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Accurate detection of cerebellar 
smooth pursuit eye movement 
abnormalities via mobile phone 
video and machine learning
Zhuoqing Chang1, Ziyu Chen2, Christopher D. Stephen3, Jeremy D. Schmahmann3, 
Hau‑Tieng Wu2,4, Guillermo Sapiro1,2,5 & Anoopum S. Gupta3*

Eye movements are disrupted in many neurodegenerative diseases and are frequent and early features 
in conditions affecting the cerebellum. Characterizing eye movements is important for diagnosis and 
may be useful for tracking disease progression and response to therapies. Assessments are limited 
as they require an in‑person evaluation by a neurology subspecialist or specialized and expensive 
equipment. We tested the hypothesis that important eye movement abnormalities in cerebellar 
disorders (i.e., ataxias) could be captured from iPhone video. Videos of the face were collected from 
individuals with ataxia (n = 102) and from a comparative population (Parkinson’s disease or healthy 
participants, n = 61). Computer vision algorithms were used to track the position of the eye which 
was transformed into high temporal resolution spectral features. Machine learning models trained 
on eye movement features were able to identify abnormalities in smooth pursuit (a key eye behavior) 
and accurately distinguish individuals with abnormal pursuit from controls (sensitivity = 0.84, 
specificity = 0.77). A novel machine learning approach generated severity estimates that correlated 
well with the clinician scores. We demonstrate the feasibility of capturing eye movement information 
using an inexpensive and widely accessible technology. This may be a useful approach for disease 
screening and for measuring severity in clinical trials.

The spinocerebellar ataxias (SCAs) are rare autosomal dominant, typically adult-onset progressive neurologic 
disorders with a prevalence of between 1–3 per 100,0001. These diseases progress slowly over  decades2 and 
profoundly affect quality of  life3. SCAs are characterized by dysfunction of the cerebellum, resulting in unsteady 
gait, clumsy arm and leg movements, slurred speech, and abnormal eye  movements1. There are now a number 
of disease modifying drug development programs aimed at slowing or stopping the progression of  SCAs4–6. 
Sensitively identifying the clinical onset of disease and precisely measuring disease severity over time remain 
important challenges to support drug development efforts and clinical practice.

Eye movement or “oculomotor” abnormalities, including nystagmus (repetitive, uncontrolled eye move-
ments), overshoot, undershoot, and slowed saccades, and abnormalities in smooth pursuit (slow movements used 
to track objects in motion), are frequent and early features in  SCA7–11 and progress with disease  stage12. Abnor-
malities in smooth pursuit (i.e., saccadic pursuit) in particular were found to be the most prevalent oculomotor 
sign in SCAs and were often present in early stages of  disease11. The most common approach for characterizing 
oculomotor abnormalities in ataxia is through visual examination of eye movements during clinician-admin-
istered eye movement tasks. However, eye movement characteristics including saccadic pursuit are difficult to 
quantify visually, even by ataxia experts, resulting in clinical rating scales that either exclude oculomotor severity 
scoring (Scale for the Assessment and Rating of  Ataxia13) or characterize them broadly, for example by evaluat-
ing the presence or absence of four cardinal signs as in the Brief Ataxia Rating Scale (BARS)14. This important 
clinical assessment thus has limitations in both precision and objectivity and depends on the experience of the 
examiner. Given these limitations, it remains unclear if current clinical assessments of oculomotor function can 
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measure disease progression in the context of clinical trials. It is also unclear if clinician-performed assessments 
are practical or sensitive for following presymptomatic carriers to identify clinical onset.

Research-grade eye tracking using expensive instrumentation in the laboratory provides a means of identi-
fying various neurological  disorders15,16 including accurately and precisely quantifying individual oculomotor 
abnormalities in  ataxias17. However, this is only available in specialized centers and are even less accessible in 
rural areas and to disease populations where mobility is  affected18. Furthermore, frequent and longitudinal assess-
ments for tracking disease severity in a clinical trial and interval monitoring of presymptomatic gene carriers to 
identify clinical onset may be less practical using these technologies.

To address the limited precision and objectivity of clinician-performed oculomotor assessments and the acces-
sibility and scalability limitations of laboratory performed assessments, sensitive and widely available instruments 
for assessing oculomotor function are needed. Such tools may be useful for detecting early signs of ataxia, for 
identifying onset of clinical disease in SCAs, and for measuring disease progression over time. Similar instru-
ments are needed broadly for neurodegenerative disorders which cause eye movement abnormalities, includ-
ing movement disorders (Huntington’s disease, progressive supranuclear palsy, multiple system atrophy) and 
dementias (frontotemporal dementia, Alzheimer’s disease)19.

We have developed a scalable and inexpensive system for quantifying abnormalities in smooth pursuit in 
individuals with ataxia using a mobile device camera to record eye movements while viewing stimuli on a tablet 
screen. We demonstrate that this system combined with signal processing and machine learning techniques, can 
accurately and rapidly detect abnormalities in smooth pursuit and grade the severity of oculomotor dysfunction 
in cerebellar ataxias.

Methods
Collection of data. Standard protocol approvals, registrations, and patient consents. All experiment proto-
cols were approved by the Partners Healthcare Institutional Review Board and are in accordance with guidelines 
of the Declaration of Helsinki. All participants provided written informed consent to participate in the study.

Participant selection. Participants were recruited from the Massachusetts General Hospital (MGH) between 
September 2017 and January 2019 from the Ataxia and Movement Disorders Units. Additionally, children with 
ataxia-telangiectasia (A-T) were recruited through the Ataxia-Telangiectasia Children’s Project or the MGH 
Ataxia Unit. Individuals were invited (but not required) to repeat a testing session at a subsequent visit to MGH. 
Healthy control data were obtained from two populations: (1) family members of patients (e.g., asymptomatic 
partners or gene negative family members); and (2) MGH staff. Clinical data for MGH patients including dis-
ease diagnosis and scores on clinical rating scales were identified in the medical record from their concurrent 
visit. All patients had disease-specific rating scale scores and for those without a same-day clinical appointment, 
scores were obtained from video data of the same-day neurological exam after review by A.S.G., a movement 
disorders and ataxia specialist.

Participant demographics. We collected video data on 201 ataxia, Parkinson’s disease, and control participants 
in the clinic setting. Data from 10 ataxia participants were excluded due to incomplete clinical documentation 
of oculomotor features. We also excluded data from 14 participants who intermittently directed their gaze away 
from the stimuli and/or moved their head in excess (i.e., did not perform the task as directed). In addition, 11 
participants were excluded due to inability of the face detection algorithm to detect the subject’s face in large 
portions of the video; 2 participants’ data were excluded due to technical issues with data collection that resulted 
in incorrect video frame rate capture; and 1 participant was excluded due to excessive blinking. Of the remain-
ing 163 participants (99 male, 64 female) whose data we used for analysis, 102 had cerebellar ataxia, 43 had 
Parkinson’s disease, and 18 were healthy controls. 95 of the 102 ataxia patients had one or more abnormalities 
on clinical oculomotor assessment. All Parkinson’s disease patients had normal oculomotor function according 
to chart review. It is well known that individuals with Parkinson’s disease can have saccadic pursuit and other 
oculomotor  abnormalities20 (although less severe than in cerebellar ataxias). It is therefore possible that subtle 
findings were missed on the clinical assessment, which would result in an underestimation of performance for 
our classification models. The demographics of the 163 participants are shown in Table 1. The disease composi-
tion of the 102 ataxia participants are shown in Fig. 1.

Clinical data collection procedures. All neurologic examinations were videotaped. Ataxia patients were scored 
on the Brief Ataxia Rating Scale  (BARS14) (range 0–30) by movement disorders and ataxia specialists (C.D.S., 
J.D.S., and A.S.G.), which includes a score for oculomotor function (range 0–2). The BARS oculomotor score 
is generated by adding a half point for the presence of each of four cardinal oculomotor signs: eye movements 
present in primary position (i.e., at rest), abnormalities in smooth pursuit (i.e., saccadic pursuit), hypometric 
(catch-up/undershoot) and/or hypermetric (overshoot) saccades, and gaze-evoked nystagmus. In addition to 
utilizing the aggregate oculomotor score for analysis, we obtained information about the presence or absence of 
each cardinal sign for each individual from the medical record. Individuals with a diagnosis of idiopathic Par-
kinson’s disease were assumed to not have any of the four cardinal ataxia oculomotor signs as defined by BARS 
unless otherwise noted in the movement disorders specialist clinical note. This population was therefore used as 
a control population for comparison with ataxia. As described above, this assumption could result in an under-
estimation of classification model performance. Throughout the paper, there is reference to the “Typical” group; 
this term refers to the group of participants without clinical oculomotor abnormalities (i.e., healthy controls and 
Parkinson’s disease participants and 4 ataxia participants with a BARS oculomotor score of zero, N = 65).
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Video oculomotor data collection procedures. Participants were seated approximately one foot in front of an 
iPad Pro 12.9-inch (2nd gen) and iPhone 8+ configuration (both, Apple, Cupertino, CA) illustrated in Fig. 2a. A 
custom iOS application on the iPad led participants through a smooth pursuit task paradigm that was composed 
of 2 trials. The parameters of the trials (i.e., speed and amplitude) were designed to match closely with the clinical 
oculomotor examination of smooth pursuit, in which a clinician asks the subject to follow their finger as it moves 
with as constant as possible velocity across the visual field a few times, as well as with smooth pursuit paradigms 
used in prior work in  SCAs21. During each trial, a dot would appear at the center of the screen and move horizon-
tally for 2 cycles (a cycle is defined as the dot starting from the center to returning to the center after reaching the 
2 extremities). The dot moved continuously throughout each trial only stopping for 2.5 s at the extremities of the 
horizontal trajectory (16-degree amplitude). The dot moved at approximately 11 degrees per second during the 
first trial (T1) and approximately 16 degrees per second during the second trial (T2). Two different speeds were 
used to account for variability in how different clinicians may perform the task. The entire task was less than 
2 min long. While performing the task, the participant’s face was recorded using the rear camera of the iPhone 
at either 720p × 240 frames per second (fps) or 1080p × 240 fps. No chin rest was used during the data collection 
process, but participants were instructed to keep their head as still as possible.

Data processing. Processing of movement data and feature extraction. We used  Intraface22 to detect 12 
eye and 2 iris center facial landmarks for each frame in a participant’s video. To account for head movement, 

Table 1.  Participants demographics. M mean, SD standard deviation, UPDRS Unified Parkinson’s disease 
Rating Scale, BARS Brief Ataxia Rating Scale, SCA spinocerebellar ataxia, A-T ataxia-telangiectasia, MSA-C 
multiple system atrophy, cerebellar-type, FA Friedreich’s ataxia, ARCA-1 autosomal recessive cerebellar ataxia 
type 1, SPG-7 spastic paraplegia type 7.

Clinical

Controls Ataxia Parkinson’s disease

N 18
102 (total)
31 with SCA (11 SCA-3, 6 SCA-1, 6 SCA-6, and 
3 SCA-2), 13 A-T, 8 MSA-C, 3 FA, 2 ARCA-1, 
2 SPG-7

43

Age 3–37 (M = 18.1, SD = 10.5) 7–78 (M = 53.0, SD = 19.2) 45–82 (M = 67.0, SD = 8.0)

Sex 66.7% male,
33.3% female

54.9% male,
45.1% female

72.1% male,
27.9% female

Oculomotor severity (clinical score on BARS or 
UPDRS) BARS (scale 0–2): 0–2 (M = 1.1, SD = 0.6)

Disease severity (overall clinical score on BARS 
or UPDRS) BARS (scale 0–30): 1–23.5 (M = 10.7, SD = 5.6) UPDRS Part III (scale 0–108): 1–35 (M = 13.9, 

SD = 6.8)

Figure 1.  Oculomotor abnormality distribution of ataxia participants. (**) 4 participants do not have any 
oculomotor abnormalities. (*) 3 participants do not have saccadic pursuit, nystagmus, or dysmetric saccades 
(but have gaze holding abnormalities and/or slowed saccades). The information pertaining to the presence or 
absence of these oculomotor signs were extracted from the clinical medical record.
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we compute, for each eye, the normalized iris center (NIC) as the iris center position relative to the midpoint of 
the 2 eye corner landmarks (Fig. 2b). We use the X (horizontal) coordinate of the NIC corresponding to frames 
when the dot moved horizontally (Fig. 2c) in subsequent processing steps due to it having much higher signal to 
noise ratio compared to the Y (vertical) coordinate (an example of the X and Y coordinates are shown in Fig. 3b). 
Examples of the normalized iris trajectory are shown in Fig. 3a. All analyses were performed on the left eye posi-
tion signal since there are no substantial left–right asymmetries in the neurodegenerative ataxias.

Eye blinks appear as sharp peaks in the normalized iris signal due to sudden position changes of the eye 
landmarks which severely affects the extraction of spectral features in later stages. We detect blink frames using 
the eye aspect  ratio23. The NIC corresponding to blink frames are then recomputed using cubic interpolation 
for the subsequent spectral transformation. The spectral power for these interpolated frames is ignored in the 
final feature computation.

A low-pass filter with a cutoff frequency of 8 Hz is used to first denoise the blink-filtered interpolated signal. 
We then use a repeated median  filter24 for detrending before applying  ConceFT25, a novel method to determine 
the time–frequency content of time-dependent signals consisting of multiple oscillatory components with time-
varying amplitudes and instantaneous frequencies, to acquire a time–frequency representation of the signal 
(Fig. 2d). Examples of the raw, low pass filtered, and detrended NIC signal and its corresponding ConceFT 
representation are shown in Fig. 3b. We divide the 1–8 Hz frequency band into 14 equal segments (1–1.5 Hz, 
1.5–2 Hz, …, 7.5–8 Hz) and compute the sum and variance of power within each segment. The sum and variance 
for each segment are normalized by the total sum and total variance across all segments respectively to derive 14 
ConceFT-Sum (normalized sum) and 14 ConceFT-Var (normalized variance) features. We regard them together 
as the 28 ConceFT features. The 28 ConceFT features were computed for the video segment corresponding to 
trial 1 (T1) and trial 2 (T2) independently. An additional feature set of 28 features was obtained by averaging 
the T1 and T2 features.

Classification models. Each feature set was standardized to have zero mean and unit standard deviation. For 
each feature set, leave-one-out cross validation was used to train and test a binary SVM with linear kernel to 
differentiate between individuals with abnormal smooth pursuit (saccadic pursuit) and individuals with no ocu-
lomotor abnormalities. The class weight was set inversely proportional to the number of samples in each class to 
handle the issue of class imbalance.

Score estimation model. A score estimation algorithm was developed that could be more robust to imprecise 
clinical labels. The algorithm involved two steps. In the first step we performed a pairwise comparison of all 
participants in the dataset (i.e., individual 1 was pairwise compared with individuals 2 through N, and so on). 
We trained a logistic regression classification model (with L1 regularization) to identify the individual in all 

Figure 2.  Flow diagram of data processing and feature extraction steps. (a) iPad-iPhone configuration. The 
iPhone captures a slow-motion video (240 frames per second at 1080p) of the participant’s face while they are 
following a moving dot on the iPad screen with their eyes. Each cycle of the stimuli (center to both sides of 
the screen and back) lasted 2 min. (b) Facial landmarks are extracted from the video frames using  Intraface22. 
The normalized iris center is computed using the midpoint of the eye corner landmarks as the origin. (c) The 
X (horizontal) coordinate of the normalized iris center is collected across frames to obtain the normalized 
iris trajectory. Abnormal eye movement from an ataxia patient is highlighted in green. (d) Time–frequency 
information is obtained using  ConceFT25. Horizontal axis represents time and vertical axis represents frequency; 
darker regions indicate stronger signals. The green circle highlights the quantitative frequency information 
corresponding to the abnormal eye movement.
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pairs with more severe disease. The input to the model was (1) the numerical difference in the 28 ConceFT 
features between two individuals (e.g., individual 1 minus individual 2); and (2) the binary variable indicating 
which individual’s oculomotor score on BARS was higher. If all pairwise comparisons between participants were 
considered, there would be N ∗ (N − 1)/2 unique comparisons. However, comparisons between individuals 
with the same score were excluded. Furthermore, a separate model was trained for each individual (with that 
individual’s data excluded as in cross-validation). This ensured that in the severity estimation step (second step 
described below), the estimation was blind to any data from that individual. This process, which was used in 
prior work to sensitively detect disease  progression26, enables the model to explicitly learn feature weights that 
could predict differences in clinical severity. This is important because in other behavioral domains such as arm 
movement, features informative of ataxia disease severity differ from features informative for distinguishing 
ataxia from  controls26.

In the second step, we applied the classification model weights in the first step to the original 28 ConceFT 
features for each individual to generate the estimated severity score. As described above, models were trained 
using cross-validation, thus the model weights applied to each individual were blind to that individual’s data. 
An analogous pairwise comparison approach has been previously used to generate clinical severity estimates 
in Parkinson’s  disease27.

Results
Frequency content analysis. Visual inspection of eye tracking time series data suggested differences 
between controls and individuals with ataxia that could be reflected in the frequency content of the signals 
(Fig. 3a). Relative power across the frequency range of 0.1–8 Hz was computed with ConceFT (example outputs 
of the algorithm are shown in Fig. 3b). The power spectrum was compared in 0.05 Hz increments for individuals 
with and without abnormal smooth pursuit (i.e., saccadic pursuit), and demonstrated large differences between 
the two groups in the 1.5–2.5 Hz range (Fig. 3c). Based on this observation, relative power was aggregated in 
the 1.5–2.5 Hz range to generate a value that represented the proportion of power in the 1.5–2.5 Hz frequency 

Figure 3.  Normalized iris trajectory and ConceFT plot. (a) Examples of normalized iris X coordinate trajectory 
for participants with different diagnoses, ataxia severity, and oculomotor abnormality. The participant’s general 
diagnosis (ataxia or control), BARS oculomotor score and BARS total score (shown as X/Y), specific ataxia type, 
and presence of oculomotor abnormalities (SP saccadic pursuit, N nystagmus, DS dysmetric saccades) is shown 
on left side. Missing data in the signal is due to either undetected facial landmarks or filtering of blinks. “Nan” 
in place of BARS total score was listed when total BARS score was not available. SCA spinocerebellar ataxia, A-T 
ataxia-telangiectasia, MSA-C multiple system atrophy, cerebellar-type. (b) Examples of normalized, low pass 
filtered, and detrended iris X (and Y) coordinate trajectories and their corresponding ConceFT plot for different 
diagnosis groups. Darker regions in the ConceFT plot indicate relatively stronger signal power. Ataxia patients 
display more power in the 1.5–2.5 Hz frequency band (the region between the red dotted lines). (c) P value 
and effect size of relative band power at different frequencies between participants with saccadic pursuit and 
participants without any oculomotor abnormalities. P values are computed using the standard Mann–Whitney 
U test and effect size is measured using the also standard rank-biserial correlation.
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band. A boxplot of this feature is shown for different eye movement disorder groups (Fig. 4a) and different BARS 
oculomotor score groups (Fig. 4b). As shown in Fig. 4a, individuals who had abnormalities in smooth pursuit 
(SP+, N = 86) had significantly higher relative power in the 1.5–2.5 Hz band compared to individuals with no 
oculomotor abnormalities (Typical, N = 65, p < 1 × 10–11, effect size = 0.66) and compared to individuals with-
out abnormalities in smooth pursuit but potentially other oculomotor abnormalities (SP-, N = 77, p < 1 × 10–12, 
effect size = 0.67). Individuals who only had abnormalities in smooth pursuit and no other oculomotor signs 
(SP*, N = 15) also had significantly higher power in this band compared to the Typical group (p < 0.001, effect 
size = 0.57). Individuals with dysmetric saccades only and no other oculomotor signs (DS*, N = 7) were not sig-
nificantly different from the Typical group (p > 0.5, effect size = 0.11). There were not enough individuals with 
nystagmus only (N = 2) for comparison. Overall, these comparisons demonstrate that increased power in the 
1.5–2.5 Hz range on this task is relatively specific for abnormalities in smooth pursuit and strongly distinguishes 
individuals with abnormalities from the Typical group. Selecting frequency ranges of 1.5–3 Hz and 1–3 Hz dem-
onstrated the same statistically significant comparisons (data not shown). Furthermore, power in the 1.5–2.5 Hz 
band increased with BARS oculomotor severity and demonstrated significant differences between some group 
pairs with only a half point difference in BARS score (Fig. 4b). The results shown are computed using the aver-
aged features from trial 1 and trial 2. However, similar results were observed using features from either trial 
independently.

Classification analyses. Table 2 shows the performance of linear SVM models trained on 28 ConceFT 
features to distinguish participants with saccadic pursuit (N = 86) from the Typical group (N = 65). Compared to 
using trial 1 features (T1) and trial 2 features (T2) only, using the combined features (T1 + T2) yielded the best 
performance with an area under the ROC curve (AUC) of 0.85 and high sensitivity (0.84) and specificity (0.77). 
When distinguishing ataxia participants from controls and individuals with Parkinson’s, the AUC was 0.72 with 
sensitivity 0.78 and specificity 0.53. When replacing the linear SVM classifier with linear discriminant analysis 
and using only 4 features in the 1.5–2.5 Hz band, good performance was also observed for distinguishing partici-
pants with saccadic pursuit from individuals without oculomotor abnormalities (AUC = 0.72, sensitivity = 0.74, 
specificity = 0.72).

Clinical score estimation. Next we tested whether the spectral content of eye tracking data on the smooth 
pursuit task, represented by the 28 ConceFT features, contained information about the overall severity of eye 
movement abnormalities in individuals with ataxia. The BARS oculomotor subscore is nonlinear and composed 

Figure 4.  Boxplot of percentage of power in the 1.5–2.5 Hz band for different oculomotor abnormality groups 
(a), different BARS oculomotor score groups (b). ‘+’, ‘−’, and ‘*’ indicates the presence, absence, and only 
presence of an oculomotor abnormality respectively. Typical refers to the group of participants without clinical 
oculomotor abnormalities (i.e., healthy controls and Parkinson’s disease participants and 4 ataxia patients with 
a BARS oculomotor score of zero, N = 65). Note that the groups in (a) are not mutually exclusive. For each 
box, the middle line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers. Data 
points are considered outliers, indicated as a black diamond, if they fall outside approximately 2.7σ, where σ is 
the standard deviation. * indicates statistical significance with p < 0.05, ** indicates statistical significance with 
p < 0.01, *** indicates statistical significance with p < 0.001, **** indicates statistical significance p < 0.0001. The 
number of individuals in each group are indicated in parentheses below the group label. SP saccadic pursuit, 
DS dysmetric saccades, TYP no oculomotor abnormality, “+” presence of the abnormality, “−” absence of the 
abnormality, “*” presence of only this abnormality (but not other abnormalities).
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of information beyond what is assessed on the smooth pursuit task (e.g., abnormalities in primary position 
gaze holding and saccadic dysmetria). Thus, the purpose of training the model wasn’t to try and achieve high 
estimation accuracy, but instead to determine if a combination of spectral information correlated with oculo-
motor severity as measured on BARS. We trained a machine learning model based on pairwise comparisons 
of individuals (see “Methods”) to estimate the BARS oculomotor subscore with performance evaluated using 
cross-validation. The Pearson correlation coefficient between the model estimated score and the clinical score 
was 0.63. A boxplot of the estimated scores is shown in Fig. 5.

Discussion
We demonstrated that it is feasible to extract iris position data from consumer-grade device video recordings 
during the performance of standard oculomotor tasks such as smooth pursuit. We were able to extract features 
from the iris position data that were informative for detecting abnormalities in smooth pursuit and which 
correlated well with the severity of oculomotor dysfunction. In particular, individuals with abnormal smooth 
pursuit had increased power in the 1.5–2.5 Hz range, likely reflecting the periodicity of consecutive small sac-
cades performed in order to track a moving target. Additionally, we achieved high sensitivity and specificity 
for distinguishing individuals with saccadic pursuit from individuals without oculomotor abnormalities based 
on the spectral content of their eye. Moderate classification results were obtained when classifying individuals 
with ataxia (even when including individuals without abnormalities in smooth pursuit) from the control group. 
Finally, our oculomotor severity estimation model demonstrated good correlation with the BARS oculomotor 
score. Although the information provided to the model and the information provided to the clinician performing 
the BARS oculomotor score are different, this result indicates that the presented approach for capturing smooth 
pursuit information may be useful for rating the severity of oculomotor dysfunction in ataxias.

With the acceleration of promising therapy development efforts for cerebellar ataxias, there is a need for tools 
to improve how we screen and diagnose individuals with ataxia, this being an example of neurodegenerative 
disorders. Furthermore, for presymptomatic gene-positive individuals, we need technologies that can monitor 
for clinical onset of disease to help determine when to initiate expensive and potentially invasive therapies. Cer-
ebellar ataxias, like other neurodegenerative diseases, are challenging because of heterogeneity in phenotype, 

Table 2.  Oculomotor abnormality classification results. SP+ with saccadic pursuit abnormality, TYP no 
oculomotor abnormality, T1 using features from trial 1, T2 using features from trial 2, T1 + T2 using averaged 
features from trial 1 and 2.

Trial

Classification groups: SP + (86) vs 
TYP (65)

T1 T2 T1 + T2

Area under curve (AUC) 0.72 0.73 0.85

Optimal point sensitivity/specificity 0.69/0.62 0.78/0.54 0.84/0.77

80% True positive point
Sensitivity/Specificity 0.80/0.39 0.80/0.48 0.80/0.80

20% False positive point
Sensitivity/Specificity 0.54/0.82 0.47/0.82 0.78/0.82

Figure 5.  Oculomotor score estimation results. The Pearson correlation coefficient between the predicted 
oculomotor score and the clinical oculomotor score is 0.63. The Y-axis range is different from the X-axis range 
due to the type of score estimation model used.
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with individual differences in the pattern of the major motor domains affected (speech, eye movement, limb 
motor control, and gait/balance) as well as in how clinical phenotype manifests and progresses. This heterogene-
ity underscores the need to develop scalable tools that can assess each of the key motor domains, including eye 
movement as here addressed. There are efforts to develop tools for  speech28, gait, and  limb26,29 assessments using 
microphone recordings of voice, wearable sensors, and computer input devices. In this work we report a scalable 
approach for capturing abnormalities in smooth pursuit, an early and characteristic sign in cerebellar  ataxias11 
as well as a sign in other neurodegenerative  disorders19. We also demonstrate that features of smooth pursuit are 
correlated with overall oculomotor severity, raising the possibility that this mobile tool could be used to track 
severity of oculomotor abnormalities over time in natural history studies and clinical trials. We see the use of 
mobile phone-based video oculomotor assessments as a promising component of a multidomain screening tool 
for cerebellar ataxias and potentially other neurodegenerative diseases.

With the increasing adoption of accessible and inexpensive devices, such as smartphones, tablets, and web-
cams, there is potential to move screening and possibly initial diagnosis of neurodegenerative disorders beyond 
the clinic setting to underserved populations or remote areas. Smartphone applications such as Autism and 
 Beyond30 for autism spectrum disorder and  MPower31 for Parkinson’s disease have already demonstrated the 
potential for collecting clinically relevant information remotely. These approaches have the potential to reduce 
the burden on clinicians which is a serious problem in neurodevelopmental and neurodegenerative disorders 
where there are not enough experts and diagnosis can be challenging and time consuming. In addition to sup-
porting clinical efforts, scalable approaches for oculomotor assessments facilitates new research directions and 
has the potential to enable an understanding of possible diurnal and/or daily fluctuations in oculomotor func-
tion. While there are limitations and potential pitfalls of digital phenotyping, when used correctly it can serve as 
a means to addressing healthcare challenges and research questions that require widespread use and adoption.

There are several limitations of this study. First, although the iPhone-based iris position data closely reflects 
the task and expectedly changes as a function of disease class and severity (Fig. 3a), we do not have ground truth 
for iris position or head position to complement the already validated, though in other applications, computer 
vision algorithm here employed. Future work simultaneously collecting iPhone video and research-grade eye 
and face landmark tracking will be important to estimate eye tracking accuracy and contributions from head 
motion. Second, we do not have ground truth for the severity of smooth pursuit abnormalities, just the presence 
or absence of abnormalities in smooth pursuit. We will address this in future work by following oculomotor func-
tion in individuals with neurodegenerative ataxia diagnoses over time along with clinician grading of the severity 
of the smooth pursuit abnormalities during their oculomotor assessments. We expect that the graded clinical 
assessments may enable improved performance of the machine learning models reported here. Third, for future 
utility as a component of an ataxia screening tool it will be important to train classification models on larger 
datasets and evaluate performance in a test set with a large proportion of healthy controls, thereby reflecting the 
true population. The potential scalability of the eye tracking approach allows for the necessary large-scale data 
collection. Fourth, participants whose data were not usable due to a large amount of head motion or blinking were 
excluded from the analysis. Providing participants with feedback via real time analysis and developing additional 
robustness in the computer vision algorithms for iris tracking could potentially address these issues. Fifth, two 
different devices were used for this study, one for stimulus presentation and one for video recording. Now that 
there is a fast-speed front facing camera on the most recent iPhone (not just a fast-speed back facing camera), 
it may be possible to collect the same data on a single device, which would further increase the scalability of the 
eye tracking approach. Lastly, while the features were computed with a state-of-the-art time–frequency analysis 
algorithm handling the presence of multiple spontaneous periodic signals and high noise, we can still observe 
some residual noise and trend information; addressing this, for example with machine learning tools once more 
data is collected, is likely to improve performance further.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 8 June 2020; Accepted: 19 October 2020

References
 1. Durr, A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 9, 885–894 (2010).
 2. Jacobi, H. et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet 

Neurol. 14, 1101–1108 (2015).
 3. Schmitz-Hübsch, T. et al. Self-rated health status in spinocerebellar ataxia—results from a European multicenter study. Mov. Disord. 

25, 587–595 (2010).
 4. Paulson, H. L., Shakkottai, V. G., Clark, H. B. & Orr, H. T. Polyglutamine spinocerebellar ataxias-from genes to potential treatments. 

Nat. Rev. Neurosci. 18, 613–626 (2017).
 5. Scoles, D. R. et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature https ://doi.org/10.1038/natur e2204 

4 (2017).
 6. Scoles, D. R. & Pulst, S. M. Oligonucleotide therapeutics in neurodegenerative diseases. RNA Biol. 15, 707–714 (2018).
 7. Christova, P., Anderson, J. H. & Gomez, C. M. Impaired eye movements in presymptomatic spinocerebellar ataxia type 6. Arch. 

Neurol. 65, 530–536 (2008).
 8. Velázquez-Pérez, L. et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin. Neurophysiol. 120, 

632–635 (2009).
 9. Raposo, M. et al. Nystagmus as an early ocular alteration in Machado-Joseph disease (MJD/SCA3). BMC Neurol. 14, 1–5 (2014).
 10. Ueno, T., Nishizawa, H., Suzuki, C., Nunomura, J.-I. & Tomiyama, M. Downbeat nystagmus as an initial clinical sign in spinocer-

ebellar ataxia type 6. Neurol. Sci. 38, 1543–1545 (2017).

https://doi.org/10.1038/nature22044
https://doi.org/10.1038/nature22044


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18641  | https://doi.org/10.1038/s41598-020-75661-x

www.nature.com/scientificreports/

 11. Stephen, C. D. & Schmahmann, J. D. Eye movement abnormalities are ubiquitous in the spinocerebellar ataxias. Cerebellum 18, 
1130–1136 (2019).

 12. Moscovich, M. et al. Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J. Neurooph-
thalmol. 35, 16–21 (2015).

 13. Schmitz-Hübsch, T. et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66, 1717–1720 
(2006).

 14. Schmahmann, J. D., Gardner, R., MacMore, J. & Vangel, M. G. Development of a brief ataxia rating scale (BARS) based on a modi-
fied form of the ICARS. Mov. Disord. 24, 1820–1828 (2009).

 15. Król, M. E. & Król, M. A novel machine learning analysis of eye-tracking data reveals suboptimal visual information extraction 
from facial stimuli in individuals with autism. Neuropsychologia 129, 397–406 (2019).

 16. Benson, P. J. et al. Simple viewing tests can detect eye movement abnormalities that distinguish schizophrenia cases from controls 
with exceptional accuracy. Biol. Psychiatry 72, 716–724 (2012).

 17. Bargary, G. et al. Individual differences in human eye movements: an oculomotor signature?. Vis. Res. 141, 157–169 (2017).
 18. Schuller, K. A., Vaughan, B. & Wright, I. Models of care delivery for patients with Parkinson disease living in rural areas. Fam. 

Community Health 40, 324–330 (2017).
 19. Anderson, T. J. & MacAskill, M. R. Eye movements in patients with neurodegenerative disorders. Nat. Rev. Neurol. 9, 74–85 (2013).
 20. Pretegiani, E. & Optican, L. M. Eye movements in Parkinson’s disease and inherited parkinsonian syndromes. Front. Neurol. 8, 

592 (2017).
 21. Hübner, J. et al. Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology 69, 1160–1168 (2007).
 22. De la Torre, F. et al. IntraFace. In 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recogni-

tion (FG), Vol. 1, 1–8 (2015).
 23. Soukupová, T. & Cech, J. Eye blink detection using facial landmarks. In 21st Computer Vision Winter Workshop, Rimske Toplice, 

Slovenia (cmp.felk.cvut.cz, 2016).
 24. Fried, R., Gather, U., Imhoff, M. & Davies, P. L. Robust preprocessing of time series with trends. In GI Jahrestagung, 793–798 (2002).
 25. Daubechies, I., Wang, Y. & Wu, H.-T. ConceFT: Concentration of frequency and time via a multitaperedsynchrosqueezed transform. 

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150193 (2016).
 26. Gajos, K. Z. et al. Computer mouse use captures ataxia and parkinsonism, enabling accurate measurement and detection. Mov. 

Disord. https ://doi.org/10.1002/mds.27915  (2020).
 27. Zhan, A. et al. Using smartphones and machine learning to quantify Parkinson disease severity: the Mobile Parkinson Disease 

Score. . JAMA Neurol. 75, 876–880 (2019).
 28. Vogel, A. P. et al. Coordination and timing deficits in speech and swallowing in autosomal recessive spastic ataxia of Charlevoix-

Saguenay (ARSACS). J. Neurol. 265, 2060–2070 (2018).
 29. Matarazzo, M. et al. Remote monitoring of treatment response in Parkinson’s disease: the habit of typing on a computer. Mov. 

Disord. https ://doi.org/10.1002/mds.27772  (2019).
 30. Egger, H. L. et al. Automatic emotion and attention analysis of young children at home: a ResearchKit autism feasibility study. NPJ 

Digit. Med. 1, 20 (2018).
 31. Bot, B. M. et al. ThemPower study, Parkinson disease mobile data collected using ResearchKit. Sci. Data 3, 160011 (2016).

Acknowledgements
We would like to thank Mary Donovan, Nergis Khan, and Winnie Ching for data collection; Pavan Vaswani for 
design of stimuli; Albert Hung and Anne-Marie Wills for assistance with participant recruitment, and the Ataxia-
Telangiectasia Children’s Project for funding the study. Zhuoqing Chang and Guillermo Sapiro are partially 
supported by ONR, NSF, ARO, NGA, NIH and gifts from Google, Amazon, and Microsoft; Anoopum Gupta 
is partially supported by Biogen Inc.; the results in this manuscript do not reflect the opinions of such agencies 
and companies. Supported in part also by the MINDlink Foundation.

Author contributions
Zh.C. was involved in: 1. Research project: A. Conception, B. Organization, C. Execution; 2. Statistical Analysis: 
A. Design, B. Execution, C. Review and Critique; 3. Manuscript Preparation: A. Writing of the first draft, B. 
Review and Critique. Zi.C. was involved in: 1. Research project: C. Execution; 2. Statistical Analysis: A. Design, 
B. Execution, C. Review and Critique; 3. Manuscript Preparation: B. Review and Critique. C.D.S. was involved 
in: 1. Research project: C. Execution; 3. Manuscript Preparation: B. Review and Critique. J.D.S. was involved 
in: 1. Research project: C. Execution; 3. Manuscript Preparation: B. Review and Critique. H.W. was involved 
in: 1. Research project: C. Execution; 2. Statistical Analysis: A. Design, B. Execution, C. Review and Critique; 3. 
Manuscript Preparation: B. Review and Critique. G.S. was involved in: 1. Research project: A. Conception, B. 
Organization, C. Execution; 2. Statistical Analysis: A. Design, B. Execution, C. Review and Critique; 3. Manu-
script Preparation: A. Writing of the first draft, B. Review and Critique. A.S.G. was involved in: 1. Research 
project: A. Conception, B. Organization, C. Execution; 2. Statistical Analysis: A. Design, B. Execution, C. Review 
and Critique; 3. Manuscript Preparation: A. Writing of the first draft, B. Review and Critique.

Funding
Ataxia-Telangiectasia Children’s Project, Biogen Inc., ONR, NSF, ARO, NGA, NIH, Google, Amazon, Microsoft, 
MINDlink Foundation.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.S.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1002/mds.27915
https://doi.org/10.1002/mds.27772
www.nature.com/reprints


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18641  | https://doi.org/10.1038/s41598-020-75661-x

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Accurate detection of cerebellar smooth pursuit eye movement abnormalities via mobile phone video and machine learning
	Methods
	Collection of data. 
	Standard protocol approvals, registrations, and patient consents. 
	Participant selection. 
	Participant demographics. 
	Clinical data collection procedures. 
	Video oculomotor data collection procedures. 

	Data processing. 
	Processing of movement data and feature extraction. 
	Classification models. 
	Score estimation model. 


	Results
	Frequency content analysis. 
	Classification analyses. 
	Clinical score estimation. 

	Discussion
	References
	Acknowledgements


