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Abstract: Ionizing radiation may be of both artificial and natural origin and causes cellular damage in
living organisms. Radioactive isotopes have been used significantly in cancer therapy for many years.
The formation of DNA double-strand breaks (DSBs) is the most dangerous effect of ionizing radiation
on the cellular level. After irradiation, cells activate a DNA damage response, the molecular path that
determines the fate of the cell. As an important element of this, homologous recombination repair is a
crucial pathway for the error-free repair of DNA lesions. All components of DNA damage response
are regulated by specific microRNAs. MicroRNAs are single-stranded short noncoding RNAs of
20–25 nt in length. They are directly involved in the regulation of gene expression by repressing
translation or by cleaving target mRNA. In the present review, we analyze the biological mechanisms
by which miRNAs regulate cell response to ionizing radiation-induced double-stranded breaks with
an emphasis on DNA repair by homologous recombination, and its main component, the RAD51
recombinase. On the other hand, we discuss the ability of DNA damage response proteins to launch
particular miRNA expression and modulate the course of this process. A full understanding of
cell response processes to radiation-induced DNA damage will allow us to develop new and more
effective methods of ionizing radiation therapy for cancers, and may help to develop methods for
preventing the harmful effects of ionizing radiation on healthy organisms.

Keywords: DNA damage response; double-strand DNA breaks; ionizing radiation; microRNA;
cancer therapy

1. Introduction

Ionizing radiation (IR) consists of alpha, beta and neutron particles, as well as X and gamma rays.
As a result of ionization, chemical reactions are initiated and they lead to major disorders of a number
of cell molecules, including DNA [1–3]. Radiation-induced DNA damage initiates the signaling the
transduction pathway, known as the DNA damage response (DDR), resulting in the activation of
multiple cellular signaling molecules to determine the cell fate, including cell cycle arrest, apoptosis,
senescence, autophagy and DNA repair [4,5].

Although radiation therapy has been in use for a long time, it is one of the most effective techniques
applied in the eradication of cancerous lesions in humans [6–8]. It can be used alone, as well as in
combination with surgery, chemotherapy and immunotherapy. X-rays and gamma rays are photons
used routinely in radiation therapy to treat various types of cancer. Particle radiation uses electron,
proton and neutron beams to fight cancer. Although the majority of cancers are characterized by
medium or high sensitivity to radiation therapy, those whose sensitivity is low are still a great challenge
for oncologists and require the development of individualized targeted treatment methods [9,10].
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In addition to radiosensitivity, the second problem associated with the use of radiation therapy is
its high toxicity to normal tissues in the path of the radiation beam or in close proximity. Damage to
healthy tissues can also be caused by radiation scattering or by low omnidirectional doses used in
modern radiotherapy systems. The next category are lesions distant from the irradiation site, related to
the effects of stress at the irradiation site propagated on distant parts of the body by the immune system.
The destructive effect of radiation on normal cells is observed directly after radiation in the surrounding
tissues and can be shifted in time, even up to several years after eradication of the tumor [9–11].

The most lethal forms of DNA damage after ionizing radiation exposure are DNA double-strand
breaks DSBs) [4,12]. Taking into account different DNA template requirements and the available set
of proteins associated with the changing of the cell cycle phase, there are two distinct DSBs repair
pathways, known as canonical non-homologous end joining (C-NHEJ) and homologous recombination
(HR). Each of these repair mechanisms is designed for distinct tasks and brings different results for
cells [13,14].

When DNA has sustained exogenous damage, the repair proteins are recruited and the cell cycle
is stopped at cellular checkpoints. Unrepaired DNA lesions can inhibit transcription and induce
programmed cell death to avoid mutation accumulation in the cells carrying DNA damage [15,16]
Unrepaired double-strand DNA damage carried out in cancer cells is the expected end result of many
therapeutic strategies, including radiotherapy, as they are lethal to the cell. Tumor cells proliferate
continuously, while normal cells do so relatively rarely and most of the vital activities fall into the
stationary phase. Due to the fact that the DNA repair system by homologous recombination is active
only in the cell division phase, when the correct chromatid is needed for effective repair, the search
for potential tumor sensitizing targets on radiotherapy in this DNA repair pathway is particularly
well-founded. The concept of synthetic lethality involving homologous biologists [17–24]

MicroRNAs (miRNAs) are single-stranded short noncoding RNAs of 20–25 nt in length involved
in the regulation of gene expression by repressing translation or cleaving target mRNA. More than
1000 miRNA transcription units have been identified in human genomes.

Several miRNAs, whose expression may change the regulation of DNA damage response (DDR),
and HR protein components have been identified after irradiation [25–27].

This review discusses the biological mechanism through which miRNAs affect the DNA damage
response and homologous recombination repair relating to IR.

2. MicroRNA

The biogenesis of miRNAs comprises several nuclear and subsequent cytoplasmic instances of
cleavage that result in the production of mature microRNA. A primary miRNA transcript (pri-miRNA)
is synthesized in two different ways, depending of the genomic location (Figure 1) [28–30]. The miRNA
genes can be classified as either intergenic (miRNA-coding genes contain their own promoter and
regulatory sequences) and intragenic (miRNA-coding genes are transcribed with their host genes
and from a common promoter region). The intergenic miRNA genes are transcribed in pri-miRNAs
and contain a 7-methylguanylate cap at the 5′ end and a poly(A) tail at the 3′ end, which are directly
cleaved by Drosha and its cofactor DiGeorge critical region 8 (DGCR8), forming a double-stranded
intermediate of ∼70 nucleotide. On the other hand, the intragenic pri-miRNAs are cleaved by the
Drosha/DGCR8 complex without affecting the splicing step. Pre-miRNA is subsequently transported
by the nucleocytoplasmic transporter factor exportin-5 and ran-GTP, and in the cytoplasm, the enzyme
termed DICER (RNase) converts a pre-miRNA into a miRNA duplex intermediate. One strand from a
double-stranded miRNA (guide microRNA strand) is loaded onto an Argonaute 2 (AGO2) protein,
while the other strand is normally degraded. The AGO2 protein is incorporated into the miRNA guide,
generating an RNA-induced silencing complex (RISC) which is guided to the target mRNAs and leads
to post-transcriptional gene silencing or mRNA degradation. Imperfect complementarity between
miRNA and the 3′ untranslated region (3′UTR) of messenger RNA confers translational repression,
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whereas if the match is perfect, mRNA undergoes enzymatic cleavage. After IR exposure, significant
reductions in either DICER or AGO2 have been noticed, resulting in programmed cell death.
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Figure 1. Two ways leading to the creation of miRNA.

MicroRNA binding sites are located in the 3′ untranslated region (3′UTR) of mRNA [31]. The 3′UTR
isoforms can play a different role in gene expression and protein synthesis. An inverse correlation was
found between 3′UTR length and mRNA stability, gene expression and the proliferation efficiency of
cells. Short isoforms are characteristic of highly proliferative cells, including cancers. Being less liable
to degradation, short isoforms are more stable and have a higher transcription and translation ability.
Short isoforms contain less microRNA binding sites, which significantly increase the translational
potential of mRNA [32,33].

Each alternative 3′UTR isoform has its own set of functional RNA-binding proteins and microRNA
binding sites. The binding ability of microRNA depends on the sequence and conformation of 3′UTR,
which leads to the fact that any sequence changes that modify the conformation directly—such as
mutations or polymorphisms—affect the functionality of 3′UTRs. The protein level is determined by
3′UTRs through the regulation of both mRNA stability and translation efficacy [32,34]. These tasks are
based on AU-rich sequences and microRNA binding sequences [32,35–37].

The removal of AU-rich elements and miRNA-binding sites (21) from 3′UTRs of proto-oncogenes
leads to the development of cancer [37,38]. See other reviews for more details [32,33].

Polymorphisms in microRNA-binding sites in the genes coding for proteins of DNA double-strand
break (DSB) repair can influence the risk and prognosis of several types of cancer, including head and
neck, colorectal, bladder and oropharynx [39–42].

Somatic mutations in the 3′UTR sequence do not interfere with the protein sequence. They can
interfere with the interaction between the microRNA and its target within the mRNA molecule by
directly altering the degree of alignment with the target sequence or indirectly affecting conformation,
and thus the availability of microRNA to target sites. A large-scale analysis of 67,159 somatic mutations
that can alter the microRNA and mRNA interactions in 21 types of cancer demonstrated the inversed
relationship between expression and microRNA–mRNA affinity levels. Functional mutations of 3′UTR
microRNA binding sites were more often present in the mitogen-activated protein kinase (MAPK) and
WNT signaling pathways, well known to be involved in cancer development [43].
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3. IR Induced DNA Damage

Gamma and X rays are the most penetrating radiations and their deposition of energy can directly
influence the DNA structure; however, DNA lesions may also be caused indirectly [3,5]. This type
of radiation passes through the radiolysis of water contained in the cell and disrupts other organic
molecules, which leads to the production of reactive oxygen species (ROS) and reactive nitrogen
(RNS) species (Figure 2) [44]. The hydroxyl radical is the most important ROS that interacts with
DNA. The hydroxyl radical generates single and double-stranded breaks in DNA by interacting with a
sugar molecule in the phosphodiester chain [45–47]. It also damages the purine and pyrimidine bases,
while purines are damaged with greater efficiency than pyrimidines. The frequently observed DNA
base lesions are 8-oxo-7,8-dihydroguanine (8-oxoG), 2,6-diamino-4-hydroxy-5-formamidopyrimidine
(Fapy-G), 8-oxo-7,8-dihydro-20-deoxyadenosine (8-oxoA) and 4,6-diamino-5-formamidopyrimidine
(Fapy-A) and 5,6-dihydroxy-5,6-dihydrothymine (Thy-Gly). Ionizing radiation exposure to DNA
results in apurinic/apyrimidinic sites and more than 100 different lesions [17,48,49].
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Figure 2. Direct and indirect formation of DNA damage. The absorption of ionizing radiation by
living cell hits the DNA molecule directly and disrupts the chemical structure of the DNA double helix.
The indirect effect of ionization depends on the radiolysis of cellular water and cellular component
disruption. The removal of an electron from water leads to alterations in the nuclear and mitochondrial
genome via the overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS).
During ionizing radiation (IR) exposure, large amounts of nitric oxide (•NO) are generated, which is
relatively unreactive and, together with superoxide (O2•−), they form a peroxynitrite anion (ONOO−)—a
powerful oxidant.

The genome-wide DNA sequence preference of gamma radiation-induced double-strand DNA
break formation was investigated in purified human DNA. C nucleotides—followed by G and T
nucleotides—were found to be most prevalent at the cleavage site. A nucleotide was the least prevalent.
This means that sequences rich in CG pairs are most exposed to DNA cleavage. The explanation of this
phenomenon is conditioned by the fact that the GC base pair forms a wide, major groove in the DNA
molecule, which allows the hydroxyl radical to penetrate inside the molecule and interact freely with
this base pair. This observation was confirmed by various studies [50–52].

Yard et al. [53] conducted a large-scale genetic survival study on 533 genetically annotated human
tumor cell lines after exposure to radiation therapy. Cancer cell survival was correlated to somatic copy
number alterations. The top 19 genes that were associated with radiation sensitivity when mutated
were organized by biological function. Seven of these genes, i.e., TPR18, FLNA19, TP53BP1, SMG1,
RANBP9, SMARCA4 and STAG3, were previously implicated in the DNA damage response [53].



Cancers 2020, 12, 1838 5 of 19

4. Double-Strand DNA Break Recognition and Repair

After the introduction of DSB, it is detected rapidly. The DNA damage is quickly detected by
poly [ADP-ribose] polymerase 1 (PARP1), which catalyzes the formation of poly (ADP-ribose) chain
facilitated attachment of the MRN (MRE11, RAD50, NBS1) complex at the DNA damage site. It is
also postulated that both PARP1 and MRN are double-stranded DNA break sensors, which recognize
different types of damage [18,19,54,55].

The activation of the DDR signal cascade requires an interaction between the MRN complex
and ATM serine/threonine kinase. ATM kinase is the most common intermediate in a number of
cellular responses to IR-induced damage [18,56,57]. While the MRN complex is attached to a DNA
double-strand break site, the carboxy terminus of the NBS1 protein interacts with ATM and recruits
it to the site of DNA damage where its activation takes place. ATM occurs in an inactive form as a
homodimer, which is self-activated by phosphorylation after recruitment to the DNA damage site.

ATM undergoes autophosphorylation on Ser 1981, which leads to the breakdown of the inactive
dimer into catalytically active monomers [58–60]. Moreover, Kozlov et al. confirmed that ATM also
undergoes autophosphorylation on Ser367 and Ser1893, thus recruits ATM to broken DNA molecules [58].

The scope of the ATM-mediated in DDR is very wide. Active ATM kinase monomers phosphorylate
over 700 protein substrates of this kinase. ATM functions focus on activating DNA repair proteins and
cell cycle checkpoint-related factors [58,61,62].

Histone H2AX is rapidly phosphorylated at the C-terminal Ser residues (Ser136 and Ser139).
The phosphorylation of H2AX on Ser 136 and 139, named γ-H2AX, leads to chromatin modification,
which allows other DDR protein components to be recruited. However, upon the recognition of DNA
lesions, the deregulation of DDR and other self-repair mechanisms may lead to cell radiosensitivity to
radiation therapy. The overexpression of miR-24 and miR-138 targets the histone H2AX transcript
at 3′-UTR, which leads to the downregulation of the H2AX histone coding gene and reduces the
formation of foci of phosphorylated H2AX following DNA damage [63–66].

C-NHEJ predominates in the G1 phase, whereas it can occur in other cell cycle phases, when an
intact sister chromatid is unavailable to guide the accurate HR repair mechanism [67]. Cohesive ends
in the DSBs may be simply joined in the C-NHEJ pathway, but if the DNA contains blunt ends, it may
result in the deletion or insertion of base pairs. Therefore, the DSBs generated by irradiation require a
set of NHEJ factors which ensure rapid repair and maintenance of genome integrity. An alternative
form of NHEJ which can be unmasked in the absence of functional C-NHEJ genes are described as
alternative end-joining (alt-NHEJ or A-EJ) pathways [68,69].

A-EJ is also described as microhomology-mediated end joining (MMEJ) and is associated with
deletions at the repair end junctions. This repair process requires end resection and microhomology
sequences that are distant from the DSB. The A-EJ is suppressed by C-NHEJ and HR, although if these
standard repair processes fail because a cell is deficient in C-NHEJ crucial proteins, the A-EJ is recruited
to repair the damage [69,70].

HR repair is restricted to the S, G2 and M phases to ensure the correct cell divisions. The activity
of HR involves resection at the DSB and repair using a DNA homology template, leading to accurate
repair, although occasionally it may also contribute to mutation, albeit to a much lesser extent [71,72].

The single strand annealing (SSA) is mainly active in yeast and mediates end joining between
interspersed nucleotide repeats. The repair pathway is independent of the cell cycle and is not
associated with the requirement that a sister chromatid be present. This is a homology-directed repair
which removes DSBs by annealing a DNA segment close to the break with a neighboring homologue,
leading to deletion of genetic information between the repeats [73,74].

Unrepaired DNA damage causes cancer cell death by apoptosis, necrosis or mitotic catastrophe.
The mode of the cell death depends on the cell type, cell cycle phase, dose of irradiation and cancer
environmental properties such as oxygen availability [75,76]. Some double-strand DNA breaks are
very difficult to repair. They remain persistent and do not lead to cell death but bring it to a state of
senescence [55,77,78]. The senescence-associated secretory phenotype (SASP) is responsible for the
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induction of inflammatory cytokines, extracellular matrix remodeling and the stimulation of angiogenesis
to promote tumor growth and metastasis formation. Some factors, such as those secreted from stroma
cells, can reverse the senescence of cancer cells, which is a common cause of cancer recurrence [78–80].

Cancer cells are highly heterogeneous. One population of these cells—cancer stem cells (CSCs),
characterized by the ability of self-renewal and indicated as the main cause of cancer metastasis—are
highly resistant to ionizing radiation [81,82].

The incapability of DDR and DSBs repair pathways is commonly considered to be a cause of
carcinogenesis by increasing the mutation rate, which—in consequence—leads to the development of
heterogeneous lineages of cancer cells and resistance to chemo-radiotherapy [83–85]. On the other hand,
targeting some of its components leads to the sensitization of cancer to IR. As indicated, the inhibition
of important HR repair components, such as recombinase RAD51, provides promising results in terms
of sensitizing cancer cells to radiotherapy [55,86–93].

Repair based on a homology template allows DNA damage to be repaired accurately and the
risk of mutagenesis to be reduced. Although HR repair might not be completely error free, it is much
less mutagenic than NHEJ [84,94–98]. The NHEJ deficiency is less often observed in context of
tumorigenesis than HR [99,100]. Therefore, HR is a good candidate for use in cancer therapy based on
the synthetic lethality strategy.

The synthetic lethality strategy is dedicated to cells with mutations, polymorphisms or epigenetic
changes that cause a loss of function of one of the DNA repair proteins, as a highly redundant DNA
repair system uses an alternative or complementary pathway to repair the damage. Through the
additional artificial inactivation of the relevant genes of those pathways, DNA repair in pathological
cells can be significantly impaired, thus leading to selective death. MicroRNAs are promising candidates
for such inactivating agents [101,102]. A scheme of the potential microRNA participation in generating
synthetic lethality is shown in Figure 3.
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Figure 3. Synthetic lethality mechanism undergoes microRNA regulation. In conventional pathways,
DSBs are repaired and cells are able to survive; however, cells with DNA-repair protein deficiencies
rely heavily on alternative mechanisms to repair damaged DNA. The concept of alternative DNA
repair pathways using microRNA modulation assumes that silencing a crucial gene factor provides
chromosome discontinuity and cell death. Upregulated DNA damage repair genes are assigned as
black arrows pointing up, while suppressed genes are presented as black arrows pointing down.
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5. MicroRNA Regulation of DNA Double-Strand Break Recognition and Homologous
Recombination Repair after IR Exposure

MiRNAs that regulate several important DDR proteins are demonstrated on Figure 4 and Table 1;
Table 2. Several miRNAs that sensitize cells to IR by targeting the 3′-UTR of ATM have been identified in
cancer cells. Upregulated miRNAs include the following: miR-18a [103], miR-26a [104], miR-27a [105],
miR-100 [106], miR-101 [107], miR-106a [108,109], miR-203 [110], miR-223 [111], and miR-421 [112],
leading to the suppression of the ATM gene and formation of its protein product at nuclear foci.
Furthermore, miR-421 is upregulated by the proto-oncogene protein, N-Myc, transcription factor
that establishes some signaling cascades (miR-421/N-Myc/ATM) that causes cell radiosensitivity [112].
The key downstream target substrate, phosphorylated by ATM, is checkpoint protein 2 (Chk2),
mediating the effects of ATM on DNA damage repair mechanisms and other cellular responses that
consequently halt the cell cycle [113]. Chk2 subsequently phosphorylates p53 (a tumor suppressor
protein), because its activation determines the fate of the cell. Moreover, p53 is also stimulated
directly by ATM kinase [114]. The overexpression of miR-125b [115], miR-375 [116], miR-504 [117] and
miR-630 [118], leading to the repression of the endogenous level of p53 protein, and the loss of the
p53-coding gene function, predisposes the organism to tumor growth.
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Figure 4. A scheme presenting the major proteins of the DNA damage response (DDR) signaling
pathway and the miRNAs that interact with them. Following the induction of DNA double-strand
breaks (DSBs) by irradiation, the reaction initiates protein components, such as sensors (MRN/H2AX),
transducers (ATM/BRCA1/checkpoint protein 2 (Chk2)) and the effector protein (p53) in order to achieve
a cellular response. Multiple miRNAs play a crucial role in the suppression of these DDR proteins in
irradiated cancer cells, and some of these proteins may activate miRNAs, leading to a specific cellular
response (see the main text for more details).

The tumor suppressor p53 mainly acts as a transcription factor. After IR exposure, p53 undergoes
post-translational modification, leading to the induction and/or inhibition of many transcriptionally
activate target genes [119,120]. The connection between p53 and miRNAs is also described. MiRNAs
are considered to be intrinsic components of the p53 pathway. Among the current data, three miR-34
family members (miR-34a, miR-34b, and miR-34c) have been identified that are transcriptionally



Cancers 2020, 12, 1838 8 of 19

activated by the p53 protein. The miR-34 family is encoded at two distinct genomic loci—mir34a and
mir34b/c—that contain identical seed sequences. In addition, in mammalian cells, the miR-34 family
is often expressed by p53 in response to IR. Due to reductions in the level of miR-34 expression in a
variety of tumor cases, as well as associated genomic deletions and promoter hypermethylation, it was
confirmed that miR-34 can play a role as a radiosensitizing agent and potential therapeutic target in an
anti-miR-34 approach [121,122].

Ionizing radiation induces RAD51 nuclear foci formation and the regulation of HR repair by
miRNAs. A growing body of evidence clearly indicates that miRNAs are specifically regulated with
regard to IR dose and DNA repair time in response to IR. Moreover, some miRNAs can promote the
overexpression of certain HR factors in several cell lines or may lead to the downregulation of another
HR protein in other cells [123,124].

The MRN complex is responsible for the initial recognition of DSBs that generate single-stranded
DNA and G2/M checkpoint arrest for HR repair. During HR processes in eukaryotic cells, RAD51
participates in the majority of the repair (Figure 5) [125–127]. As a central player in the HR mechanism,
RAD51 is overexpressed in tumor cells, because malignant cancer cells often bear p53 mutations in tandem
with a low-level DNA damage sensitivity caused by chemo- and radiotherapy treatment [120,128–131].

Table 1. MicroRNAs that affect DNA damage response and homologous recombination repair
downregulated after irradiation.

miRNAs Target Proteins Studied Material
and IR Dose

Predicted Consequences
for Cells References

miR-155,
miR-375 RAD51 p53

Thirty-two male FVB/NJ
mice, 12 weeks old/liver

tissue
Dose: 28 mGy

- [116,132,133]

miR-34a
c-Myc

Human colorectal cancer
cells HCT116 p53-/-

Doses: 2; 4; 8 Gy

MiR-34a is a critical
mediator of p53 function. [134,135]

c-Myc

Human non-small-cell
lung carcinoma (NSCLC)

H460
Doses: 1; 2; 5 Gy

Senescence-promoting effect.

miR-24,
miR-103 & miR-107,

miR-106a,
miR-155

H2AX, RAD51
ATM RAD51

Human B lymphoblastic
cell line IM9
Dose:1 Gy

MiR-34a may be involved in
the cell

cycle response and apoptosis
pathway in association with

p53.

[26,64,108,133,
136]

miR-24,
miR-26b,

miR-125b,
miR-100

H2AX
ATM
p53

ATM

Normal human
fibroblasts AG01522

Dose: 10 Gy

Regulation of cellular
response following

irradiation.

[64,104,106,137,
138]

miR-203 ATM Normal thyroid cells
Doses: 1; 10 Gy

MiR-203 dysregulation is
associated with radiation

exposure and may be unique
for thyroid cells.

[139,140]

miR-504 p53

Human head and
neck epithelial

malignancy,
nasopharyngeal

carcinoma (NPC),
radio-resistant cell lines
CNE2-IR and HK1-IR

Doses: 2; 4; 6 Gy

Induction of radioresistance
by down-regulating the
expression of NRF1 and

disturbing mitochondrial
respiratory function.

[117,141]

Several miRNAs have been described as important regulators of HR proteins, which change
their expression level after irradiation treatment. HR repair activation is mediated through the
ATM/Chk2/p53 signaling pathway and requires many protein factors (BRCA1, BRCA2, PALB2) and
RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) for the proper post-translational
modification of RAD51 and accurate repair after irradiation [142,143]. Manipulation of HR mechanism
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by using miRNAs regulation leads to a clear increase in radiosensitivity or IR-resistance promotion in
many cancer cell lines [103,104,108,144,145]. For example, irradiation may promote RAD51 expression
by downregulating miR-193b-3p in hepatocytes, whereas than the miRNAs (miR-1255b, miR-148b* and
miR-193b*) are inhibited, the increased expression of BRCA1, BRCA2 and RAD51 is detected [123,146].
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Figure 5. MiRNA regulation of homologous recombination (HR) repair factors after IR. After double
strand break (DSB) recognition, BRCA1 (black arrow, pointing up) is phosphorylated by Chk2 kinase
and an endonuclease CtIP is delivered for promotion end resection. While, at a later step of HR,
BRCA1 recruits PALB2, which mediates promotion of BRCA2 to arrangement on the DNA template.
Active BRCA2 (black arrow, pointing up) proteins displaces replication protein A (RPA) in order to
load RAD51 onto the DNA. However, low BRCA2 protein levels cause increased levels of RAD52,
which promote RAD51 for accurate homologous recombination (HR) repair in BRCA2-deficient cells.
The lack of BRCA2 and RAD52 (black arrow, pointing down) causes the most severe genome defects.
Major components of the HR pathway are arranged in a scheme based on the aspect of the miRNA
regulation post-IR.



Cancers 2020, 12, 1838 10 of 19

Table 2. MicroRNAs that affect DNA damage response and homologous recombination repair
upregulated after irradiation.

miRNAs Target Proteins Studied Material and IR
Dose

Predicted
Consequences for Cells References

miR-34a
miR-421

c-Myc
ATM

Thirty-two male FVB/NJ mice,
12 weeks old / heart tissue.

Dose: 28 mGy

The expression of
inflammation-related

miR-155 changed by low
dose irradiation.

[112,132,134]

miR-375 p53
Thirty-two FVB/NJ mice, 12

weeks old testis tissue.
Dose: 28 mGy

miR-34a c-Myc

Human colorectal cancer cells
HCT116 p53 +/+.
Dose: 2; 4; 8 Gy

MiR-34a is a critical
mediator of p53 function. [134,135,147]

Human non-small cell lung
carcinoma (NSCLC) A549.

Dose: 2; 5; 10 Gy

Senescence promoting
effect.

Human breast cell line /
non-cancerous MCF-10A and

cancerous MCF 7.
Dose: 5 Gy for MCF-10A
additional doses: 3; 12; 48

mGy

Mir-34a is up-regulated
in p53 positive cancer

and normal cell.
MiR-34a might be

involved in breast cell
responses to low dose

radiation.

miR-18a ATM
Patients from radiosensitive
group /cervical cancer cells.

Dose: 8 Gy

Attenuation of DNA
DSB repair and

re-sensitization of cancer
cells to radiotherapy by
promoting apoptosis.

[103,148]

miR-34a/b
miR-193b
miR-630

H2AX
BRCA1 BRCA2

RAD51
p53

Human B lymphoblastic cell
line IM9.

Dose: 1; 10 Gy

MiR-34a may be
involved in the cell cycle
response and apoptosis

pathway associated with
p53.

[123,134,136,149,
150]

miR-106a ATM
Human prostate

adenocarcinoma cell line PC3
Dose: 6 Gy

Promotion of cell
survival and

proliferation ability after
irradiation.

[108]

miR-26b
miR-107
miR-182
miR-155

ATM
RAD51
BRCA1
RAD51

Human lymphoblast cell line
TK6.

Dose: 2 Gy

Regulation the cellular
response to irradiation.

[26,104,133,151,
152]

miR-106a
miR-138

miR-193b

ATM
H2AX

BRACA1
BRCA2
RAD51

Human cell lines/head and
neck (SCC-4, SCC-25, CAL-27)
brain (LN229, T98G, U-87 MG).

Dose: 2 Gy

MiRNAs induced
significant changes in
expression profiles.

[65,108,109,123]

It is important to note that IR induces RAD51 nuclear foci formation, which is cell
cycle-dependent [153]. The regulation of HR proteins by specific miRNAs may promote genomic
instability after IR exposure. For example, irradiation may promote RAD51 coding gene expression by
downregulating miR-193b-3p in hepatocytes, whereas if miRNAs, including miR-103/107 and miR-155,
are inhibited, then an increased expression of RAD51 is detected [26,133,146,154].

BRCA1, a tumor-suppressing protein, epigenetically represses miR-155 in lung cancer cell lines,
and the inhibition of miR-155 may have anti-cancer potential in sensitizing hypoxic lung cancer [144,155].
On the other hand, it is considered that miRNAs such as miR-103 and miR-107 consistently reduce
IR-induced RAD51 foci formation in endometrial and bone cancer cell lines [156]. As a result of
radiation, the transcripts of genes coding BRCA1 are targeted by miR-182 overexpression, which
leads to gene silencing [152]. BRCA1 interacts with numerous molecules and its deficiency is often
related to breast cancer development. However, a clinical prognostic factor, BRCA2, is also co-localized
with RAD51 and the RAD51/PALB2/BRCA1 complex during HR repair. In breast cancer cells, the
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upregulation of miR-1245 is noted after IR treatment. The inhibition of miR-1245 may enhance BRCA2
expression and RAD51 nuclear foci formation [157–161]. Feng et al. showed that RAD52 plays a role
as an alternative factor that is essential for the survival of BRCA2-deficient cells, while RAD52 deletion
may reduce cancer progression [162]. MiR-302 represses RAD52 transcripts in breast cancer cells,
providing to radioresistance and allow cancer cells to survive [163].

6. Conclusions

Short non-coding RNAs, miRNAs, regulate many cellular factors, which participate in DDR and
HR repair mechanisms after irradiation.

Following irradiation, miRNAs are involved in regulating HR repair in several ways. HR transcripts
can be mediated by downregulation or upregulation. On account of IR exposure, some HR proteins may
promote the expression of miRNAs, which regulate another protein related to the HR mechanism.

MiRNA regulators may play a role as prognostic factors in cancers.
The sensitization of cancer cells to ionizing radiation by the deregulation of DNA damage response

proteins can be crucial for the elevation of effective cancer therapy.
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