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Abstract: Sandwiched piezoelectric transducers are widely used, especially in high power
applications. For more convenient analysis and design, a PSpice lossy model of sandwiched
piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the
one-dimensional wave and transmission line theories. With the proposed model, the resonance
and antiresonance frequencies are obtained, and it is shown that the simulations and measurements
have good consistency. For the purpose of further verification the accuracy and application of
the PSpice model, a pitch-catch setup and an experimental platform are built. They include two
sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are
20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient
analysis are performed. Compared with the measured results, it is shown that the simulated results
have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency
for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because
the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched
piezoelectric transducer is more conveniently applied to combine with other circuits such as driving
circuits, filters, amplifiers, and so on.

Keywords: PSpice model; sandwiched piezoelectric ultrasonic transducer; longitudinal vibration;
impedance analysis; transient analysis

1. Introduction

The sandwiched piezoelectric ultrasonic transducer vibrating in longitudinal mode is also called
the Langevin composite transducer. It consists of metal front and back masses, piezoelectric ceramic
stack, metal electrodes and the prestressed bolt. Based on the conventional design theory about
the sandwiched piezoelectric transducers vibrating in longitudinal mode as shown in Figure 1, it is
required that the diameter be smaller than its longitudinal dimension, in order that the one-dimensional
longitudinal vibration theory be applied [1]. It is regarded as a fundamental component in various
ultrasonic applications [1–3], and is widely used in high power ultrasonic fields including ultrasonic
detecting, ultrasonic welding, underwater sound communication, and so on. Moreover, it has some
advantages such as high-power capacity, high electro-acoustic conversion efficiency, low losses in
mechanical and dielectric, and so on.
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Figure 1. Simplified structure diagram of a sandwich piezoelectric ultrasonic transducer. 

It is well known that the theory analysis for piezoelectric components is a vital basis for the 
design of piezoelectric transducers. So far there are a few methods used in analyzing piezoelectric 
transducers. Among the methods, the equivalent circuit method is widely used, because it is brief 
and clear in its physical meaning. In addition, mechanical and dielectric losses can be easily taken 
into account using the equivalent circuit method. The piezoelectric ceramic disks or rings vibrating 
in the thickness direction have been successfully modeled by using equivalent circuit methods 
which mainly include Mason’s [4], Redwood’s [5] and Krimholtz Leedom Matthaei (KLM) models [6]. 
In order to achieve these equivalent circuits mentioned above on the circuit analysis softwares such 
as PSpice and Spice, many efforts have been made [7,8]. In view of the circuit models mentioned 
above containing negative capacitance and transformer, based on the controlled sources and the 
lossless transmission line, an elegant equivalent circuit model for piezoelectric ceramic disks or 
rings vibrating in the thickness direction is proposed by Leach [9]. Then the simulation program 
with integrated circuit emphasis (SPICE) equivalent circuit model was proposed by Puttmer A. [10] 
to investigate the effect of the losses in mechanical and dielectric. Van D.J. et al. [11] used the 
approach of Puttmer A. et al. [10] to investigate the speed of acoustic and attenuation in solids and 
liquids. Guisado A. et al. [12] applied the Leach’s model to obtain the most accurate equivalent 
circuit of piezoceramic vibrating in thickness mode by using PSpice. The above published works 
aimed at obtaining some material acoustic parameters and the accurate equivalent circuit based on 
a single piezoelectric ceramic ring or disk vibrating in the thickness direction. 

For the sandwiched piezoelectric ultrasonic transducer form in Figure 1, it has been researched 
based on Mason’s model by Lin S.Y. et al. from the perspective of theory analysis [13–15]. But with 
this method it is not easy to combine with some circuits such as excitation circuits, filters and 
amplifiers, diodes, and so on. Also, the required parameters cannot be got easily, which primarily 
includes resonance and anti-resonance frequencies, the input electrical impedance and phase, input 
reactance, and the mass vibrating speed. Therefore, in order to solve these problems above, by 
means of the SPICE equivalent circuit model [10], a PSpice equivalent circuit model of the 
sandwiched piezoelectric ultrasonic transducer vibrating in longitudinal mode is given in this paper. 
Based on the proposed PSpice model, the impedance and transient analysis are performed so as to 
obtain the resonance and anti-resonance frequencies, the vibrating speed ratio between the front 
mass and the back mass. For further verification of the accuracy and application of the proposed 
PSpice model, a pitch-catch setup and an experimental platform are built. The analysis in time and 
frequency domains is carried out by the pitch-catch setup. It can be found that the simulated results 
have good consistency with the experimental ones. 

2. Materials and Methods  

For establishing the PSpice model of the sandwich piezoelectric ultrasonic transducer vibrating 
in longitudinal direction, the one-dimensional wave and transmission line theories for the 
piezoelectric vibrational mechanism in thickness mode are illustrated in this section. 

Figure 1. Simplified structure diagram of a sandwich piezoelectric ultrasonic transducer.

It is well known that the theory analysis for piezoelectric components is a vital basis for the design
of piezoelectric transducers. So far there are a few methods used in analyzing piezoelectric transducers.
Among the methods, the equivalent circuit method is widely used, because it is brief and clear in
its physical meaning. In addition, mechanical and dielectric losses can be easily taken into account
using the equivalent circuit method. The piezoelectric ceramic disks or rings vibrating in the thickness
direction have been successfully modeled by using equivalent circuit methods which mainly include
Mason’s [4], Redwood’s [5] and Krimholtz Leedom Matthaei (KLM) models [6]. In order to achieve
these equivalent circuits mentioned above on the circuit analysis softwares such as PSpice and Spice,
many efforts have been made [7,8]. In view of the circuit models mentioned above containing negative
capacitance and transformer, based on the controlled sources and the lossless transmission line, an
elegant equivalent circuit model for piezoelectric ceramic disks or rings vibrating in the thickness
direction is proposed by Leach [9]. Then the simulation program with integrated circuit emphasis
(SPICE) equivalent circuit model was proposed by Puttmer A. [10] to investigate the effect of the losses
in mechanical and dielectric. Van D.J. et al. [11] used the approach of Puttmer A. et al. [10] to investigate
the speed of acoustic and attenuation in solids and liquids. Guisado A. et al. [12] applied the Leach’s
model to obtain the most accurate equivalent circuit of piezoceramic vibrating in thickness mode by
using PSpice. The above published works aimed at obtaining some material acoustic parameters and
the accurate equivalent circuit based on a single piezoelectric ceramic ring or disk vibrating in the
thickness direction.

For the sandwiched piezoelectric ultrasonic transducer form in Figure 1, it has been researched
based on Mason’s model by Lin S.Y. et al. from the perspective of theory analysis [13–15]. But with this
method it is not easy to combine with some circuits such as excitation circuits, filters and amplifiers,
diodes, and so on. Also, the required parameters cannot be got easily, which primarily includes
resonance and anti-resonance frequencies, the input electrical impedance and phase, input reactance,
and the mass vibrating speed. Therefore, in order to solve these problems above, by means of the
SPICE equivalent circuit model [10], a PSpice equivalent circuit model of the sandwiched piezoelectric
ultrasonic transducer vibrating in longitudinal mode is given in this paper. Based on the proposed
PSpice model, the impedance and transient analysis are performed so as to obtain the resonance
and anti-resonance frequencies, the vibrating speed ratio between the front mass and the back mass.
For further verification of the accuracy and application of the proposed PSpice model, a pitch-catch
setup and an experimental platform are built. The analysis in time and frequency domains is carried
out by the pitch-catch setup. It can be found that the simulated results have good consistency with the
experimental ones.
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2. Materials and Methods

For establishing the PSpice model of the sandwich piezoelectric ultrasonic transducer vibrating in
longitudinal direction, the one-dimensional wave and transmission line theories for the piezoelectric
vibrational mechanism in thickness mode are illustrated in this section.

2.1. Transmission Line and Wave Theories

To obtain the proper parameters used in simulations, the comparison of wave propagation is
carried out in electrical transmission lines and acoustical medium, respectively. Consider a different
length ∆z of a transmission line from Figure 2, which is illustrated by the parameters as follows [16]:

• R represents the resistance per unit length in Ω ·m−1,
• L represents the inductance per unit length in H ·m−1,
• G represents the conductance per unit length in S ·m−1,
• C represents the capacitance per unit length in F ·m−1.
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Figure 2. The circuit structure diagram of a transmission line of a length of ∆z.

Note that R and L are connected in series, G and C are connected in parallel.
To obtain the above parameters, Kirchhoff’s voltage law is used in the circuit from Figure 2,

we have

v(z, t)− R∆zi(z, t)− L∆z
∂i(z, t)

∂t
− v(z + ∆z, t) = 0 (1)

which leads to

− v(z + ∆z, t)− v(z, t)
∆z

= Ri(z, t) + L
∂i(z, t)

∂t
(2)

With the limit as ∆z→ 0 , Equation (2) becomes

− ∂v(z, t)
∂z

= Ri(z, t) + L
∂i(z, t)

∂t
(3)

Similarly, by using Krichhoff’s current law to the node N in Figure 2, we can derive

i(z, t)− G∆zv(z, t)− C∆z
∂v(z + ∆z, t)

∂t
− i(z + ∆z, t) = 0 (4)

Then letting ∆z→ 0 , we can obtain

− ∂i(z, t)
∂z

= Gv(z, t) + C
∂v(z, t)

∂t
(5)

We call Equations (3) and (5) the general transmission-line equations, which are first-order
partial differential equations based on v(z, t) and i(z, t). For simplifying the pair partial differential
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equations, the time harmonic cosine function is used and the voltage v(z, t) and the current i(z, t) can
be expressed as

v(z, t) = real
[
V(z)ejωt

]
(6)

i(z, t) = real
[

I(z)ejωt
]

(7)

where ω is the angular frequency.
The general transmission line equations on the basis of V(z) and I(z) can be obtained

− dV(z)
dz

= (R + jωL)I(z) (8)

− dI(z)
dz

= (G + jωC)V(z) (9)

Equations (8) and (9) are called as time-harmonic transmission line equations which simplify to
the following Equations (10) and (11) under the lossless conditions (R = 0, G = 0).

− dV(z)
dz

= jωLI(z) (10)

− dI(z)
dz

= jωCV(z) (11)

In order to obtain the propagation constant and characteristic impedance of transmission line, the
time-harmonic transmission line equations are used. By means of differentiating them with respect to
z, we can obtain [16]

d2V(z)
dz2 − γ2V(z) = 0 (12)

d2 I(z)
dz2 − γ2 I(z) = 0 (13)

where γ is called as the propagation constant. It is composed of an attenuation constant α in Np/m
and a phase constant β in rad/m. It can be expressed as

γ = α + jβ =
√
(R + jωL)(G + jωC) (14)

The general solution of the differential Equation (12) is denoted as

V(x) = Ae−(α+jβ)z + Be(α+jβ)z (15)

and Equation (13) has the same form solution.
The time dependence for Equation (15) can be got by means of multiplying ejωt, we can obtain

v(x, t) = V(x)ejωt = Ae−αzej(ωt−βz) + Beαzej(ωt+βz) (16)

Equation (16) illustrates two traveling waves. One travels in the positive z direction with an
amplitude A and it decays at a rate α, while the other travels in the opposite direction with an
amplitude B and has the same decay-rate. The propagation of an acoustical wave is controlled by a
pair of differential equations which have the same type as Equations (12) and (13). In the situation of
harmonic waves, corresponding with Equations (12) and (13), the linearized acoustic plane wave with
lossy Equations can be obtained [17]:

∂2 p(z, t)
∂2z

+ k2
c p(z, t) = 0 (17)
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∂2u(z, t)
∂2z

+ k2
c u(z, t) = 0 (18)

here, p(z, t) is called the pressure in Pa and u(z, t) represents the particle velocity in m/s.
Corresponding to γ, kc denotes also the complex wave number consisted of an attenuation constant α

in Np/m and a wave number k in rad/m. The complex wave-number kc can be expressed as

kc =
ω

vt

1√
1 + jωτ

, vt =
√

E/ρ (19)

here, τ is the relaxation time and vt is the sound speed, E represents Young’s modulus and ρ is material
density.

The general solution for Equation (17) is expressed as

p(z, t) = Ae−αze−j(ωt−kz) + Beαzej(ωt+kz) (20)

and is corresponding with the electrical transmission line’s solution Equation (16). In addition,
Equation (18) has a solution of the same form. Combined with Equations (19) and (20), we can derive

α =
ω

vt

1√
2


√

1 + (ωτ)2 − 1√
1 + (ωτ)2


1
2

(21)

k =
ω

vt

1√
2


√

1 + (ωτ)2 + 1√
1 + (ωτ)2


1
2

(22)

The characteristic impedance Zel of the lossy transmission line is given as [16]

Zel =

√
R + jωL
G + jωC

(23)

The characteristic acoustic impedance Za of the lossy acoustical medium is represented as

Za = ρvt
√

1 + jωτ (24)

here, ρ denotes the medium’s density in kg/m3. Equations (23) and (14) are expanded in order to
approximate the characteristic impedance and propagation constant by reserving the low order parts.
They are rewritten as

Zel
∼=
√

L
C

[
1 +

1
2jω

(
R
L
− G

C
)

]
(25)

γ ∼=
1
2

√
LC(

R
L
+

G
C
) + jω

√
LC (26)

Now we take small but non-negligible losses into consideration and suppose R << ωL, G << ωC
and ωτ << 1. Based on these assumptions, the second term of Equation (25) is neglected, only keeping
the
√

LC as the characteristic impedance. Likewise, according to Equation (24), the low acoustical
characteristic impedance is derived as ρvt. In addition, the wave-number k to Equation (22) can
be approximately expressed as ω/vt. By using the approximate assumptions mentioned above
again, according to Equation (26) the phase constant β can be obtained as ω

√
LC. For the purpose

of correlating the two theories, the impedance type analogy relationship is selected in which the
mechanical force is denoted by the voltage and the current denotes particle velocity. The equivalence
between the systems is denoted as

Zel
∼= Za A = Aρvt (27)



Sensors 2017, 17, 2253 6 of 18

here, A is the cross-sectional area for the acoustic beam in m2.
The relationship of the low-loss characteristic impedance Equation (27) is used to obtain the

following expressions
L ≡ Aρ (28)

C ≡ 1
Aρv2

t
(29)

The real part of Equation (26) is called as the attenuation constant α as follows:

α =
1
2

√
LC
(

R
L

)
+

1
2

√
LC
(

G
C

)
(30)

Corresponding to Equation (30), the classical theory relationship of acoustic attenuation is
obtained as

αclassical = αv + αtc (31)

here, αv denotes the attenuation coefficient resulting from viscous losses while αtc is the attenuation
coefficient deriving from the thermal conduction.

According to Equations (28)–(30), we can derive the following expressions

R ≡ 2ρvt Aαv (32)

G ≡ 2αtc

ρvt A
(33)

Because of the materials used in the sandwich piezoelectric ultrasonic transducer having a low
heat conductance, the loss resulting from the thermal conductance can be neglected. Then letting the
conductance G = 0, we can get

α = αv =
R
2

√
L
C

=
ω

ω

R
2

1
Lvt

=
ω

2vt
tan δm (34)

here, tan δm = 1/Qm is mechanical loss factor and Qm is mechanical quality factor.
Therefore, Equation (32) can be rewritten as

R ≡ ωL/Qm = Lω tan δm (35)

Finally, the parameters of the acoustical lossy transmission line can be derived as follows:

L = AρC =
1

Aρv2
t

R =
ωL
Qm

G = 0 (36)

2.2. Piezoelectric Ceramic Ring Vibrating in Thickness Mode

The thickness direction vibration of the thickness poled piezoelectric ceramic rings is a general
vibration mode. For this kind of thickness poled piezoelectric ceramic ring, its thickness is much lower
than diameter. It is assumed that it works in the thickness mode. For the piezoelectric ring with fixed
or free ends vibrating in thickness mode, it has a fundamental resonant frequency [18]:

f =
vt

2l0
(37)

here, vt denotes acoustic velocity in piezoelectric material and l0 denotes the thickness of a piezoelectric
ceramic ring.

F1, F2 are the external forces applied to the back and front surfaces of the piezoelectric ceramic
ring, l0 is its thickness, S indicates its cross-section area, v1 and v2 represent the particle speed, V3, I3
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denotes the voltage and current respectively and the Z axis indicates the vibrating direction as shown
in Figure 3.
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For modeling a sandwiched piezoelectric ceramic transducer vibrating in longitudinal mode, the
piezoelectric ring is modeled using Leach’s equivalent circuit model [9] as shown in Figure 4.
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Figure 4. Leach’s equivalent circuit model for a thickness vibration piezoelectric ring.

It consists of the clamped capacitance C0, a transmission line used to represent the mechanical
parts of the piezoelectric ring, and two controlled sources used for indicating the coupling between the
electrical and mechanical sections of the piezoelectric ring. Here, h33 is the piezoelectric constant, s
is the Laplace operator, the nodes B, E and F represent the back face, the front face and the electrical
terminal of the piezoelectric ceramic ring, respectively. For the electrical part, the clamped capacitance
C0 is given as follows

C0 =
A

βS
33l0

(38)

here, βS
33 is the clamped dielectric impermeability, the cross-section area A = π(R2

0 − R2
i ).

3. PSpice Modeling

For establishing the PSpice model of the sandwiched piezoelectric ceramic ultrasonic transducer
vibrating in longitudinal direction, the piezoelectric ceramic stack from Figure 1 is modeled using
Leach’s equivalent circuit model from Figure 4, and non-piezoelectric elements including the front and
back masses, and metal electrodes from Figure 1 are modeled by using the lossless transmission line as
shown below.
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3.1. Modeling of Non-Piezoelectric Elements

For simplifying the ultrasonic transducer model, the metal front and back masses and metal
electrodes are modeled by using the lossless transmission line model from Figure 5.
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In the simulation using PSpice, the parameters of the lossless transmission line mainly include
the resonance frequency F, the normalized length of the transmission line NL and the characteristic
impedance Z0. Then, their expressions are given as [19]:

F =
NL

LEN
vt (39)

Z0 = ρvtS (40)

here, vt is the material sound velocity, S represents the cross-sectional area and LEN denotes the length
of the transmission line.

3.2. Modeling of the Piezoelectric Ceramic Stack Vibrating in Longitudinal Direction

The single piezoelectric ceramic ring is modeled using the PSpice model from Figure 6, and the
model takes losses including mechanical and dielectric losses into consideration by means of the lossy
transmission line and resistance R0 used to represent dielectric loss.
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The parameters of the lossy transmission line are obtained from Equation (36), and the loss
resistance R0 is given as [20]

R0 =
1

C0 tan δeω
(41)

here, tan δe = 1/Qe is called as the dielectric loss factor and Qe is electrical quality factor. Then,
resistance [10] R1 has the value R1 = 1 kΩ and capacitance C1 has the value C1 = 1 µF.
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In Figure 7, V denotes the voltage. The piezoelectric ceramic stack is composed of four same
poled rings and four metal electrodes as shown in Figure 7. Therefore we need four PSpice models
of the piezoelectric rings from Figure 6 and four lossless transmission line models from Figure 5 to
implement the model of a piezoelectric ceramic stack.
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The piezoelectric rings located in the piezoelectric ceramic stack are connected together
mechanically in series as shown in Figure 8. However, they belong to parallel relationship in the
electrical terminals [21]. Here, T3, T4, T5, T6 are the metal electrodes and P1, P2 and P3, P4 are the
piezoelectric ceramic rings.
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3.3. The Sandwich Piezoelectric Ultrasonic Transducer Model with PSpice

On the basis of the above analysis about the modeling of the piezoelectric stack and the metal
masses, we can obtain the PSpice model of the sandwich piezoelectric ultrasonic transducer from
Figure 9.
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In Figure 9, the resistances Rair1 and Rair2 are used to model air load and have the value [22]
Rair1 = Rair2 = 0.0263 Ω. Also, the resistances R2 and R3 are used to represent the bonded layer and
have the value R2 = R3 = 1 MΩ. Then the resistance R4 used to model the internal resistance of AC
voltage source V1 has the value R4 = 50 Ω.
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The sandwich piezoelectric ceramic ultrasonic transducer is mentioned in this paper and the
piezoelectric material selects PZT-4 [23], and the metal materials [24] used in the front and back masses
are hard aluminum and steel, respectively. The detailed parameters of these materials are given in
Tables 1–4. Here, it should be pointed that l1 is the length of the back mass, l2 is the length of the front
mass and l3 is the thickness of a metal electrode ring. For the purpose of verification the accuracy of
the proposed PSpice model of the piezoelectric ultrasonic transducer, the impedance analysis based on
the simulation circuit from Figure 9 is carried out as shown in below.

Table 1. The material parameters of the piezoelectric ceramic PZT-4.

Parameters Value

ρ1 (kg/m3) 7500
vt (m/s) 4600
A (m2) 957.4 × 10−6

l0 (m) 5 × 10−3

Qm 500
tan δe 0.004

βS
33 (m/F) 1.78 × 108

h33 (V/m) 27.12 × 108

Table 2. The material parameters of the aluminum used in the front mass.

Parameters Value

ρ2 (kg/m3) 2700
vt (m/s) 5037
S2 (m2) 1075.2 × 10−6

l2 (m) 43 × 10−3

Table 3. The material parameters of the steel used in the back mass.

Parameters Value

ρ3 (kg/m3) 7800
vt (m/s) 5262
S1 (m2) 1134.1 × 10−6

l1 (m) 45 × 10−3

Table 4. The material parameters of the copper used in the metal electrodes.

Parameters Value

ρ4 (kg/m3) 8900
vt (m/s) 3718
S1 (m2) 1134.1 × 10−6

l3 (m) 0.5 × 10−3

3.4. Impedance Analysis

The impedance analysis is used to research the frequency response and derive the resonance
and antiresonance frequencies. Moreover, the measured impedance results are obtained by utilizing
the impedance analyzer PV520A which is made by BEIJING BAND EAR CO (Beijing, China), LTD
as shown in Figure 10. The impedance analysis results of the sandwich ultrasonic transducer are
shown in Figure 11. The resonance and anti-resonance frequencies of the measured and simulated are
specially shown in Table 5. From Table 5, ft and fm represent the simulated and measured frequencies
of a sandwich piezoelectric transducer, respectively and ∆ =| ft fm|/ fm . Also, fs and fp represent
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resonance and anti-resonance frequencies, respectively. From Table 5, it can be found that the measured
results have good consistency with the simulated results.
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Table 5. The measured and simulated resonance and anti-resonance frequencies for a sandwich
piezoelectric ultrasonic transducer.

Parameters ft fm ∆%

fs(kHz) 23.309 22.2 4.99%
fp(kHz) 24.885 25.1 0.86%

There are several factors that can well explain frequency error or difference in frequencies in
Table 5. Firstly, the standard physical parameters of the piezoelectric ceramic rings, the metal masses
and the metal electrodes are applied in simulation; to a certain extent, they are different from the
truthful physical parameters. Secondly, it must be met in the theoretical analysis condition that the
length of the sandwiched ultrasonic transducer have to be much more than its diameter, so that
the vibration of the sandwiched transducer can be approximated as the longitudinal vibration of an
extended composite round bar. However, it is not possible in practical cases. Thirdly, based on the
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above analysis, the prestressed bolt and the epoxy resin used for sealing the sandwiched transducer
are ignored in the proposed PSpice model. Here, it should be pointed out that the prestressed bolt has
the effect on the electrical impedance with resulting in some frequency error. In addition, the sealing
epoxy resin can lead to some frequency error for it changing the vibrator length. However, for the
practical transducers, these will not be neglected.

3.5. Transient Analysis

In order to investigate the vibrational velocity ratio between the front and back masses, the
transient analysis is carried out using the 8 cycle single tone signal by modulated Hanning window as
shown in Figure 12. At the same time, in order to obtain the large vibration speed in the front mass, the
front and back masses chose heavy metals and light metals, respectively. According to the momentum
conservation law, we can get

mFvF = mBvB
vF
vB

= mB
mF

(42)
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In general, if the materials of the front and back masses are chosen as aluminum and steel
respectively, the vibrational velocity ratio between the front mass and the back mass is 3:1 for sandwich
piezoelectric ultrasonic transducers. From Figure 13, the simulation result for the vibrational velocity
ratio is obtained as

vF
vB

=
0.32
0.12

≈ 2.7 : 1 (43)

here, vF and vB represent the vibrational velocities of the front and the back masses, respectively.
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4. The Pitch-Catch Setup

To demonstrate the application of the proposed model, a pitch-catch setup is built as shown
in Figure 14. On the basis of the setup, AC and transient analysis are carried out. The simulations
are compared with measurements in the time domain. It primarily includes one transmitter used to
produce an ultrasonic wave signal, one receiver used to receive the ultrasonic wave signal and a piece
of steel plate used as a propagation medium.
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Figure 14. The simulation circuit of the pitch-catch setup.

Here, the resistance R4 has the value R4 = 50 Ω, the resistance R13 has the value R13 = 10 MΩ
and the capacitance C3 has the value C3 = 3.9 pF. They are used to model the input impedance and
capacitance of the recording channel of an oscilloscope. Also these resistances R9, R10 and R11, R12
are used to represent bonded layers and have the value R9 = R10 = R11 = R12 = 1 MΩ. Then the
resistances R7 and R8 are used to model air load and have the value R7 = R8 = 0.0263 Ω.

In the first place, for the purpose of obtaining the resonance frequencies of the pitch-catch setup,
the AC analysis is performed under the conditions of the length of the transmission medium having
the value 20 mm and 100 mm. But the excitation source V2 from Figure 14 need to be substituted by
the AC voltage source which is the same as V1. The impedance analysis result is given as shown in
Figure 15. According to Figure 15, it can be found that the first resonance frequencies are 21.098 and
24.363 in kHz, respectively.
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Figure 15. The impedance analysis of the pitch-catch setup.

In the next place, based on the pitch-catch setup from Figure 14, the transient analysis is carried
out and the single tone signal modulated by Hanning window is chosen as excitation signal. The
detailed analysis scheme is shown as follows:

1© the length of the transmission medium is 20 mm and the excitation signal frequencies are 23.309
and 21.098 in kHz.

2© the length of the transmission medium is 100 mm and the excitation signal frequencies are 23.309
and 24.363 in kHz.

Then, to verify the accuracy of the simulated results, the pitch-catch experimental platform is
built from Figure 16, which includes the arbitrary/functional generator used to generate the excitation
signal, oscilloscope used to record the voltage signal and sandwich ultrasonic transducers used
to transmitting and receiving the ultrasonic wave signal, the aluminum rods used to transmit the
ultrasonic wave signal. For the transient analysis of the pitch-catch setup, the single tone signal
modulated by Hanning window is selected as the excitation signal. Moreover, in order to make the
transducer and the transmission medium fit tightly, the glycerin is used as couplant.
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and sandwiched piezoelectric ultrasonic transducers.

The voltage signals are received by the ultrasonic transducer under the conditions that the
aluminum cylinders are 20 mm and 100 mm in length respectively. Simultaneously, these signal data
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are recorded by the oscilloscope. By using these recorded data, the signal waveforms received in the
time domain are given as shown in Figures 17 and 18. According to Figures 17 and 18, it can be easily
found that the simulated results have good consistency with the experimental ones. In addition, the
conclusion can also be drawn that the optimal excitation frequency for the pitch-catch setup is not
necessarily the resonance frequency for the sandwiched ultrasonic transducer, because the resonance
frequency can be obtained under the condition of no load.
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Figure 18. The signal waveform received by the ultrasonic transducer under the condition that the
aluminum cylinder is 100 mm in length, (a) the simulated results; (b) experimental results.

At the same time, the voltage values received are specifically listed in Tables 6 and 7 under the
length of the transmission medium having 20 mm and 100 mm respectively. From Tables 6 and 7,
Vs1 and Vs2, Vm1 and Vm2. represent the simulated and measured voltage values from the received
ultrasonic transducer respectively and ∆1 =|Vs1Vm1|/Vm1 , ∆2 =|Vs2Vm2|/Vm2 .
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Table 6. The measured and simulated voltage values under the condition of the length for the
transmission medium having 20 mm.

Frequency (kHz) VS1(V) Vm1(V) ∆1%

23.309 6.65 7.76 14.3%
21.098 8.16 8.88 8.1%

Table 7. The measured and simulated voltage values under the condition of the length for the
transmission medium having 100 mm.

Frequency (kHz) VS2(V) Vm2(V) ∆2%

23.309 6.32 6.96 9.2%
24.363 6.92 7.76 10.8%

There are several factors that can well explain amplitude error or difference in the received voltage
in Tables 6 and 7. Firstly, it is impossible to keep the same for each manufactured transducer. Secondly,
the standard physical parameters of the transmission medium are applied in the simulation calculation,
which may be different from the truthful physical parameters. Thirdly, due to the effect of frequency
error and prestressed bolt for this transducer, this also can lead to relatively large amplitude error.

5. Discussion

The PSpice model of the sandwiched piezoelectric ceramic ultrasonic transducer in longitudinal
vibration is proposed in this work. It is mainly for providing convenience for the design and analysis
of the sandwiched ultrasonic transducers. Compared with the theory analysis method based on
the Mason’s equivalent circuit of the sandwiched piezoelectric ultrasonic transducers, the proposed
PSpice model has the following advantages. First, it is very easy to access the parameters such as the
input electrical impedance and reactance, the vibrational velocity, the resonance and anti-resonance
frequencies. Second, the proposed transducer model has great flexibility and strong expansion.
Moreover, it can easily combine with the excitation, filter and amplifier circuits, which provides help to
improve and optimize these circuits. Third, on the basis of the model proposed, the wireless power or
data transmission system based on the sandwiched ultrasonic transducer in longitudinal or thickness
vibration can be easily built; the parameters for the system are easily obtained by the AC and transient
analysis, and so on.

The effect of the losses including mechanical and dielectric on the transducer performance
parameters such as resonance frequency, electrical quality factor and electro-acoustical efficiency, needs
be considered in practical transducers. However, these mechanical losses, such as the metal front and
back masses, and the metal electrodes, are ignored in the proposed PSpice model. Therefore, for the
purpose of improving the sandwiched piezoelectric ceramic transducer in longitudinal or thickness
vibration, the effect of the losses for the transducer performance should be analyzed by using the
lossy transmission line. Moreover, the effect of the sealed epoxy resin layer is not considered in the
transducer PSpice model. For the formulation of the sealed epoxy resin layer, it can be regarded
as the lossy transmission line. It is strongly suggested that the effect of the prestressed bolt can be
analyzed using the finite element method. These issues are expected to be further investigated in our
subsequent work.

6. Conclusions

In this paper, based on Leach’s equivalent circuit and lossless transmission line, a PSpice model
of the sandwiched piezoelectric ultrasonic transducer in longitudinal vibration is proposed, and the
resonance and antiresonance frequencies are obtained. To further verify the accuracy and application
of the proposed model, a pitch-catch setup and an experimental platform are built; the resonance
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frequency is obtained and the simulated results are compared with the measured ones. In summary,
based on the analysis mentioned above, some conclusions can be drawn as follows:

(1) The comparisons of the measured results and simulated values of the sandwiched piezoelectric
ultrasonic transducer indicate the accuracy of the proposed lossy model.

(2) The PSpice model has been successfully applied to the pitch-catch setup. It is shown that the
experimental results and the simulated values have good consistency. Simultaneously, we can find
that the optimal excitation frequency of the sandwiched ultrasonic transducer is not necessarily
the resonance frequency for the pitch-catch setup.

(3) The accomplishment in PSpice can provide convenient analysis for the sandwiched piezoelectric
transducers in time and frequency domains. Compared with the sandwiched piezoelectric
transducer model based on Mason’s equivalent circuit, the proposed model may be more easily
used to investigate the sandwiched transducers.

(4) The proposed PSpice model of sandwich piezoelectric transducers can be more conveniently
used to combine with other circuits such as driving circuits, filters, amplifiers, and so on.
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