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This paper is devoted to answering some questions using a mathematical model by analyzing India’s first and second phases of the
COVID-19 pandemic. A new mathematical model is introduced with a nonmonotonic incidence rate to incorporate the
psychological effect of COVID-19 in society. The paper also discusses the local stability and global stability of an endemic
equilibrium and a disease-free equilibrium. The basic reproduction number is evaluated using the proposed COVID-19 model
for disease spread in India based on the actual data sets. The study of nonperiodic solutions at a positive equilibrium point is
also analyzed. The model is rigorously studied using MATLAB to alert the decision-making bodies to hinder the emergence of
any other pandemic outbreaks or the arrival of subsequent pandemic waves. This paper shows the excellent prediction of the
first wave and very commanding for the second wave. The exciting results of the paper are as follows: (i) psychological effect
on the human population has an impact on propagation; (ii) lockdown is a suitable technique mathematically to control the
COVID spread; (iii) different variants produce different waves; (iv) the peak value always crosses its past value.

1. Introduction

The novel coronavirus (COVID-19) has spread in almost all
parts of the world at the pandemic level. Many researchers
[1, 2] have developed different models incorporating the
hazards of COVID-19 pandemic. Atangana and Araz [3]
describe the model and forecast the spread of COVID-19
in Africa and Europe. Wu et al. [4] form a COVID-19 model
on the use of social distancing personal protection in
Ontario, Canada. Aldila et al. [5] used the community
awareness as a control scheme to minimize the transmission
of COVID-19 outbreak. Sen and Ibeas [6] used vaccination
[7] and antiviral to control the pandemic of COVID-19.
Some researchers [8, 9, 30, 32, 33, 36, 39] have discussed
the effect of COVID-19 in society and optimal policy in dif-
ferent countries.

After the initial outbreak, COVID-19 continued to
spread to all provinces in India. India has controlled [10]

the rate of spread of COVID-19 after the first phase of the
outbreak. However, due to the negligence of people, it spread
quickly more than the first variant in the second wave [11,
12]. Mathematical modelling is used to predict the number
of active cases, disease spread, and duration of this pandemic
and estimate the impact of measures during disease out-
breaks. Ghosh et al. [13] described the transmission of
COVID-19 outbreak in India based on the 1st wave. The
second wave of the pandemic has come at the end of January
2021 in different countries including India; in this respect,
Ershkov and Rachinskaya [14] and Glass [15] both perform
a model to describe the second wave of COVID-19.

This article presents a mathematical model that
describes the evolution of the COVID-19 in India using
the actual data in two phases, 1st phase from March 23 to
December 31, 2020, and 2nd phase of daily update confirmed
cases, recovered, and deaths in India, in order to estimate the
parameters of the model and then predict the severity of the
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possible infection in the coming months. Using this method,
we can estimate the size of the population at risk in India
and justify the growing number of new confirmed cases.
With the aim to reduce the population at risk in India, we
investigate an optimal control strategy by adopting vaccine
which makes it very optimal, and this study may be more
practical to use in developing countries. In this study, we
are trying to answer some questions. How many waves
come? What will be the peak value of the consequence wave?
What is the effect of lockdown on COVID control? Is there
any effect of fear in propagation? We are given some answers
to these questions using a mathematical model.

The contents of this study are organised as follows. The
first section has laid the context of the work. The second sec-
tion discusses the preparation of the model and its basic
properties. Section 3 finds the equilibrium points and checks
the stability like local and global. The fourth section dis-
cusses the nonexistence of a periodic solution. The fifth sec-
tion forms a COVID-19 model with the concept of optimal
control. The sixth section presents the results for different
waves in respect to India. Finally, section seven concludes
this study and presents the precaution and future directions
for this research work.

2. Novel Coronavirus Model with
Basic Properties

Already in the literature, there are some papers to under-
stand the dynamics of novel coronavirus spread [13,
16–18, 31, 34, 35, 37, 38, 40, 41]. This coronavirus model
proposes to fill the inadequacy of previous studies for ana-
lyzing the spread dynamics incorporating the effect on
human consciousness of the novel COVID-19. Based on
the medical practitioners’ instructions, regular hand wash,
nose and mouth cover, safe distancing, etc. affect the trans-
mission rate. We consider α as a representative of hand
wash, nasal and oral cover, and social distancing in the pro-
posed coronavirus model, and hence, increasing disease
transmission means that such instructions are not followed
properly. This model also considers the consciousness of
the disease as a parameter, i.e., the parameter δ measures
the psychological or inhibitory effect. Furthermore, this
model considers a saturated incidence rate gðIuÞS for
COVID-19 pandemic model, when Iu gets larger, i.e., gðIuÞ
= αIu/ð1 + δIuÞ tends to be overloaded, where infection
force of the disease is calculated by αIu, and 1/ð1 + δIuÞmea-
sures the reticence effect from the observable change of the
susceptible individuals when their number increases or from
the crammed effect of the infected individuals. For COVID-
19, the proposed rate of incidence [19–21] seems more justi-
fiable compared to the other incidence rate, because it
includes the detectable change and cramming effect of the
infected individuals and prevents the unboundedness of
the association rate by choosing apt and relevant parameters.

At time t, let SðtÞ,IuðtÞ,IkðtÞ, and RðtÞ be the densities of
susceptible population ðSÞ, unrevealed infected population
ðIuÞ which spread the disease, known infected population ð
IkÞ in isolated ward for treatment not spreading the disease,

and recover population ðRÞ, respectively. Our important
conjecture for this model is that the disease spread by unre-
vealed infected populations and COVID has a psychological
effect on the human population.

The mathematical form of the novel coronavirus trans-
mission as discussed above takes the following form:

dS
dt

=Λ −
αSIu
1 + δIu

− d1S,

dIu
dt

= αSIu
1 + δIu

− βIu − d1Iu,

dIk
dt

= βIu − γIk − d2Ik,

dR
dt

= γIk − d1R:

ð1Þ

Here, NðtÞ = SðtÞ + IuðtÞ + IkðtÞ + RðtÞ stands for the
total number of human community in the system at time t.
The proposed COVID-19 pandemic model will analyse with
the following initial densities:

S 0ð Þ = S0, R 0ð Þ = R0 > 0,
Iu 0ð Þ = Iu0 , Ik 0ð Þ = Ik0 ≥ 0:

ð2Þ

The flow diagram of the proposed COVID-19 pandemic
model is presented in Figure 1. The model parameters with
their assumed and estimated values from the real data of
India during the time span of 1st February to 6th June
2021 are described in Table 1.

Since in this novel coronavirus model the variable RðtÞ
has no effect in dynamics of the system, we eliminate the last
equation from the pandemic model (1) for the dynamical
analysis. Hence, the dynamical study of COVID-19 system
is considered from India’s perspective using the following
mathematical model:

dS
dt

=Λ −
αSIu
1 + δIu

− d1S, ð3Þ

dIu
dt

= αSIu
1 + δIu

− βIu − d1Iu, ð4Þ

dIk
dt

= βIu − γIk − d2Ik: ð5Þ

2.1. Nonnegativity of Solution of COVID-19 Model

Theorem 1. Every solution of COVID-19 system (1) with ini-
tial conditions (2) exists in the interval ½0,∞Þ and SðtÞ > 0,
IuðtÞ ≥ 0,IkðtÞ ≥ 0, and RðtÞ > 0 for all t ≥ 0:

Proof. Since the right hand side of COVID-19 model (1) is
continuous and locally Lipschitzian, then the solution ðSðtÞ
, IuðtÞ, IkðtÞ, RðtÞÞ of (1) with respect to the initial conditions
is unique on ½0, ξÞ, where 0 < ξ < +∞.
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From the model (1) and using the initial conditions,
we have

dS
dt

=Λ − d1 +
αIu tð Þ

1 + δIu tð Þ
� �

S tð Þ: ð6Þ

We thus have

d
dt

S tð Þ exp d1t +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �� �

=Λ exp d1t +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �
:

ð7Þ

Hence,

S tð Þ exp d1t +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �

− S 0ð Þ =
ðt
0
Λ exp d1t +

ðt
0

αIu ωð Þ
1 + δIu ωð Þ dω

� �
dt,

ð8Þ

so that

S tð Þ = S0 exp − d1t +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �� �

+ exp − d1t +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �� �

×
ðt
0
Λ exp d1t +

ðt
0

αIu ωð Þ
1 + δIu ωð Þ dω

� �
dt

� �
> 0:

ð9Þ

The second equation of the model (1) yields dIu/dt ≥
−ðβ + d1ÞIuðtÞ which gives IuðtÞ ≥ Iu0 exp ½−ðβ + d1Þt� ≥ 0:

From the third equation of system (1), we get dIk/dt ≥
−ðγ + d2ÞIk which gives IkðtÞ ≥ Ik0 exp ½−ðγ + d2Þt� ≥ 0:

The last equation of the system (1) yields dR/dt ≥ −d1R
ðtÞ which gives RðtÞ ≥ R0 exp ½−ðd1Þt� > 0:

Therefore, we can see that SðtÞ, RðtÞ > 0, and IuðtÞ, Ikðt
Þ ≥ 0, ∀t ≥ 0:

This completes the proof.

2.2. Invariant Region of Solutions of COVID-19 Model

Theorem 2. All solutions of COVID-19 system (1) in ℝ4
+ are

bounded and lie in the region Ω defined by Ω = fðS, Iu, Ik, R
Þ ∈ℝ4

+ : 0 <NðtÞ ≤Λ/μg as t⟶∞, where μ =min fd1, d2
g:

Proof. Assume ðSðtÞ, IuðtÞ, IkðtÞ, RðtÞÞ be any solution of
system (1). Now, we consider a function like NðtÞ = SðtÞ +
IuðtÞ + IkðtÞ + RðtÞ: Differentiating both sides with respect
to t, we have

dN tð Þ
dt

= dS tð Þ
dt

+ dIu tð Þ
dt

+ dIk tð Þ
dt

+ dR tð Þ
dt

,

dN tð Þ
dt

=Λ − d1S − d1Iu − d2Ik − d1R,

dN tð Þ
dt

+ μN tð Þ =Λ − d1 − μð ÞS − d1 − μð ÞIu
− d2 − μð ÞIk − d1 − μð ÞR:

ð10Þ

ðdNðtÞ/dtÞ + μNðtÞ ≤Λ, assuming μ =min fd1, d2g:
Then, by comparison theorem, we obtain 0 <NðtÞ ≤Nð

0Þe−μt + ðΛ/μÞ and for t⟶∞, 0 <NðtÞ ≤Λ/μ: Therefore,
all solutions of coronavirus system (1) enter into the region
Ω = fðS, Iu, Ik, RÞ ∈ℝ4

+ : 0 <NðtÞ ≤Λ/μg:
2.3. The Basic Reproduction Number

Definition 3 (basic reproduction number (BRN)). “The BRN
is defined as the number of newly infected individuals pro-
duced by a single infected individual during his or her effec-
tive infectious period when it is introduced into the
susceptible population.”

Here, the BRN (R0) for the proposed COVID-19 model (1)
is given by

R0 =
αΛ

β + d1ð Þd1
: ð11Þ

Impact of transmission coefficient α from S to Iu is mea-
sured qualitatively on the coronavirus disease transmission
dynamics.

Since ∂R0/∂α =Λ/ððβ + d1Þd1Þ > 0, it is obvious that if
α decreases, then BRN R0 also decreases and therefore
reduces the disease burden. On the other side, if α
increase, then R0 would rise leading to the rise of the
infection burden, and therefore, the scenario changes to
be a very harmful one.

From Figure 2, we observe that if the values of α
increases then the value ofR0 also increases (both cases first
wave and second wave), and after certain value of α, R0
becomes greater than 1. From these two figures, we also
observed that the second wave in India is more dangerous
than the 1st wave. Our study finds that the mathematical
model of this type does not predict the wave. So different
waves come due to different strains of the COVID-19 virus.

A
S

R

αSIu
(1 + δIu)

d1S

d2Ik

d1R

γIk

d1IuIu

βIk

Ik

Figure 1: Transfer diagram of the proposed COVID-19 system.
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3. Existence of Equilibrium Points and Stability

The equilibrium points of the proposed COVID-19 system
(3) are (i) disease-free equilibrium point E1ðΛ/d1, 0, 0Þ and
(ii) endemic equilibrium E∗ðS∗, I∗u , I∗k Þ, where S∗ = ðð1 + δ
I∗uÞðβ + d1ÞÞ/α, I∗u = ðαΛ − d1ðβ + d1ÞÞ/ððβ + d1Þðδd1 + αÞÞ,
and I∗k = ðβ/ðγ + d2ÞÞI∗u : The endemic equilibrium point
exists when R0 > 1:

3.1. Local Stability Analysis. The local stability analysis of the
coronavirus model (3) is presented at the equilibrium points.

3.1.1. Disease-Free Equilibrium

Theorem 4. Disease-free equilibrium point E1ðΛ/d1, 0, 0Þ is
locally asymptotically stable if R0 < 1, marginally stable if
R0 = 1, and unstable if R0 > 1.

The proof of this theorem is in the Appendix.

3.1.2. Endemic Equilibrium

Theorem 5. Endemic equilibrium point E∗ðS∗, I∗u , I∗k Þ is
locally asymptotically stability if R0 > 1:

The proof of this theorem is in the Appendix.
Therefore, up to a certain value of α disease-free equilib-

rium point is stable (Theorem 4) and beyond that value of α
endemic equilibrium point is stable (Theorem 5).

3.2. Global Stability Analysis. The global stability analysis of
the proposed COVID-19 model (3) is presented here.

3.2.1. Disease-Free Equilibrium

Theorem 6. IfR0 < 1, the disease-free equilibrium E1 is glob-
ally asymptotically stable.

The proof of this theorem is in the Appendix.

3.2.2. Global Stability of Endemic Equilibrium: Geometric
Approach. The global stability of the endemic equilibrium
E∗ will be discussed when R0 > 1 using the geometric
approach for global dynamics [22]. For some preliminary
discussion on the geometric approach, consider the autono-
mous dynamical system:

x
: = f xð Þ, ð12Þ

Table 1: Explanation of parameters with their real field value.

Parameters Interpretation Value of the 1st wave/day Value of the 2nd wave/day Reference

Λ Recruitment rate of new individuals 1 × 103 2 × 103 Fitted

α Transmission coefficient from SP to IuP 55 × 10−10 55 × 10−10 Fitted

δ Measures of the psychological or inhibitory effect 33 × 10−8 135 × 10−9 Fitted

β Transmission coefficient from IuP to IkP 0:21 0:21 Fitted

γ Transmission coefficient from IkP to RP 0:1 0:1 Fitted

d1 Natural death rate 4 × 10−5 4 × 10−5 Fitted

d2 Death rate due to COVID-19 plus d1 1 × 10−3 1 × 10−3 Fitted

0 1 2 3 4 5 6 7 8 9
Value of α ×10–8

0 1 2 3 4 5 6 7 8 9
Value of α ×10–9
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Figure 2: Change of R0 with respect to α in two different waves using data in Table 1.
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where f : D⟶ℝn,D ∈ℝn open set and simply connected
and f ∈ C1ðDÞ.

Let AðxÞ be an n

2

 !
×

n

2

 !
matrix value function that

is C1 on D and consider Q = Af A
−1 + AJ ½2�A−1, where the

matrix Af is ðqijðxÞÞf = ð∂qijðxÞ/∂xÞT . f ðxÞ = ∇qij:f ðxÞ, and
here, J ½2� represents the second additive compound matrix
of JðxÞ =DðxÞ. Let the Lozinskii measure [23] μ of Q con-

cerning a vector norm j:j in ℝ

n

2

 !
be μðQÞ = lim

h⟶0+
ðjI + h

Qj − 1Þ/h: Define a quantity �q2 as �q2 = lim sup
t⟶∞

sup
x0⟶K

ð1/tÞÐ t
0μðQðxðs, x0ÞÞÞds: We will apply the following theorem.

Theorem 7. Let D be simply connected, and [23] (H1) “there
exists a compact absorbing set K ⊂D,” (H2) “the system (12)
has a unique equilibrium ~x in D,” then ~x of (12) is globally
asymptotically stable in D if �q2 < 0.

Theorem 8. The COVID-19 model (3) admits an unique
endemic equilibrium which globally asymptotically stable if
R0 > 1.

The proof is in the Appendix.
Since disease-free equilibrium point E1ðΛ/d1, 0, 0Þ is

globally stable for R0 < 1 and an unique endemic equilib-

rium point E∗ðS∗, I∗u , I∗k Þ is globally stable for R0 > 1, so
there exists no limit cycle for this model. Therefore, we
include Nonexistence Periodic Solution part for only the
mathematical purpose for the proof in a different way.

4. Nonexistence Periodic Solution

This section presents suitable conditions for the COVID sys-
tem (3) for nonperiodic solutions around the positive equi-
libria E∗ based on the criterion of [23]; let an autonomous
ordinary differential equation as follows:

dx
dt

= f xð Þ, ð13Þ

where f is a function in C1 in open subset of ℝN . Let J
= df /dx be the Jacobian matrix of system (13), and J ½2� be

the matrix of
N

2

 !
×

N

2

 !
which represents as the second

additive compound matrix [23] associated with the Jacobian

matrix J . Let the matrix J = ðaijÞn×n for i = 1, 2, 3,⋯
N

2

 !
,

let ðiÞ = ði1, i2Þ be the ithmember in the lexicographic order-
ing of integer pairs ði1, i2Þ for 1 ≤ i1 ≤ i2 ≤ n. Then, the
ði × jÞth element of J ½2� is

For a general 3 × 3 matrix

J =
a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BB@

1
CCA, ð15Þ

its second additive compound matrix J ½2� is

J 2½ � =
a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

0
BB@

1
CCA: ð16Þ

In this case, ð1Þ = ð1, 2Þ, ð2Þ = ð1, 3Þ, ð3Þ = ð2, 3Þ.

Theorem 9. Bendixson’s criterion [23]: a simple closed rec-
tifiable function cannot exist which is invariant under the

system (13) for x ∈ℝn if any one of the following conditions
is satisfied:

(i) sup fð∂f r/∂xrÞ + ð∂f s/∂xsÞ + Σ
q≠r,s

ðj∂f q/∂xrj + j∂f q/∂
xsjÞ: 1 ≤ r < s ≤ ng < 0

(ii) sup fð∂f r/∂xrÞ + ð∂f s/∂xsÞ + Σ
q≠r,s

ðj∂f r/∂xqj + j∂f s/∂
xqjÞ: 1 ≤ r < s ≤ ng < 0

(iii) λ1 + λ2 < 0

(iv) inf fð∂f r/∂xrÞ + ð∂f s/∂xsÞ − Σ
q≠r,s

ðj∂f q/∂xrj + j∂f q/∂
xsjÞ: 1 ≤ r < s ≤ ng > 0

(v) inf fð∂f r/∂xrÞ + ð∂f s/∂xsÞ − Σ
q≠r,s

ðj∂f r/∂xqj + j∂f s/∂
xqjÞ: 1 ≤ r < s ≤ ng > 0

(vi) λn−1 + λn > 0

ai1i1 + ai2i2 , if ið Þ = jð Þ,
−1ð Þr+sair js , if exactly one entry ir of ið Þ does not occur in jð Þ and js does not occur in jð Þ
0, if neither entry from ið Þ occurs in jð Þ:

8>><
>>: ð14Þ
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where λ1 ≥ λ2 ≥ λ3 ≥ ...≥λn are the eigenvalues of ð1/2Þð
ð∂f /∂xÞ∗ + ð∂f /∂xÞÞ where ∗ denotes the transposition, and
∂f /∂x is the Jacobian matrix of f .

The corresponding logarithmic norm of J ½2� is denoted
by μ∞ðJ ½2�Þ and provided by the vector norm jxj = supijxij
as follows:

μ∞ J 2½ �
� 	

= sup ∂f r
∂xr

+ ∂f s
∂xs

+ Σ
q≠r,s

∂f q
∂xr










 + ∂f q

∂xs












� �
: 1 ≤ r < s ≤ n

� �
,

ð17Þ

where μ∞ðJ ½2�Þ < 0 implies the diagonal dominance by
row matrix J ½2�. Then, the following result holds.

Theorem 10. A simple closed rectifiable curve that is invari-
ant under system (3) cannot exist [22] if μ∞ðJ ½2�Þ < 0.

The nonexistence of periodic solutions of system (3) will
be discussed by applying Li–Muldowney’s criterion. The log-
arithm norm μ∞ of the second additive compound matrix
J ½2�, for the Jacobian J , is negative if the following conditions
satisfy:

2αS
1 + δIuð Þ2 − β + γ + d1 + d2ð Þ < 0, ð18Þ

α

1 + δIuð Þ2 S − Iu − δI2u
� �

− 2d1 < 0, ð19Þ

− γ + d1 + d2ð Þ < 0, ð20Þ
Now the left hand side of inequality (18)

2αS
1 + δIuð Þ2

− β + γ + d1 + d2ð Þ ≤ β + d1 − γ − d2: ð21Þ

Thus, inequality (18) will follow if β + d1 − γ − d2 < 0: So
the inequalities (18), (19), and (20) can be easily demon-
strated if (i), (ii), and (iii) hold, respectively, where ðiÞβ +
d1 − γ − d2 < 0, ðiiÞd1 > β, and (iii) γ + d1 + d2 > 0.

5. COVID-19 Model with Control

In this section, we extend the basic model (1) by includ-
ing a particular control measure aimed at controlling the
spread of the COVID-19 infection and formulate the
optimal control problem by proposing the control objec-
tives. The aim of the control measures is to reduce the
infection in the population, and thus, there is the need
to formulate the optimal control problem to achieve this
goal. The control function σðtÞ is applied as a vaccine

for the susceptible, which reduces the number of infected
people which spread the disease per unit of time. Under
these control measure, the proposed model (1) is modi-
fied as

dS
dt

=Λ −
αS tð ÞIu tð Þ
1 + δIu tð Þ − σ tð ÞS tð Þ − d1S tð Þ,

dIu
dt

= αS tð ÞIu tð Þ
1 + δIu tð Þ − βIu tð Þ − d1Iu tð Þ,

dIk
dt

= βIu tð Þ − γIk tð Þ − d2Ik tð Þ,
dR
dt

= σ tð ÞS tð Þ + γIk tð Þ − d1R tð Þ,

ð22Þ

with nonnegative initial conditions

S 0ð Þ = �S0, R 0ð Þ = �R0 > 0,
Iu 0ð Þ =�Iu0 , Ik 0ð Þ =�Ik0 ≥ 0:

ð23Þ

The flow diagram of the proposed COVID-19 pan-
demic model with control is presented in Figure 3. The
control is completely effective when σðtÞ = 1, and the con-
trol is not effective when σðtÞ = 0, i.e., 0 ≤ σðtÞ ≤ 1. Our
focus is to minimize the number of exposed individuals
under the cost of applying control measures, which can
be done by considering the following fractional optimal
control problem to minimize the objective functional
given by

J σ tð Þð Þ =
ðτ
0

Q1S +
1
2Q2σ

2
� �

, ð24Þ

subjected to the state system given in (22) along nonneg-
ative initial conditions (23). In Equation (24), Q1 and Q2
represent the positive constants to keep a balance in the
size of the terms. The square of the control variable
reflects the severity of the side-effects of the vaccine.
Our objective is to minimize the cost function JðσðtÞÞ
given in (22) so that the spread of infection rate can be
minimized. So, we seek an optimal control σ∗ such that

J σ∗ð Þ =min Y σð Þ: σ ∈Uf g, ð25Þ

subjected to the state system given in (22), where the
control set is defined as

U = σjσ tð Þ is Lebesguemeasurable on 0, 1½ �f g: ð26Þ

5.1. Existence of an Optimal Control
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Lemma 11. Every solution of system (22) with initial condi-
tions (23) exists in the interval ½0,∞Þ and SðtÞ > 0,IuðtÞ ≥ 0,
IkðtÞ ≥ 0, and RðtÞ > 0 for all t ≥ 0:

Proof. Since the right hand side of COVID-19 model (22) is
continuous and locally Lipschitzian, then the solution ðSðtÞ
, IuðtÞ, IkðtÞ, RðtÞÞ of (22) using the initial conditions is
unique on ½0, ξÞ, where 0 < ξ < +∞.

From the model (22) and using the initial conditions,
we have

dS
dt

=Λ − σ + d1 +
αIu tð Þ

1 + δIu tð Þ
� �

S tð Þ: ð27Þ

We thus have

d
dt

S tð Þ exp σ + d1ð Þt +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �� �

=Λ exp σ + d1ð Þt +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �
:

ð28Þ

Hence,

S tð Þ exp σ + d1ð Þt +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �
− S 0ð Þ

=
ðt
0
Λ exp σ + d1ð Þt +

ðt
0

αIu ωð Þ
1 + δIu ωð Þ dω

� �
dt,

ð29Þ

so that

S tð Þ = S 0ð Þ exp − σ + d1ð Þt +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �� �

+ exp − σ + d1ð Þt +
ðt
0

αIu sð Þ
1 + δIu sð Þ ds

� �� �

×
ðt
0
Λ exp σ + d1ð Þt +

ðt
0

αIu ωð Þ
1 + δIu ωð Þ dω

� �
dt

� �
> 0:

ð30Þ

The second equation of the model (22) yields

dIu
dt

≥ − β + d1ð ÞIu tð Þ, ð31Þ

which provides IuðtÞ ≥ Iuð0Þ exp ½−ðβ + d1Þt� ≥ 0.
From the third equation of system (1), we get

dIk
dt

≥ − γ + d2ð ÞIk, ð32Þ

which gives IkðtÞ ≥ Ikð0Þ exp ½−ðγ + d2Þt� ≥ 0.
Finally, the last equation of the system (22) yields

dR
dt

≥ −d1R tð Þ, ð33Þ

which provides RðtÞ ≥ Rð0Þ exp ½−ðd1Þt� > 0.
Therefore, we can see that SðtÞ, RðtÞ > 0 and IuðtÞ, IkðtÞ

≥ 0, ∀t ≥ 0: This completes the proof.

Lemma 12. All solutions of COVID-19 system (22) in ℝ4
+

are bounded and lie in the region Ω defined by Ω = fðS,
Iu, Ik, RÞ ∈ℝ4

+ : 0 <NðtÞ ≤Λ/μg as t⟶∞, where μ =
min fd1, d2g:

Proof. Assume ðSðtÞ, IuðtÞ, IkðtÞ, RðtÞÞ be any solution of
system (22). Now, we consider a function like NðtÞ = SðtÞ
+ IuðtÞ + IkðtÞ + RðtÞ: Differentiating both sides with respect

Figure 3: Transfer diagram of COVID-19 model with control.
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to t, we have

dN tð Þ
dt

= dS tð Þ
dt

+ dIu tð Þ
dt

+ dIk tð Þ
dt

+ dR tð Þ
dt

,

dN tð Þ
dt

=Λ − d1S − d1Iu − d2Ik − d1R,

dN tð Þ
dt

+ μN tð Þ =Λ − d1 − μð ÞS − d1 − μð ÞIu
− d2 − μð ÞIk − d1 − μð ÞR,

ð34Þ

ðdNðtÞ/dtÞ + μNðtÞ ≤Λ, assuming μ =min fd1, d2g:
Then by comparison theorem, we obtain 0 <NðtÞ ≤Nð

0Þe−μt + ðΛ/μÞ and for t⟶∞, 0 <NðtÞ ≤Λ/μ: Therefore,
all solutions of coronavirus system (22) enter into the region
Ω = fðS, Iu, Ik, RÞ ∈ℝ4

+ : 0 <NðtÞ ≤Λ/μg:

Theorem 13. Given the objective functional

J σ tð Þð Þ =
ðτ
0

Q1S +
1
2
Q2σ

2
� �

dt, ð35Þ

where U = fσjσðtÞ is Lebesguemeasurable on ½0, 1�g subject
to the system [24] with [25], then there exists an optimal con-
trol σ∗ such that Jðσ∗Þ =min fYðσÞ: σ ∈Ug, if the following
conditions are satisfied:

(1) The class of all initial conditions with a control σðtÞ
in the admissible control set along with each state
equation being satisfied is not empty

(2) The admissible control set U is closed and convex

(3) Each right hand side of the state system (22) is continu-
ous and is bounded above by a sum of the bounded con-
trol and the state and can be written as a linear function
of σ with coefficients depending on time and the state

(4) The integrand of JðσÞ is convex on U and is bounded
below by p1σ

2 − p2 with p1, p2 > 0

The proof is in the Appendix.

5.2. Characterization of the Optimal Control Pair. The
LagrangianL and HamiltonianH for the fractional optimal
problem Equations (22)–(26) are as follows:

L S, σð Þ =Q1S +
Q2
2 σ2,

H ≪L S, σð Þ + λS
dS
dt

+ λIu
dIu
dt

+ λIk
dIk
dt

+ λR
dR
dt

:

ð36Þ

This further implies

H ≪Q1S +
Q2
2 σ2 + λS Λ −

αS tð ÞIu tð Þ
1 + δIu tð Þ − σ tð ÞS tð Þ − d1S tð Þ

� �

+ λIu
αS tð ÞIu tð Þ
1 + δIu tð Þ − βIu tð Þ − d1Iu tð Þ
� �

+ λIk βIu tð Þ − γIk tð Þ − d2Ik tð Þ½ �
+ λR σ tð ÞS tð Þ + γIk tð Þ − d1R tð Þ½ �,

ð37Þ

where λS, λIu , λIk , and λR are the adjoint variables to be
determined suitably.

The forms of the adjoint equations and transversality
conditions are standard results from Pontryagin’s maximum
principle. The adjoint system can be obtained as follows:

λS′ = −
∂H
∂S

� �
= λS − λIu
� � αIu

1 + δIu
+ d1λS + λS − λRð Þσ −Q1,

λIu
′ = −

∂H
∂Iu

� �
= λS − λIu
� � αS

1 + δIuð Þ2
+ β + d1ð ÞλIu − βλIk ,

λIk
′ = −

∂H
∂Ik

� �
= γ + d2ð ÞλIk − γλR,

λR′ = −
∂H
∂R

� �
= d1λR,

ð38Þ

with transversality conditions or boundary conditions
λSðτÞ = 0, λIuðτÞ = 0, λIkðτÞ = 0 and λRðτÞ = 0.

By the optimality condition, we have

∂H
∂σ

=Q2σ
∗ − λS − λRð Þ�S∗ = 0 atσ = σ∗: ð39Þ

By using the bounds for the control σðtÞ, we get

σ∗ =

λS − λRð Þ�S∗
Q2

, if 0 ≤ λS − λRð Þ�S∗
Q2

≤ 1,

0, if λS − λRð Þ�S∗
Q2

≤ 0,

1, if λS − λRð Þ�S∗
Q2

≥ 1:

8>>>>>>>>><
>>>>>>>>>:

ð40Þ

In compact notation:

σ∗ =min max 0, λS − λRð Þ�S∗
Q2

� �
, 1

� �
: ð41Þ
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Using (22), we obtain the following optimality system:

dS
dt

=Λ −
αS tð ÞIu tð Þ
1 + δIu tð Þ −min max 0, λS − λRð ÞS tð Þ

Q2

� �
, 1

� �
S tð Þ − d1S tð Þ,

dIu
dt

= αS tð ÞIu tð Þ
1 + δIu tð Þ − βIu tð Þ − d1Iu tð Þ,

dIk
dt

= βIu tð Þ − γIk tð Þ − d2Ik tð Þ,
dR
dt

=min max 0, λS − λRð ÞS tð Þ
Q2

� �
, 1

� �
S tð Þ + γIk tð Þ − d1R tð Þ,

dλS
dt

= λS − λIu
� � αIu

1 + δIu
+ d1λS −Q1

+ λS − λRð Þ min max 0, λS − λRð ÞS tð Þ
Q2

� �
, 1

� �
,

dλIu
dt

= λS − λIu
� � αS

1 + δIuð Þ2
+ β + d1ð ÞλIu − βλIk ,

dλIk
dt

= γ + d2ð ÞλIk − γλR,

dλR
dt

= d1λR,

ð42Þ

with nonnegative initial conditions

S 0ð Þ > 0, Iu 0ð Þ ≥ 0, R 0ð Þ > 0, Ik 0ð Þ ≥ 0,
λS τð Þ = 0, λIu τð Þ = 0, λIk τð Þ = 0, λR τð Þ = 0:

ð43Þ

The previous analysis can be summarized in the follow-
ing theorem.

Theorem 14. Let �S∗,�I∗u ,�I
∗
k , and �R∗ be optimal state solutions

with associated optimal control variable σ∗ for the optimal
control problems (22) and (23). Then there exist adjoint var-
iables λS, λIu , λIk , and λR satisfying

λS′ = −
∂H
∂S

� �
= λS − λIu
� � αIu

1 + δIu
+ d1λS + λS − λRð Þσ −Q1,

λIu
′ = −

∂H
∂Iu

� �
= λS − λIu
� � αS

1 + δIuð Þ2 + β + d1ð ÞλIu − βλIk ,

λIk
′ = −

∂H
∂Ik

� �
= γ + d2ð ÞλIk − γλR,

λR′ = −
∂H
∂R

� �
= d1λR,

ð44Þ

with transversality conditions or boundary conditions λS
ðτÞ = 0, λIuðτÞ = 0, λIkðτÞ = 0 and λRðτÞ = 0.

Furthermore, the control functions σ∗ is given by

σ∗ =min max 0, λS − λRð Þ�S∗
Q2

� �
, 1

� �
: ð45Þ

Proof. The adjoint system (42), i.e., λS′ , λIu′ , λIk′ , and λR′ , is
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Figure 4: Time graph of the first wave of unrevealed infected population ðIuÞ and known infected population ðIkÞ for α = 54 × 10−10, α
= 55 × 10−10, and α = 56 × 10−10 in India.
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obtained from the Hamiltonian H as

−
dλS
dt

= ∂H
∂S

,−
dλIu
dt

= ∂H
∂Iu

,−
dλIk
dt

= ∂H
∂Ik

,− dλR
dt

= ∂H
∂R

,

ð46Þ

with zero final time conditions (transversality), condi-
tions λSðτÞ = 0, λIuðτÞ = 0, λIkðτÞ = 0 and λRðτÞ = 0, and the
characterization of the fractional optimal control given by
(45) is obtained by solving the equation ∂H /∂σ = 0 on the
interior of the control set and using the property of the con-
trol space U .
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Figure 5: Second wave time graph of unrevealed infected population ðIuÞ and known infected population ðIkÞ for α = 54 × 10−10, α = 55
× 10−10, and α = 56 × 10−10 in India.
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Hence, that is the theorem.

6. Numerical Demonstration

The numerical part of this paper is introduced to obtain
some sound results based on some data using MATLAB.

For parameter estimation, we have not used any mathe-
matical method; we use the trial and error method to
fit our model to the actual data. This work intends not
to find the exact value of the parameter; we want to
see the hidden fact of the outspread speed. We consider
a small amount for the initial condition of the susceptible
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Figure 8: Time history of unrevealed infected population ðIuÞ and known infected population ðIkÞ of the first wave for β = 0:20, β = 0:21,
and β = 0:22 in India.
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population in both waves, and our model almost repre-
sents the same result as accurately (Figures 4–7). That
is an exciting result that COVID is not homogeneously
spread all over India and we can control it by lockdown.
However, lockdown can pull down the economy, which is
an extensive issue to use this method. Our study hints

that another technique to control is to find unrevealed
COVID patients as early as possible (Figures 8 and 9).
The detected patients are not major responsible for the
spread, rather the unrevealed patient mainly spreads
COVID. Another question that has a great impact on
society is that how many waves face India? The answer
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Figure 10: First wave time history of unrevealed infected population ðIuÞ and known infected population ðIkÞ for S0 = 5 × 107, S0 = 6 × 107,
and S0 = 7 × 107 in India.
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depends on the vaccination speed and the variant; how-
ever, mathematically, we did not find multiple waves
from a single COVID-19 variant. If vaccines work for
all variants, then this is the first and last strategy to
defend COVID-19 and various waves. If we do not com-

plete the vaccination within the ongoing wave, then we
may face the next wave, and so on. Moreover, the com-
munity of poor, uneducated, insanitary, and highly dense
populations would not control waves without vaccine
help. Another question that can answer our model is
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Figure 12: First wave time history of unrevealed infected population ðIuÞ and known infected population ðIkÞ for δ = 25 × 10−8, δ = 33 ×
10−8, and δ = 4 × 10−7 in India.
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what will be the peak value of the subsequent conse-
quence wave? The answer is straightforward; the peak
value always crosses its past value because COVID
spreads from big town to small town to the village in
successive waves (see Figures 10 and 11). We draw the figures
from Figures 4–13 based on the parameter value and initial
condition for both waves using Tables 1 and 2. For Figure 5,
we take Iuð0Þ = 70000 and the rest of the initial values and
parameter values are the same shown in Tables 1 and 2. For
our study, we take statistical data from https://www
.worldometers.info/ [26].

Our chosen parameter set of the model by trial and error
method almost satisfies the actual situation. Figure 4 repre-
sents the known and unrevealed infected population in the
first wave and Figure 5 for the second wave. Figure 6 is for
the susceptible and recover class for the 1st wave and
Figure 7 is for the 2nd wave. The 1st and 2nd wave end their
journey. We studied them to know the hidden dynamics.
Our numerical study satisfies our model assuming the
unknown infected population is critical for spreading the
disease. So controlling the 3rd wave is a big challenge for
India due to its vast population.

Figure 8 for the 1st wave and Figure 9 for the 2nd wave
show exciting findings. If we can identify unknown infected
people quickly, then we can control COVID spread effec-
tively; however, it is a difficult job for a country with a large
population. Figures 10 and 11 for the 1st and 2nd wave,
respectively, answer the effectiveness of lockdown. Imple-
menting lockdown can only control the spread more effec-
tively since the initial population for the susceptible
variable will be small. Figures 12 and 13 for the 1st and
2nd wave, respectively, show the psychological effect on
COVID propagation. Media-created fear on the human pop-
ulation has a clear impact on propagation.

6.1. Optimal Control. Here, we use some numerical simula-
tions to investigate the effect of the suggested control strat-
egy, vaccine, on the outbreak of COVID-19. From
Figure 14, it is clear that when time increases, then optimal
vaccine control strategies decreases time to time in a country
like India. It is clear that the vaccine reduces the number of
infected people. Figure 14 shows the speed of vaccination to
control the disease within 30 days. This is mathematical
analysis; reality is complicated. To prevent illness within 30
days, massive vaccine and huge trained human experts are
required. Figures 15 plots the variation in the number of sus-
ceptible, unrevealed infected, known infected, and recovery
people in the presence and the absence of the control strat-
egy in India. Our goal was to reduce the number of infected
people; the results confirm that the number of infected peo-
ple decreased, and since the initial number of infected people
was small, this wave ended faster, and the spread of the dis-
ease was controlled by the vaccine strategy. We use Tables 2
and 3 (2nd wave) to present Figures 14 and 15 for the model
with controls (22).
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Figure 13: Time history of unrevealed infected population ðIuÞ and known infected population of the second wave ðIkÞ for δ = 1 × 10−7,
δ = 135 × 10−9, and δ = 17 × 10−8 in India.

Table 2: Initial population for different waves.

Initial
population

Initial value for the 1st
wave

Initial value for the 2nd
wave

S 0ð Þ 5 × 107 6 × 107

Iu 0ð Þ 250 15 × 104

Ik 0ð Þ 256 170126
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7. Observations and Conclusion

This paper has proposed a model for infectious novel coronavi-
rus disease for the dynamical study. The BRN R0 is the thresh-
old condition that determines the disease propagation
dynamics. This study has shown that when R0 < 1, the system
has only a globally stable disease-free equilibrium E1 which
leads to the eventual death of the disease. The coronavirus sys-
tem has a unique endemic equilibrium E∗ for R0 > 1, which is
globally stable under the same condition. In this paper, mainly
we consider data of two different waves in India and checked
which of the waves is more dangerous in India. We checked
the effect of different parameters through the figures; the truth
tells that the second wave is more dangerous than the first wave.
The next focus of this paper is to set up an optimal control
problem relative to the COVID-19 epidemicmodel tominimize
the daily infected people. We have considered the vaccine rate
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Figure 14: The optimal control diagrams for the vaccine control, with input values from Table 3.

Time

0
0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

2

4

6

8

10

S

Time

0
1
2
3
4
5
6
7

Time

0
2
4
6
8

10
12

Time

0
2
4
6
8

10
12

R

x107 x106

x107x106

I u

I k

with control
without control
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Table 3: Parameter values for the optimal control problem.

Parameters Value per day

Λ 2 × 103

α 55 × 10−10

δ 135 × 10−9

β 0:21
γ 0:1
d1 4 × 10−5

d2 1 × 10−3

Q1 40
Q2 1 × 105
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as a function of time by σðtÞ. σ is representing the vaccine con-
trol in this COVIDmodel. The control function σ is designed in
such a way that it minimizes the objective functional (cost func-
tion) J as given in [27]. Finally, we found some exciting results
by studying the presented model numerically based on accurate
data. Lockdown is the best technique mathematically to control
the disease spread. However, ideal lockdown is not possible in
practice, so we did not find satisfying practical results by using
this method. These measures have proven unpopular due to
their social and economic consequences, so it is essential to find
new standards. Quick detection of undetected patents can con-
trol the spread. Vaccination can handle the situation; otherwise,
we observe many waves. Mathematically, we did not find mul-
tiple waves from a single COVID-19 variant since the new var-
iants produce distinct waves. If vaccines work for each variant,
this is the most acceptable strategy to defend the various
upcoming waves. We have monitored the psychological effect
on infection propagation. This study has observed that media-
created fear negatively affects human psychology and affects
COVID dynamics positively. The peak value of subsequent
consequence waves always crosses its past value because this
disease spreads from the big town to the small town to the vil-
lage in successive waves, and new strains are more quickly
spread than the previous version.

Appendix

A. Proof of Theorem 4

Proof. The variational matrix of COVID-19 system (3) at
E1ðΛ/d1, 0, 0Þ is given by

V E1ð Þ =

−d1 −
αΛ

d1
0

0 αΛ

d1
− β + d1ð Þ 0

0 β − γ + d2ð Þ

0
BBBBBB@

1
CCCCCCA
: ðA:1Þ

The eigenvalues of the characteristic equation of VðE1Þ
are obtained as λ1 = −d1 < 0, λ2 = ðαΛ/d1Þ − ðβ + d1Þ, and
λ3 = −ðγ + d2Þ < 0: Therefore, disease-free equilibrium point
E1ðΛ/d1, 0, 0Þ is locally asymptotically stable if λ2 = ðαΛ/d1
Þ − ðβ + d1Þ < 0, i.e., R0 = αΛ/ððβ + d1Þd1Þ < 1: Equilibrium
point is marginally stable if λ2 = ðαΛ/d1Þ − ðβ + d1Þ = 0, i.e.,
R0 = αΛ/ðβ + d1Þd1 = 1. Equilibrium point is unstable if λ2
= ðαΛ/d1Þ − ðβ + d1Þ > 0, i.e., R0 = αΛ/ðβ + d1Þd1 > 1. This
completes the proof.

B. Proof of Theorem 5

Proof. The variational matrix of system (3) at E∗ðS∗, I∗u , I∗k Þ is
given by

V E∗ð Þ =
p11 p12 p13

p21 p22 p23

p31 p32 p33

0
BB@

1
CCA, ðB:1Þ

where p11 = −ðαI∗u/ð1 + δI∗uÞÞ − d1, p12 = −αS∗/ð1 + δI∗uÞ2,
p13 = 0, p21 = αI∗u/ð1 + δI∗uÞ, p22 = ðαS∗/ð1 + δI∗uÞ2Þ − ðβ + d1Þ
, p23 = 0, p31 = 0, p32 = β, p33 = −ðγ + d2Þ:

Therefore, the characteristic equation of VðE∗Þ is

λ − p33ð Þ λ2 +m1λ +m2
� �

= 0, ðB:2Þ

where p33 = −ðγ + d2Þ < 0, m1 = −ðp11 + p22Þ = ððα + δðβ
+ d1ÞÞI∗u/ð1 + δI∗uÞÞ + d1 > 0, m2 = ðp11p22 − p12p21Þ = ½αΛ −
d1ðβ + d1Þ�ððα + δÞðβ + d1Þ/αðδΛ + β + d1ÞÞ.

Based on Routh–Hurwitz criterion, the eigenvalues of
Equation (B2) have negative real parts if ½αΛ − d1ðβ + d1Þ�
> 0, i.e., R0 = αΛ/ðβ + d1Þd1 > 1: Therefore, the endemic
equilibrium point E∗ is locally asymptotically stable when
R0 > 1:

C. Proof of Theorem 6

Proof. The system (3) can be rewritten as

dX
dt

= F X, Yð Þ,
dY
dt

= G X, Yð Þ,G X, 0ð Þ = 0,
ðC:1Þ

where X = S ∈ R stands for the number of uninfected indi-
viduals and Y = ðIu, IkÞ ∈ R2 denotes the number of infected
individuals. U0 = ðX∗, 0Þ = E1ðΛ/d1, 0, 0Þ shows the disease-
free equilibrium of COVID-19 system. The global stability
of the disease-free equilibrium E1 will guarantee upon the
satisfaction of the following two conditions:

(1) For dX/dt = FðX, 0Þ, X∗ is globally asymptotically
stable

(2) GðX, YÞ = AY − ~GðX, YÞ,~GðX, YÞ ≥ 0, for ðX, YÞ ∈Ω
where A =DYGðX∗, 0Þ is Metzler matrix and Ω is the region
of biological sense of the model. Following Castillo-Chavez
et al. [28], we check for the aforementioned conditions.

For the system (3), FðX, 0Þ =Λ − ðd1ÞS,

A =
Λα

d1
− β + d1ð Þ 0

β − γ + d2ð Þ

0
B@

1
CA,

~G X, Yð Þ =
αδSI2u
1 + δIu

0

0
B@

1
CA ≥ 0:

ðC:2Þ

As the off diagonal elements of A are nonnegative and ~GðX
, YÞ ≥ 0, hence the disease-free equilibrium E1 is globally
asymptotically stable if R0 < 1.
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D. Proof of Theorem 8

Proof. Since SðtÞ + IuðtÞ + IkðtÞ + RðtÞ =NðtÞ, then it is ade-
quate for the dynamical study of the three-dimensional
COVID-19 system following:

dS
dt

=Λ −
αSIu
1 + δIu

− d1S,

dIu
dt

= αSIu
1 + δIu

− βIu − d1Iu,

dIk
dt

= βIu − γIk − d2Ik:

ðD:1Þ

The Jacobian matrix of the system (D1) is

J =

p11 p12 p13

p21 p22 p23

p31 p32 p33

0
BBB@

1
CCCA

=

−
αIu

1 + δIu
− d1 −

αS

1 + δIuð Þ2 0

αIu
1 + δIu

αS

1 + δIuð Þ2 − β + d1ð Þ 0

0 β − γ + d2ð Þ

0
BBBBBBB@

1
CCCCCCCA
:

ðD:2Þ

The associated second compound matrix is given by

J 2½ � =
p11 + p22 p23 −p13

p32 p11 + p33 p12

−p31 p21 p22 + p33

0
BB@

1
CCA, ðD:3Þ

where p11 + p22 = −ðαIu/1 + δIuÞ + ðαS/ð1 + δIuÞ2Þ − ðd1
+ β + d1Þ, p23 = p13 = p31 = 0, p32 = β, p11 + p33 = −ðαIu/1 +
δIuÞ − ðd1 + γ2 + d2Þ, p12 = −αS/ð1 + δIuÞ2, p21 = αIu/1 + δIu,
p22 + p33 = ðαS/ð1 + δIuÞ2Þ − ðβ + γ + d1 + d2Þ:

We set the matrix function A by A = diag f1, Iu/Ik, Iu/
Ikg: Then, Af A

−1 = diag f0, ðIu′/IuÞ − ðIk′/IkÞ, ðIu′/IuÞ − ðIk′/Ik
Þg. We obtain the matrix Q in the block form as

Q3×3 = Af A
−1 + AJ 2½ �A−1 =

Q11 Q12

Q21 Q22

 !
, ðD:4Þ

where Q11 = −ðαIu/1 + δIuÞ + ðαS/ð1 + δIuÞ2Þ − ð2d1 + β

Þ,Q12 = ð0 0Þ,Q21 =
ðIu/IkÞβ

0

 !
,

The vector norm j:j in ℝ3 can be chosen as jðu, v,wÞj
=max fjuj, jvj + jwjg.

Let μ denote the Lozinskii measure [22] with respect to
this norm. Then, we can obtain μðQÞ ≤ sup fg1, g2g, with
g1 = μ1ðQ11Þ + jQ12j, g2 = μ1ðQ22Þ + jQ21j, where jQ12j,jQ21j
are matrix norms with respect to the L1 vector norm and
μ1 denotes the Lozenskii measure with respect to the L1

norm. Specifically, μ1ðQ11Þ = ðαS/ð1 + δIuÞ2Þ − ðαIu/1 + δIuÞ
− ð2d1 + βÞ, jQ12j =max f0, 0g = 0, jQ21j = ðIu/IkÞβ,

μ1 Q22ð Þ = Iu′
Iu

−
I ′
Ik

− γ2 − d2 + max −d1,
2αS

1 + δIuð Þ2 − β − d1

( )
:

ðD:6Þ

Since ðαS/ð1 + δIuÞ2Þ − ðβ + d1Þ + j−αS/ð1 + δIuÞ2j ≤ −d1
, therefore μ1ðQ22Þ = ðIu′/IuÞ − ðI ′/IkÞ − γ − d1 − d2, and we
have g1 = ðαS/ð1 + δIuÞ2Þ − ðαIu/1 + δIuÞ − ð2d1 + βÞ.

It follows from (12) that Iu′/Iu = ðαS/ð1 + δIuÞÞ − ðβ + d1Þ:
It implies g1 = ðIu′/IuÞ − d1 − ðαIu/1 + δIuÞ + ðαS/ð1 + δIuÞ2Þ
− ðαS/ð1 + δIuÞÞ ≤ ðIu′/IuÞ − d1, g2 = ðIu′/IuÞ − ðIk′/IkÞ − γ −
d2 + ðIuβ/IkÞ +max f−d1, ð2αS/ð1 + δIuÞ2Þ − β − d1g:

Based on Equation (12), we have Ik′/Ik = ðIuβ/IkÞ − γ − d2
; hence, we get g2 ≤ ðIu′/IuÞ − d1:

Therefore, μðQÞ ≤ ðIu′/IuÞ − d1:
Thus, for t > T , we have ð1/tÞÐ t0μðQÞds ≤ ð1/tÞ log ðIu′ðtÞ

/IuðtÞÞ + ð1/tÞÐ T0 μðQÞds − ððt − TÞd1/tÞ, which implies �q2 < 0.
This completes the proof.

Q22 =

Iu′
Iu

−
Ik′
Ik

−
αIu

1 + δIu
− 2d1 + γð Þ −

αS

1 + δIuð Þ2

αIu
1 + δIu

Iu′
Iu

−
Ik′
Ik

+ αS

1 + δIuð Þ2 − β + γ + d1 + d2ð Þ

0
BBBB@

1
CCCCA: ðD:5Þ

17Computational and Mathematical Methods in Medicine



E. Proof of Theorem 13

Proof. In order to verify the first condition, we use a result by
Lukes [29] (Theorem 9.2.1) for the system (22) with
bounded coefficients. The control set U is convex and closed
by definition, which gives condition (2).

Therefore, the right hand side of the state system (22)
satisfies condition (3) as the state solutions are prior
bounded (see Lemmas 11 and 12).

For the fourth condition, we need to show

g 1 − pð Þu + pvð Þ ≤ 1 − pð Þg uð Þ + pg vð Þ, ðE:1Þ

where gðxÞ =Q1S + ð1/2ÞQ2x
2:

Now,

g 1 − pð Þu + pvð Þ − 1 − pð Þg uð Þ + pg vð Þ½ � =Q1S tð Þ
+ Q2

2 1 − pð Þu + pvf g2

− 1 − pð Þ Q1S tð Þ + Q2
2 u2

� �
+ p Q1S tð Þ + Q2

2 v2
� �� �

= Q2
2 p2 − p
� �

u − vð Þ2:
ðE:2Þ

Since p ∈ ð0, 1Þ implies ðp2 − pÞ ≤ 0 and ðu − vÞ2 > 0, the
expression ðQ2/2Þðp2 − pÞðu − vÞ2 ≤ 0, which implies that g
ðð1 − pÞu + pvÞ ≤ ð1 − pÞgðuÞ + pgðvÞ.

Lastly, Q1SðtÞ + ðQ2/2Þσ2 ≥ ðQ2/2Þσ2ðtÞ ≥ ðQ2/2Þσ2ðtÞ −
p2 ≥ p1σ

2ðtÞ − p2, which gives p1σ
2ðtÞ − p2 as a lower bound

of gðuÞ, for some p1 > 0, p2 > 0:
Therefore, we can conclude that there exists an optimal

control σ∗ such that Jðσ∗Þ =min fYðσÞ: σ ∈Ug.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

P.K. Santra was responsible for conceptualization, method-
ology, software, and investigation; D. Ghosh was responsible
for methodology, software, investigation, and writing—
drafting and editing; G. S. Mahapatra was responsible for
conceptualization, software, supervision, and visualization;
Ebenezer Bonyah was responsible for visualization and writ-
ing—review and editing.

References

[1] C. Thron, V. Mbazumutima, L. V. Tamayo, and
L. Todjihounde, “Cost effective reproduction number based
strategies for reducing deaths from COVID-19,” Journal of
Mathematics in Industry, vol. 11, no. 1, p. 11, 2021.

[2] R. Memarbashi and S. M. Mahmoudi, “A dynamic model for
the COVID-19 with direct and indirect transmission path-
ways,” Mathematical Methods in the Applied Sciences, vol. 44,
no. 7, pp. 5873–5887, 2021.

[3] A. Atangana and S. İ. Araz, “Modeling and forecasting the
spread of COVID-19 with stochastic and deterministic
approaches: Africa and Europe,” Advances in Difference Equa-
tions, vol. 2021, no. 1, 2021.

[4] J. Wu, B. Tang, N. L. Bragazzi, K. Nah, and Z. McCarthy,
“Quantifying the role of social distancing, personal protection
and case detection in mitigating COVID-19 outbreak in
Ontario, Canada,” Journal of Mathematics in Industry,
vol. 10, no. 1, 2020.

[5] D. Aldila, M. Z. Ndii, and B. M. Samiadji, “Optimal control on
COVID-19 eradication program in Indonesia under the effect
of community awareness,” Mathematical Biosciences and
Engineering, vol. 17, no. 6, pp. 6355–6389, 2020.

[6] M. De la Sen and A. Ibeas, “On an SE(Is)(Ih)AR epidemic
model with combined vaccination and antiviral controls for
COVID-19 pandemic,” Advances in Difference Equations,
vol. 2021, no. 1, 2021.

[7] E. L. Campos, R. P. Cysne, A. L. Madureira, and G. L. Q.
Mendes, “Multi-generational SIR modeling: determination of
parameters, epidemiological forecasting and age-dependent
vaccination policies,” Infectious Disease Modelling, vol. 6,
pp. 751–765, 2021.

[8] M. Bachar, M. A. Khamsi, and M. Bounkhel, “A mathematical
model for the spread of COVID-19 and control mechanisms in
Saudi Arabia,” Advances in Difference Equations, vol. 2021,
no. 1, 2021.

[9] L. Pang, S. Liu, X. Zhang, T. Tian, and Z. Zhao, “Transmission
dynamics and control strategies of COVID-19 in Wuhan,
China,” Journal of Biological Systems, vol. 28, no. 3, pp. 543–
560, 2020.

[10] D. Pal, D. Ghosh, P. K. Santra, and G. S. Mahapatra, “Mathe-
matical modeling and analysis of Covid-19 infection spreads
in India with restricted optimal treatment on disease inci-
dence,” Biomath, vol. 10, no. 1, pp. 1–20, 2021.

[11] B. Ghanbari, “On forecasting the spread of the COVID-19 in
Iran: the second wave,” Chaos, Solitons and Fractals, vol. 140,
article 110176, 2020.

[12] S. A. Pedro, F. T. Ndjomatchoua, P. Jentsch, J. M. Tchuenche,
M. Anand, and C. T. Bauch, “Conditions for a second wave of
COVID-19 due to interactions between disease dynamics and
social processes,” Frontiers in Physics, vol. 8, 2020.

[13] S. S. Askar, D. Ghosh, P. K. Santra, A. A. Elsadany, and G. S.
Mahapatra, “A fractional order SITR mathematical model
for forecasting of transmission of COVID-19 of India with
lockdown effect,” Results in Physics, vol. 24, article 104067,
2021.

[14] S. V. Ershkov and A. Rachinskaya, “A new approximation of
mean-time trends for the second wave of COVID-19 pan-
demic evolving in key six countries,” Nonlinear Dynamics,
vol. 106, no. 2, pp. 1433–1452, 2021.

[15] D. H. Glass, “European and US lockdowns and second waves
during the COVID-19 pandemic,” Mathematical Biosciences,
vol. 330, article 108472, 2020.

[16] A. Babaei, M. Ahmadi, H. Jafari, and A. Liya, “Amathematical
model to examine the effect of quarantine on the spread of
coronavirus,” Chaos, Solitons and Fractals, vol. 142, article
110418, 2021.

18 Computational and Mathematical Methods in Medicine



[17] S. Funk and R. M. Eggo, “Early dynamics of transmission and
control of COVID-19: a mathematical modelling study,” The
Lancet Infectious Diseases, vol. 20, no. 5, pp. 553–558, 2020.

[18] T. Chen, J. Rui, Q. Wang, Z. Zhao, J. Cui, and L. Yin, “Amath-
ematical model for simulating the transmission of Wuhan
novel coronavirus,” 2020, https://www.biorxiv.org/content/10
.1101/2020.01.19.911669v1.

[19] D. Xiao and S. Ruan, “Global analysis of an epidemic model
with nonmonotone incidence rate,”Mathematical Biosciences,
vol. 208, no. 2, pp. 419–429, 2007.

[20] W. Liu, S. A. Levin, and Y. Iwasa, “Influence of nonlinear inci-
dence rates upon the behavior of SIRS epidemiological
models,” Journal of Mathematical Biology, vol. 23, no. 2,
pp. 187–204, 1986.

[21] C. Vargas-De-Leon and A. d’Onofrio, “Global stability of
infectious disease models with contact rate as a function of
prevalence index,” Mathematical Biosciences and Engineering,
vol. 14, no. 4, pp. 1–16, 2017.

[22] M. Y. Li and J. Muldowney, “A geometric approach to global
stability problems,” SIAM Journal on Mathematical Analysis,
vol. 27, no. 4, pp. 1070–1083, 1996.

[23] Y. Li and J. S. Muldowney, “On Bendixson’s criterion,” Journal
of Difference Equations, vol. 106, no. 1, p. 39, 1993.

[24] O. O. Apenteng, B. Oduro, and I. Owusu-Mensah, “A com-
partmental model to investigate the dynamics of the
COVID-19 pandemic: a case study in five countries,” Interna-
tional Journal of Biomathematics, vol. 14, no. 5, article
2150027, 2021.

[25] R. K. Rai, S. Khajanchi, P. K. Tiwari, E. Venturino, and A. K.
Misra, “Impact of social media advertisements on the trans-
mission dynamics of COVID-19 pandemic in India,” Journal
of Applied Mathematics and Computing, vol. 68, no. 1,
pp. 19–44, 2022.

[26] https://www.worldometers.info/.

[27] S. Khajanchi and K. Sarkar, “Forecasting the daily and cumu-
lative number of cases for the COVID-19 pandemic in India,”
Chaos, vol. 30, article 071101, 2020.

[28] C. Castillo-Chavez, Z. Feng, and W. Huang, On the Computa-
tion of Ro and Its Role on: Mathematical Approaches for Emerg-
ing and Reemerging Infectious Diseases: An Introduction,
Springer-Verlag, 2002.

[29] D. L. Lukes, Differential Equations: Classical to Controlled.
Mathematics in Science and Engineering, Academic Press,
New York, 1982.

[30] E. A. Iboi, O. Sharomi, C. N. Ngonghala, and A. B. Gumel,
“Mathematical modeling and analysis of COVID-19 pandemic
in Nigeria,”Mathematical Biosciences and Engineering, vol. 17,
no. 6, pp. 7192–7220, 2020.

[31] S. Basu, R. P. Kumar, P. K. Santra, G. S. Mahapatra, and A. A.
Elsadany, “Preventive control strategy on second wave of
Covid-19 pandemic model incorporating lock-down effect,”
Alexandria Engineering Journal, vol. 61, pp. 7265–7276, 2022.

[32] R. P. Kumar, S. Basu, D. Ghosh, P. K. Santra, and G. S. Maha-
patra, “Dynamical analysis of novel COVID-19 epidemic
model with non-monotonic incidence function,” Journal of
Public Affairs, vol. 2021, article e2754, 2021.

[33] P. Di Giamberardino, R. Caldarella, and D. Iacoviello, “A con-
trol based mathematical model for the evaluation of interven-
tion lines in covid-19 epidemic spread: the Italian case study,”
Symmetry, vol. 13, no. 5, p. 890, 2021.

[34] G. González-Parra and A. J. Arenas, “Qualitative analysis of a
mathematical model with presymptomatic individuals and
two SARS-CoV-2 variants,” Computational and Applied
Mathematics, vol. 40, no. 6, 2021.

[35] J. D. G. Ankamah, E. Okyere, S. T. Appiah, and S. Nana-Kyere,
“Nonlinear dynamics of COVID-19 seir infection model with
optimal control analysis,” Communications in Mathematical
Biology and Neuroscience, vol. 2021, 2021.

[36] J. Ge, D. He, Z. Lin, H. Zhu, and Z. Zhuang, “Four-tier
response system and spatial propagation of COVID-19 in
China by a network model,” Mathematical Biosciences,
vol. 330, article 108484, 2020.

[37] R. M. Colombo, M. Garavello, F. Marcellini, and E. Rossi, “An
age and space structured SIR model describing the Covid-19
pandemic,” Journal of Mathematics in Industry, vol. 10,
no. 1, 2020.

[38] S. Wang, X. Yang, L. Li et al., “A Bayesian updating scheme for
pandemics: estimating the infection dynamics of COVID-19,”
IEEE Computational Intelligence Magazine, vol. 15, no. 4,
pp. 23–33, 2020.

[39] T. A. Perkins and G. España, “Optimal control of the COVID-
19 pandemic with non-pharmaceutical interventions,” Bulletin
of Mathematical Biology, vol. 82, no. 9, p. 118, 2020.

[40] J. Zhang, L. Dong, Y. Zhang, X. Chen, G. Yao, and Z. Han,
“Investigating time, strength, and duration of measures in con-
trolling the spread of COVID-19 using a networked meta-
population model,” Nonlinear Dynamics, vol. 101, no. 3,
pp. 1789–1800, 2020.

[41] A. Labzai, A. Kouidere, O. Balatif, and M. Rachik, “Stability
analysis of mathematical model new corona virus (Covid-19)
disease spread in population,” Communications in Mathemat-
ical Biology and Neuroscience, vol. 2020, 2020.

19Computational and Mathematical Methods in Medicine

https://www.biorxiv.org/content/10.1101/2020.01.19.911669v1
https://www.biorxiv.org/content/10.1101/2020.01.19.911669v1
https://www.worldometers.info/

	Mathematical Analysis of Two Waves of COVID-19 Disease with Impact of Vaccination as Optimal Control
	1. Introduction
	2. Novel Coronavirus Model with Basic Properties
	2.1. Nonnegativity of Solution of COVID-19 Model
	2.2. Invariant Region of Solutions of COVID-19 Model
	2.3. The Basic Reproduction Number

	3. Existence of Equilibrium Points and Stability
	3.1. Local Stability Analysis
	3.1.1. Disease-Free Equilibrium
	3.1.2. Endemic Equilibrium

	3.2. Global Stability Analysis
	3.2.1. Disease-Free Equilibrium
	3.2.2. Global Stability of Endemic Equilibrium: Geometric Approach


	4. Nonexistence Periodic Solution
	5. COVID-19 Model with Control
	5.1. Existence of an Optimal Control
	5.2. Characterization of the Optimal Control Pair

	6. Numerical Demonstration
	6.1. Optimal Control

	7. Observations and Conclusion
	Appendix
	A. Proof of Theorem 4
	B. Proof of Theorem 5
	C. Proof of Theorem 6
	D. Proof of Theorem 8
	E. Proof of Theorem 13
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

