shown).

Reduced Activation of Microglia

Although AxD is a primary disorder of astrocytes, microglia
react to the resulting pathology. Histological analysis of Gfap
mutants shows an increase in hyper-ramified Ibal positive glia in
both Nrf2™* and Nrf2 ™/~ mice (Figure 3A). Western analysis
shows reduced expression of Ibal in both hippocampus and
olfactory bulb from Nrf2™/~ mice, suggesting a reduced microglial
response (Figure 3B: hippocampus shown). This change could be
cell autonomous due to the loss of Nrf2 in microglia, or reflect a
decreased response to less reactive astrocytes.
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Figure 2. Astrocytes from Gfap **23*H/Nrf2"/~ mice exhibit Rosenthal fibers and appear reactive, but Gfap and stress markers are
reduced. (A) Rosenthal fibers are apparent as eosinophilic aggregates in H&E stained tissue (arrows, hippocampus CA1 shown) in Gfap™"2*¢"/Nrf2
~ mice. (B) Quantitation of Gfap transcript by QPCR and protein by ELISA shows reduced Gfap expression in Gfap™®23¢H/Nrf2 ™/~ versus Gfap™/R23¢H/
Nrf2** mice in hippocampus (8 wks of age, n=4, t-test **p>0.01, ***p>0.001 comparing Gfap™*3¢H/Nrf2"* with Gfap™®*3*H/Nrf27/7). ()
Compared with wild—ty/pe Gfap™*/Nrf2** mice, Gfap immunohistochemistry in hippocampus (gray stain, 3 mos of age) shows hypertrophic reactive
astrocytes in to Gfap™"23*H/Nrf2"* and Gfap™"***"/Nrf2~/~ mice. (D-F) An alternative marker of reactive astrocytes, the endothelin-B receptor
(Endbr1, red), is expressed in astrocytes (Gfap, green) from both Gfap™"2*"/Nrf2** (E) and Gfap™®**¢"/Nrf2~/~ mice (F), compared with wild-type
Gfap*’Jr/NerJr/+ (D) which show Endbr1 expression predominantly associated with blood vessels (hilus, 8 wks of age). Scale bar=50 um (shown in D,
applies to all confocal images). (G) Hippocampal expression of stress related genes, including Ngo1, Cryab, and Cp, is reduced in Gfap*/R%H mice
with the loss of Nrf2 (8 wks). Error bars indicate standard deviation (t-test **p<<0.01, ***p<<0.001; n=4).

doi:10.1371/journal.pone.0037304.9002

p62 is Present in Rosenthal Fibers, and Reduced by Nrf2
Knockout

Sequestosome/p62 binds both ubiquitin and LC3 and functions
to target ubiquitinated proteins for autophagy. p62 is also
transcriptionally regulated by Nrf2. Immunostaining shows
increased p62 reactivity in Gfap mutant compared to wild-type
astrocytes (Figure 4A) and colocalization with some Gfap
aggregates (Figure 4B). p62 positive aggregates are also apparent
in Gfap™®***H/Nrf2 ™/~ mice, but histological staining appears
less intense (Figure 4A,B) and western analysis shows decreased
levels of p62 in hippocampus (Figure 4C), but not olfactory bulb

iron storage protein ferritin, and Nrf2 knockout diminishes the
accumulation of iron in astrocytes from AxD mice (Figure 5C, D,
E, ¥, G, H). Immunofluorescence shows ferritin distribution
following the pattern of iron storage in wild-type and Gfap+/
RZOH /N2 mice. In Glap™*/Nrf2** mice ferritin immuno-
staining appears to highlight oligodendrocytes in olfactory bulb
(Figure 5I) and is sparse in hippocampus (Figure 5L), whereas in
Gfap™ R /Nrf2™* mice, ferritin colocalizes with Gfap in
astrocytes (Figure 5], M). Gfap™®?**"/Nrf2 ™/~ mice seem to
have an intermediate phenotype with ferritin reactivity still
apparent in astrocytes, but with less intensity (Figure 5K,N).

Occasional microglia also show elevated ferritin in both Gfap”
REOH/ N2+ and  Gfap™®**H/Nrf2 ™/~ mice (Figure 5B:
Gfap™®¥*H/Nrf2** shown).

On the transcriptional level, ferritin heavy chain (Fthl)
expression is increased in Gfap™ ®*"/Nrf2** and reduced back
to wild-type levels in Gfaer/RQ%H/ Nrf2 ™/~ (Figure 6A), although
ferritin light chain transcripts remain unchanged (Ftll, data not

(data not shown).

Iron Accumulation in GFAP Mutant Mice and Ferritin
Regulation by Nrf2

As we reported previously, brain iron accumulation is
apparent in both GFAP'® and Gfap™®***™ mice [11,12].
Histochemical staining for iron usually delineates oligodendro-
cytes in the CNS, but in Gfap™®***" mice, immunostaining for
Gfap shows iron accumulating mostly in astrocytes (Figure 5A).
Nrf2 regulates both the heavy and light chain peptides of the

shown). However ferritin is also regulated post-transcriptionally,
and western analysis shows no change in heavy or light chain
protein (Figure 6B; data not shown for Ful).
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Figure 3. Microglia are less reactive in Gfap™®23" mice without Nrf2. (A) Compared to wild-type mice, Gfap mutant mice show elevated

Iba1 immunoreactivity in hippocampus either with or without Nrf2. (B) Western analysis of hippocampal protein shows reduced Iba1 expression in
Gfap*/R%H/Nrf2 ™/~ compared with Gfap™®23¢"/Nrf2** mice (8 wks), although levels remain elevated above wild-type (**p<<0.01, unpaired t-test
comparing Gfap™/"236H/Nrf2*/* with Gfap*/®?**H/Nrf2 ™/~ mice, n =4). Lanes 5 and 6 for Nrf2 ™/~ samples are from a different region of the same gel as
lanes 1-4 (Nrf2""* samples).

doi:10.1371/journal.pone.0037304.g003
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Figure 4. p62 in Gfap®23¢" mice colocalizes with Gfap aggregates and is reduced with loss of Nrf2. (A) p62 immunohistochemistry in

hippocampus from Gfap™"236H/Nrf2*/*

mice shows astrocytic cells that are not apparent in Gfap™* mice. Gfap™***"/Nrf2~/~ mice show similarly

stained cells (3 mos of age). (B) Confocal microscopy with immunofluorescence for p62 (green) shows colocalization with Gfap aggregates (red) in
both Nrf2*"* and Nrf2 ™/~ Gfap™*23%H mice (8 wks of age). (C) Western blot analysis of hippocampal protein shows increased p62 in Gfap mutant mice
compared to wild-type, with Gfap™®*¢H/Nrf2™/~ mice having levels reduced to that of wild-type mice (8 wks of age, n=4, t-test **p>0.01,
comparing Gfap™/R2*°H/Nrf2*+ with Gfap™®2¢H/Nrf27/7). Scale bar=25 pum (shown in B, applies to both confocal images).

doi:10.1371/journal.pone.0037304.9004

Nrf2 Knockout does not Affect Survival in Gfap™??3¢H/

GFAP'™ Mice, a Lethal Model of AxD

In our most severe AxD model, mice with a combination of
mutant Gfap and over-expression of wild-type human GFAP
(Gfap™R®#**H/GFAP™®) dic apparently from seizures at about 25
days of age (Figure 7). To further assess the role of Nrf2 in AxD,
we crossed the Gfap mutation together with the GFAP transgene
into the Nrf2 null background. We anticipated that the survival of
these mice would indicate whether Nrf2 was providing a protective
or harmful effect, however neither was the case: the loss of Nrf2 in
this combination had no effect on the lifespan of the mice
(Figure 7).

Discussion

We have two main interests for pursuing genetic modifiers in the
context of AxD, one mechanistic and one therapeutic. From the
mechanistic standpoint, removing protective modifiers in the
mouse may worsen pathology and help explain differences
between the human and mouse phenotypes. Such modifiers would
offer insights into the progression of cellular dysfunction. In
addition, the identification of protective modifiers could ultimately
prove to have therapeutic potential for AxD and other neurode-
generative disorders with astropathology.

Nrf2 is a member of the CNC (cap-n-collar) subfamily of basic
leucine zipper transcription factors, originally identified in the
erythroid system in studies of globin DNAse I hypersensitive sites,
but now known to be widely expressed in multiple tissues [33].
Normally Nrf2 is inactive and confined to the cytoplasm through
binding of the Kelch-like protein, Keapl, ubiquitinated and
degraded. In response to a wide variety of stresses, and especially
oxidative stress, Nrf2 dissociates from Keapl and translocates to

@ PLoS ONE | www.plosone.org

the nucleus, where it binds to a short antioxidant response element
(ARE) found in the promoters of a number of stress response genes
such as Nqol, glutathione-S-transferase, and heme oxygenase-1,
thus activating their expression [36]. Alternatively Nrf2 can be
targeted for proteasomal degradation through phosphorylation of
the Neh6 domain by GSK-3P or other kinases [20,21]. The closely
related Nrfl also binds to the ARE, and along with other factors
such as AP1, SP1, and C/EBP may contribute to the basal levels
of expression of these target genes. However, the marked up-
regulation that occurs via the ARE in response to stress appears to
be largely, if not entirely, mediated through Nrf2 [37]. In this light,
it is interesting that Nrfl-null mice die in utero due to defective
erythropoiesis  [38]. In contrast, Nrf2-null mice
adulthood, but are more susceptible to a variety of insults,
including MPTP and rotenone [23], 6-hydroxydopamine [39],
kainic acid [40], 3-nitropropionic acid [24,25], malonate [24],
ischemia [22], and experimental autoimmune encephalomyelitis
[41]. Conversely, increased expression of Nrf2, specifically in
astrocytes, provides neuroprotection in a genetic mouse model of
amyotrophic lateral sclerosis [26] and the MPTP mouse model of
Parkinson’s disease [27].

We have found that there is marked induction of the ARE
pathways in our mouse models of AxD [11,12]. Given Nrf2’s
common activation in a number of CNS disorders, the potential
neuroprotective effects of enhancing expression, and the existence
of several natural as well as synthetic inducers of Nrf2 activity that
could have therapeutic applications [42], there is considerable
appeal to further exploring its role in AxD and neurodegeneration.

Our findings however, show that loss of Nrf2 activation in AxD
mice is surprisingly innocuous. Others have reported that Nrf2
null mice show white matter pathology with vacuolar degeneration
and glial activation after 10 months of age [43]. We find no

survive to
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Figure 5. Iron accumulation in astrocytes from Gfap mutants is reduced with loss of Nrf2. (A) Modified Perl’s stain shows iron in small
round cell bodies (brown) with oligodendrocyte morphology separate from Gfap immunostained astrocytes (blue/green) in Gfap™* olfactory bulb,
whereas iron staining is prominent in astrocytes with reactive morphology in Gfap™"?**" mice and in some cases appears to localize with Gfap
aggregates (3 mos of age). (B) Ferritin immunofluorescence shows occasional colocalization with Mac1 (hippocampus, 3 mos of age) suggesting
some iron storage in microglia. (C-H) Iron histochemistry shows accumulation in astrocytes of both olfactory bulb (C-E) and hippocampus (F-H) in
Gfap*"M mice (D, G) compared with Gfap™" brains (C, F). Loss of Nrf2 reduces iron staining in Gfap™®?**H/Nrf2™/~ mice (E, H). (I-N)
Immunostaining for ferritin (red) and Gfap (green) in olfactory bulb (I-K) and hippocampus (L-N) shows ferritin labeling in Gfap negative cells with
oligodendrocyte morphology, especially in olfactory bulb (1) and sparse labeling in hippocampus (L) in wild-type mice at 8 wks of age. In Gfap™/R?3¢"/
Nrf2** mice, ferritin colocalizes with Gfap in astrocytes in both olfactory bulb (J) and hippocampus (M). Gfap™"2**"/Nrf2~/~ mice (K, N) show an
intermediate pattern with less staining in Gfap positive cells, and in olfactory bulb (K), cells that appear to be oligodendrocytes. Scale bars=25 um

(A); 50 um (B, I).
doi:10.1371/journal.pone.0037304.g005

evidence of this in the younger mice focused on in our study (2-3
months of age), and loss of Nrf2 in GFAP™* mice did not cause a
reduction in baseline levels for Nrf2 regulated genes as shown
previously in Nrf2™/~ mice at 6 months of age [40]. In the AxD
models examined: Gfap*®?**™ mutant, GFAP over-expressing
transgenic (GFAP'®), and double Gfap*®#**"/GFAP'® mice,
with increasing severity respectively, loss of Nrf2 does not worsen
the apparent phenotype, including life-span, body weight or the
distribution of Rosenthal fibers in the brain. Astrocytes and
microglia remain reactive, but further examination shows
decreased expression of stress response genes that are not directly
regulated by Nrf2. In hippocampus, expression of Gfap and the
small heat shock protein Cryab, both of which are elevated during
reactive gliosis, are reduced in N: 2~/ mice. Transcripts for the

Fth1
olfactory bulb

acute phase response protein ceruloplasmin are also reduced in
olfactory bulb and hippocampal astrocytes, showing reduced
reactivity in pathways that are not part of the phase II stress
response.

Another common feature of neurodegenerative disease is the
accumulation or re-distribution of iron. Normally, histological
staining of ferric iron (Fe*) in the brain shows prominent storage
in oligodendrocytes, which is thought to reflect the energy
requirements associated with maintaining myelin sheaths [44].
In Alzheimer’s and Parkinson’s diseases, however, aberrant iron
storage occurs in cells other than oligodendrocytes [45]. In the
mouse models of AxD, iron accumulates in astrocytes. This
accumulation is markedly reduced with the loss of Nrf2. The genes
encoding both heavy and light chains of the iron storage protein,

hippocampus
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Figure 6. Ferritin transcripts and protein are differentially regulated. (A) Transcripts for the ferritin heavy chain gene Fth1 are elevated in
both olfactory bulb and hippocampus from Gfap*/*?**" mice, and are reduced to wild-type levels with loss of Nrf2. (B) Fth1 protein levels, however
remain unchanged in all genotypes. (8 wks of age, n=4, t-test **p>0.01, ***p > 0.001 comparing Gfap™">>*H/Nrf2"* with Gfap™"2>¢"/Nrf2~/").
doi:10.1371/journal.pone.0037304.g006
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Figure 7. Loss of Nrf2 in a lethal model of AxD does not affect
survival. Double positive Gfap™®?*%H/GFAP™ mice that die at
approximately 25 days of age show no significant difference in survival
with loss of Nrf2 (Gfap™"23°H/GFAPT9/Nrf2"*, N=15; Gfap™"23°H/
GFAP'9/Nrf2"/~, N=5, Log-rank (Mantel-Cox) Test). For GFAP'9/Nrf2~/
~ and Gfap+/R236H/Nrf2_/_ mice, animals were euthanized at 6 wk and
3 mo time points for various experiments: for GFAPT9/Nrf2~"~ (6 wks
n=20, 3 mos n=12, 6 mos n=2) for Gfap™*%®"/Nrf2~'~ (6 wks n=21,
3mosn=14,6 mos n=7).

doi:10.1371/journal.pone.0037304.9g007

ferritin, have ARE regulatory elements in their gene promoters
[46,47] (although these same genes are also controlled post-
transcriptionally by the iron regulatory proteins, IRP1 and IRP2,
in response to iron availability [48]). In AxD mice, transcription
for the ferritin heavy chain gene (Fthl) is increased in olfactory
bulb and hippocampus, regions with high Gfap and RF levels and
marked ARE induction. Fthl transcripts are then reduced back to
wild-type levels with the knockout of Nrf2. Whether these changes
in ferritin expression account for the diminished staining for iron
observed histologically is not clear [49], since protein levels for
either I'thl or Ftll do not seem to change, regardless of Nrf2
activation.

Nrf2 also regulates the gene for p62 (sequestosome) [50,51], the
cargo receptor protein involved in targeting ubiquitinated proteins
for autophagy [52]. p62 has been found to associate with several
different cytoplasmic inclusion bodies including Rosenthal fibers
[53]. In AxD mice p62 is elevated and associates with at least a
portion of Gfap aggregates. In agreement with our previous report
showing that mutant GFAP stimulates autophagy in vitro [14],
these results suggest ubiquitinated Gfap aggregates [11] are
targeted for autophagic degradation in vivo as well. In Nrf2 null
mice with decreased p62 expression, one would expect less
efficient targeting of Gfap aggregates for autophagy and further
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