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Abstract

Although the use of long-read sequencing improves the contiguity of assembled viral
genomes compared to short-read methods, assembling complex viral communities
remains an open problem. We describe the viralFlye tool for identification and analysis
of metagenome-assembled viruses in long-read assemblies. We show it significantly
improves viral assemblies and demonstrate that long-reads result in a much larger
array of predicted virus-host associations as compared to short-read assemblies. We
demonstrate that the identification of novel CRISPR arrays in bacterial genomes from a
newly assembled metagenomic sample provides information for predicting novel
hosts for novel viruses.
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Background
Various metagenomic studies have greatly expanded the set of known viral genomes [1–6]
and have raised the challenge of inferring the metagenome-assembled viruses (MAVs).
Since the International Committee on Taxonomy of Viruses has proposed to include
MAVs into viral taxonomy studies [7], there is a need for novel bioinformatics tools to
accurately assemble, identify, verify, analyze, and classify MAVs.
So far, short-read sequencing has been the dominant technology for the discovery of novel

MAVs [2]. Such discoveries are usually conducted by assembling a viral metagenome
(virome) using general-purpose metagenomic assemblers (such as metaSPAdes [8] or
Megahit [9]), or specialized viral assemblers (such as metaviralSPAdes [10]). Unfortu-
nately, in the case of large, highly repetitive, or highly polymorphic viral genomes, it is
often impossible to reconstruct complete viral genomes using short reads only [11]. For
example, complete sequencing of giant viruses has been a challenging task [12, 13].
Modern short-read metagenomic assemblies rarely result in a complete assembly of

even a single bacterial genome in a bacterial community. Recent progress in long-read
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sequencing technologies has resulted in many long-read metagenomic projects in the last
two years [14–23] and led to the emergence of “complete metagenomics” [24, 25] that,
in contrast to previous short-read metagenomics studies, aims to assemble dozens and
even hundreds complete bacterial genomes in a bacterial community. However, there are
still no specialized long-read assemblers aimed at sequencing viruses from metagenomes
or metaviromes. As a result, recent studies aimed at assembling viral genomes from
long-read metagenomic datasets [15, 20, 26, 27] used custom bioinformatics pipelines
for viral sequencing that, as we show below, are far from being optimal. Another
poorly addressed challenge is finding bacterial hosts for MAVs identified in long-read
assemblies.
We modified metagenomic long-read assembler metaFlye [24] to improve the identi-

fication of MAVs in long-read metavirome/metagenome sequencing projects and devel-
oped additional tools for analyzing the identified viral contigs. We show that our viralFlye
approach recovers up to 2.25 times more complete or nearly complete viral sequences,
as compared to the previously published pipelines, while reducing the number of misas-
semblies. We also show that long reads improve the accuracy of virus-host association
predictions (i.e., enable the host identification at a deeper taxonomic level) based on
matching of the CRISPR-Cas sites. Interestingly, viralFlye also revealed many viral qua-
sispecies, populations of multiple viral strains (species) that have structural variations or
highly diverged regions. Although analysis of such populations may provide insights into
how multi-strain viral communities are organized and how they evolve, viruses forming
such populations typically remain below the radar of short-read studies.

Results
viralFlye pipeline

A complete viral genome can be represented as an isolated contig (either linear or circu-
lar). However, if a viral genome is heterogeneous (represented by multiple closely-related
strains or species), it may form a multi-edge connected component in the metagenome
assembly graph. In contrast to previous approaches that mainly focused on single contigs,
the viralFlye pipeline analyzes both single viral contigs and multi-edge viral components.
It includes the following steps described in the “Methods” section and illustrated in Fig. 1:

1 Launching the modified metaFlye assembler (that we refer to as metaFlye_v) aimed
at viral genome sequencing.

2 Polishing the metaFlye assembly with short reads (optional step if short reads are
available).

3 Identifying isolated linear and circular contigs in the assembly graph.
4 Identifying multi-edge connected components in the assembly graph (the

ComponentTraverser module).
5 Detecting MAVs by verifying the identified linear and circular contigs and

connected components as MAVs using the viralVerify tool [10] and checking them
for completeness using the viralComplete tool [10].

6 Classifying viral genomes into linear and circular (the CircularDisconnector
module).

7 Predicting the virus-host associations based on CRISPR analysis (optional step).
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Fig. 1 Graphical representation of the viralFlye pipeline. viralFlye takes a set of long reads (ONT, CLC PacBio,
or HiFi Pacbio) as an input and assembles them using metaFlye_v. If short reads are available, they are used
for polishing the metaFlye assembly with freebayes [36] and bcfconsensus [38]. Afterward, viralFlye extracts
short (length 5kb–1Mb) and high-coverage (coverage >10x) isolated contigs as well as small multi-edge
connected components. It further analyzes them and identifies putative MAVs using viralVerify and
viralComplete and classifies the inferred MAVs into linear and circular using the CircularDisconnector module.
Finally, it performs a CRISPR-based prediction of the virus-host associations (optional step)

Datasets

We benchmarked viralFlye using the following four datasets that cover various types of
the currently available long read technologies. All datasets were downloaded from SRA
in the fastq format.
HUMAN_GUT: Long error-prone reads from fecal samples from twelve individuals ana-

lyzed in [15] (SRP098614). The HUMAN_GUT dataset contains ∼11 Gb of long reads per
sample with an average subread length of 8 kb sequenced using the PacBio RS II (CLR)
system, and 33.8M single short reads (average read length 219 bp) sequenced on Illumina
MiSeq.
WARWICK_VIROME: Long error-prone reads from three marine water samples from

English Channel, filtered using 0.22mkmpore-size membrane, analyzed in [6]. DNA samples
underwent whole genome amplification and were treated by S1 nuclease digestion to
de-branch chimeric DNA formed during the rolling circle amplification process. MinION
libraries were prepared using EXP-NBD104 and SQK-LSK109 kits and sequenced
using MinION with a FLO-MIN106 flowcell. Datasets ERR6018294, ERR6018309,
and ERR6018338 (referred to as WARWICK_VIROME1, WARWICK_VIROME2 and
WARWICK_VIROME3) contain 5.8, 6, and 7.3 Gb of reads respectively
ALOHA_VIROME: Long error-prone reads from marine virome samples analyzed in

[27]. Size-selected particles (30-kDa filter) were sequenced on the Oxford Nanopore
GridION X5 with FLO-MIN106 (R 9.4.1) flowcells. As in [27], we analyzed the sam-
ples from the Station ALOHA (SRR10378147, SRR8811961, SRR8811964). These three
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ALOHA_VIROME datasets (referred to as ALOHA_VIROME1, ALOHA_VIROME2, and
ALOHA_VIROME3) contain approximately 701, 341, and 558 thousands long reads,
respectively (mean read length 17 kb). These long reads are complemented by 29, 28, and
24 millions of short Illumina reads, respectively (150 bp long reads with insert size 350
bp) that were used for polishing.
SHEEP_GUT: Long accurate PacBio HiFi reads from the sheep fecal sample analyzed in

[24] (SRX7628648). The SHEEP_GUT dataset contains 3.6 millions reads with mean read
length 13 kb, sequenced on a Pacific Biosciences Sequel instrument using v.2.1 chemistry
(libraries in the 9–10 kbp range) or v.3.0 chemistry (libraries in the 12–16 kbp range)
and 20-h movies (8-h pre-extension). These long reads are complemented by 512 millions
of paired short reads (150 bp long reads with insert size 350 bp) generated on Illumina
NextSeq 500.

Benchmarking

We have compared viralFlye with Raven [28] and the earlier version of metaFlye, i.e.,
the version metaFlye 2.8.3 that does not include additional modifications for viral
assembly implemented in metaFlye_v. Since Raven and metaFlye are general purpose
assemblers that do not include a specialized virus identification module, we used the
pipelines (referred as Raven+viralTools and metaFlye+viralTools) that combine Raven
and metaFlye with the same downstream viral analysis steps as in the viralFlye pipeline.
We evaluated the assemblies from all three pipeline configurations in terms of the num-
ber of reconstructed viral genomes and additionally used the checkV tool [29] as an
orthogonal validation approach. As we show below, viralFlye recovered the largest num-
ber of viral genomes for nearly all analyzed datasets, and had the lowest rate of chimeric
misassemblies.
We classify a contig as high-coverage if its coverage by reads exceeds the minCoverage

threshold (default value 10x), and low-coverage, otherwise. Since the single-base accuracy
of low-coverage contigs in assemblies of long error-prone is low, we focus on analyzing
high-coverage contigs. We note that metaFlye outputs information about the contig cov-
erage but Raven does not—it only provides the read count readCount for each contig. We
thus estimate the contig coverage in the Raven assembly using the average read length for
each dataset (computed as readCount × readLength/contigLength). This approach may
result in a biased estimate of the coverage since the read length for all analyzed datasets
has a rather high variance.
viralFlye extracts high-coverage circular and linear isolated contigs from the GFA

assembly files with the lengths varying between minLength (default value 5 kb) and
maxLength (default value 1 Mb). A user can change these default values, e.g., to analyze
short circular ssDNA viruses, it would be useful to decrease theminLength parameter to
1.5 kb.

Analyzing the HUMAN_GUT dataset

Table 1 presents information about the MAVs identified in the assembly graphs of all 12
samples in the HUMAN_GUT dataset. In total, viralFlye assembled 44 linear and 18 circular
contigs as complete (i.e., their lengths are similar to the lengths of the closest viruses
in the database). In comparison, only 12 viruses were assembled in the original study
of the HUMAN_GUT dataset [15]. Below, we compare these assemblies with the viralFlye
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assemblies. Since metaFlye 2.8.3 produced empty output for 8 out of 12 samples (because
it is not designed to assemble relatively short contigs), we provide its results only for the
remaining 4 samples.

Nine viral genomes assembled in [15] (MK415399.1, MK415400.1, MK415402.1,
MK415403.1, MK415404.1, MK415406.1, MK415407.1, MK415408.1, MK415410.1) were
assembled into circular contigs by metaFlye_v. These 9 viruses include all 5 crAssphage-
family viruses identified in [15]. Two viral genomes identified in [15] (MK415401.1 and
MK415405.1) are likely misassembled. For example, alignment of MK415401.1 to itself
(Fig. 2) reveals that this genome represents a nearly perfect triple repeat, suggesting that
the real genome is three times shorter thanMK415401.1. This shorter genomewas assem-
bled by metaFlye_v. The remaining viral genome (MK415409.1), that was assembled into
a circular genome bymetaFlye 2.8.3, is a part of a multi-edge connected component in the
metaFlye_v assembly. Since metaFlye_v can recover less abundant viral strains, it is pos-
sible that the heterogeneity of this virus was more adequately reflected in the metaFlye_v
assembly but prevented generating a single circular contig for this virus.
We launched CircularDisconnector on all 18 circular viral contigs assembled in the

HUMAN_GUT dataset. For 4 out of 5 viruses from the crAssphage family, it identified direct
terminal repeats (DTRs of length varying from 1905 bp to 2170 bp). Since DTRs often
trigger misrepresentations of linear genomes by circular contigs, CircularDisconnector
detects and linearizes the misrepresented circular contigs (see the “Methods” section).
One more crAssphage virus (MK415408.1) has multiple coverage drops and jumps and
thus was not classified as linear. No other incorrectly circularized viruses were detected.

Analyzing the WARWICK_VIROME dataset

Table 2 presents the benchmarking results on the WARWICK_VIROME datasets. In the
original publication [6], these datasets were assembled using an older version of the Flye
assembler (v.2.6) that may generate inferior results as compared to metaFlye 2.8.3 and
metaFlye_v. However, the original study does not report the per-sample statistics of the

Fig. 2 The dot plot of the alignment of MK415401.1 against itself reveals a triplicate repeat of length 27 kbp
generated with BLAST. This 27 kbp sequence likely represents a complete viral genome (93% completeness
according to checkV)



Antipov et al. Genome Biology           (2022) 23:57 Page 7 of 21

Ta
b
le

2
M
et
ag
en

om
e-
as
se
m
bl
ed

vi
ru
se
s
in
th
e
W
A
R
W
I
C
K
_
V
I
R
O
M
E
da
ta
se
ti
de

nt
ifi
ed

in
va
rio

us
as
se
m
bl
ie
s

Sa
m
p
le

m
et
aF

ly
e
+

vi
ra
lF
ly
e

Ra
ve

n
+

vi
ra
lT
oo

ls
vi
ra
lT
oo

ls

Li
n
ea

r
C
ir
cu

la
r

C
om

p
on

en
ts

Li
n
ea

r
C
ir
cu

la
r

C
om

p
on

en
ts

Li
n
ea

r
C
ir
cu

la
r

C
om

p
on

en
ts

W
A
R
W
I
C
K
_
V
I
R
O
M
E
1

15
23

11
1

16
26

13
7

0
0

0

W
A
R
W
I
C
K
_
V
I
R
O
M
E
2

60
20

12
4

37
32

16
9

0
0

0

W
A
R
W
I
C
K
_
V
I
R
O
M
E
3

38
22

10
8

34
27

15
0

0
0

0

To
ta
l

11
3

65
34
3

87
85

45
6

0
0

0

C
on

tig
s
w
ith

“h
ig
h”

or
‘m
M
ed

iu
m
”c
om

pl
et
en

es
s

by
ch
ec
kV

89
58

23
8

58
76

28
2

0
0

0

Si
nc
e
th
e
av
er
ag
e
re
ad

le
ng

th
in
th
is
da
ta
se
ti
s
lo
w
(≈

2
kb
),
th
e
co
ve
ra
ge

es
tim

at
es

fo
rt
he

Ra
ve
n-
as
se
m
bl
ed

co
nt
ig
s
ar
e
to
o
lo
w
to

pa
ss
th
e
co
ve
ra
ge

cu
to
ff
10
x



Antipov et al. Genome Biology           (2022) 23:57 Page 8 of 21

reconstructed viral contigs and only provides the total number of viral contigs recon-
structed in both long-read and short-read assemblies. It is thus difficult to infer the
number of contigs inferred from long-read assemblies only and to adequately compare
with the viralFlye results, particularly since [6] reports many low-coverage viral genomes
while viralFlye only reports genomes with coverage at least 10x reasonable single-base
accuracy. Therefore, the larger total number of viral genomes reported in [6] (as com-
pared to the number of viral genomes identified by viralFlye) likely reflects their reporting
of viruses identified in the Illumina-only assemblies and the absence of the coverage
cutoff.
Interestingly, the metaFlye pipeline identified more linear viruses but fewer viral con-

nected components than viralFlye.We attribute this increase/decrease to amore adequate
representation of low-coverage strains in the viralFlye pipeline that turns some contigs
into connected components in the assembly graph.

Analyzing the ALOHA_VIROME dataset

We used short reads in these datasets for polishing the long-read metaFlye_v assemblies
(an optional step in viralFlye). In [27], the authors also utilized short reads for polishing
but used an assembly-free approach for MAV generation that only considers viruses with
DTRs covered by a single read.
Table 3 provides information about the reconstructed MAVs and compares the number

of MAVs identified in our study and in the original study [27]. We further dereplicated
the identified MAVs (to ensure that they indeed represent different viruses) using CD-
HIT-EST v4.8.1 [30] with the similarity threshold of 0.95. NoMAVs identified by viralFlye
had similarity exceeding 0.95, implying that they represent different viruses. Some MAVs
identified in [27] represent the same viruses, reducing the number of identified viruses in
their study from 566 to 540 for ALOHA_VIROME1, from 93 to 92 for ALOHA_VIROME2,
and from 1205 to 1114 for ALOHA_VIROME3.
We further used the assemblies from the original manuscript [27] to estimate the rate

of chimeric misassemblies. We aligned the query contigs (in metaFlye, metaFlye_v, and
Raven assemblies) against the original (reference) contigs. Since all reference contigs con-
tain direct terminal repeats (DTRs), they likely represent complete viruses. A query contig
that is collinear with a concatenation of two different reference contigs is thus classified
as potentially chimeric. The metaFlye pipeline identified 81 potentially chimeric contigs,
while viralFlye identified only 6, suggesting that the specialized viral assembler is less
prone to misassemblies. The Raven pipeline identified 4 potentially chimeric contigs, but
assembled an order of magnitude fewer viral genomes.
CircularDisconnector labeled 28, 4 and 26 circular contigs in ALOHA_VIROME1,

ALOHA_VIROME2, and ALOHA_VIROME3 datasets as falsely circularized linear viral
contigs. We hypothesize that there are many more linear contigs that were incorrectly
classified as circular ones but evaded detection by CircularDisconnector due to highly
uneven coverage.

Analyzing the SHEEP_GUT dataset

Table 4 presents the benchmarking results on the SHEEP_GUT dataset. viralFlye identi-
fied 158 linear viral contigs, 153 circular viral contigs, and 23multi-edge viral components
in the SHEEP_GUT dataset. Additional manual analysis revealed that four of these
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components represent viruses with inverted terminal repeats and eight likely represents
multi-strain viral quasispecies. It remains unclear how to extract viral sequences from the
remaining 11 multi-edge components (see Fig. 3 and additional file 1); moreover, some of
them may represent assembly artifacts.
Although the metaFlye pipeline assembled more circular viral contigs, viralFlye assem-

bled more linear contigs—the result of some circular genomes assembled by meatFlye

Fig. 3 Examples of the multi-edge connected components in assembly graphs in the SHEEP_GUT and
ALOHA_VIROME datasets visualized by the AGB tool [47]. (A) A two-edge component in the SHEEP_GUT
dataset likely represents a virus with the genome RUR*, where R and R* form a 4.9 kb inverted terminal repeat
and U is a 345 kb long unique region. (B) A four-edge component in the ALOHA_VIROME dataset likely
represents two viral strains that differ from each other by a diverged region of length 2.5 kb in one virus and
of length 1.5 kb in another virus. (C) A more complex viral component with 15 edges (total length 150 kb) in
the ALOHA_VIROME dataset
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re-classified as linear by viralFlye. We randomly selected 10 such viral contigs and exam-
ined their read alignments profiles. In 7 out of 10 cases, the metaFlye contigs were
incorrectly circularized due to the chimeric read connections. These incorrectly circu-
larized linear contigs were detected by metaFlye_v and re-classified as linear viruses. In
1 out of 10 cases, the circular contig constructed by metaFlye was likely correct. In the
remaining two cases, the manual analysis was inconclusive due to the complex alignment
patters.
checkV classified 139 out of 158 linear viral contigs and 150 out of 153 circular viral

contigs as complete. The average completeness (estimated with checkV) was 90.7% for
linear and 92.8% for circular viral contigs. CircularDisconnector found 16 incorrectly
circularized linear contigs in this dataset.
We note that there are 153 high-coverage circular contigs shorter than 1Mb in the

metaFlye_v assembly. Since the circular contigs represent isolated loops in themetaFlye_v
assembly graph, they likely originate from viral genomes and plasmids. Among 55 non-
viral circular contigs, 20 were identified as plasmids using the plasmid identification
approach from [31] and 9 as bacterial and eukaryotic contigs, including the complete
mitochondrions of the sheep host (Ovis aries) and a sheep parasite Blastocystis spp.. The
remaining 26 uncharacterized circular contigs may represent novel and unusual plasmids
and circular viruses that have evaded identification by the existing plasmid and virus
identification tools (although some of them may represent assembly artifacts).
On the other hand, metaFlye_v generated 158 non-characterized high-coverage linear

contigs in the SHEEP_GUT dataset. These contigs likely originate either from novel and
unusual linear viruses or from bacterial genomes with highly non-uniform coverage that
resulted in sharp coverage drops. Figuring out which of the uncharacterized circular and
linear contigs represent new viruses remains an open problem.

CRISPR-based host prediction

Identification of known CRISPR spacers in MAVs is a powerful approach for predicting
potential known hosts for novel viruses from metagenomic assemblies [1, 32]. However,
this approach is limited by the CRISPR arrays available in the existing (rather incomplete)
CRISPR databases. Here, we demonstrate that the novel CRISPR arrays identified in a
newly assembled metagenomic sample provide additional and more accurate information
for predicting potential novel hosts for novel viruses. We focused on this database-
free “novel host-novel virus” mode and compared it with the traditional database-based
“known host-novel virus” approach. For the SHEEP GUT dataset, where both long and
short reads (with the high coverage) were available, we studied intra-sample virus-host
associations for both types of data, and compared them with the results obtained using
the CRISPRCasdb database (see the “Methods” section for details).
Illumina reads from the SHEEP_GUT dataset were assembled using MEGAHIT v1.2.9

[9]. PacBio HiFi reads from the SHEEP_GUT dataset were assembled using viralFlye [24].
To predict potential viruses, we extracted all circular and linear MAVs in both short-
read and long-read assemblies. Interestingly, the sets of MAVs identified in short-read
and long-read assemblies were quite different with only 85 MAVs shared between two
assemblies (Table 5).
The host contigs in the long-read assembly were significantly longer (average/median

length 519/135 kb in the long-read assembly as compared to 13/3.5 kb in the short-read
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Table 5 Information about the virus-host assignments derived by analyzing the CRISPR spacers

Total MAVs with predicted
hosts (derived by
searching for potentially
novel CRISPR arrays in
the assembly)

MAVs with predicted
hosts (derived by
matching against
known CRISPR arrays in
CRISPRCasdb)

MAVs identified
by both
approaches

MAVs identified from
the long-read
dataset (PacBio HiFi)

339 56 (16.5%) 74 (21.8%) 9 (2.6%)

MAVs identified from
the short-read
dataset (Illumina)

303 15 (5%) 54 (17%) 2 (0.6%)

MAVs shared between
the long-read and
short-read datasets

85 Long reads: 10 (11%) 17 (20%) 3 (3.5%)

Short reads: 7 (8.2%) 1 (1.1%)

assembly). Interestingly, although matching against the CRISPRCasdb library identified
more virus-host pairs, these predictions show a very small overlap with the identified
intra-sample virus-host pairs. Thus, complementing the traditional matching against
the CRISPR database with the intra-sample host predictions significantly increases the
number of the predicted virus-host associations.
In most cases, the host taxonomy in both datasets and the CRISPRCasdb library was in

agreement, at least at the order level (Additional file 3: Table S1). In the case of long-read
contigs, the taxonomic position of the potential hosts can be determined with a higher
precision—hosts for 14 out of 15 viruses were predicted up to the family level (5 out of
8 viruses in the MEGAHIT assembly), in large part because of the fact that the longer
contigs allow one to better identify the matching bacteria.

Discussion
Although the set of known viral genomes has been steadily expanding, only a tiny frac-
tion of the Earth’s virome has been sequenced so far. The recent long-read metagenomic
studies have generated assemblies that greatly improve over the short-read assemblies
with respect to assembling complete and nearly complete bacterial genomes and opened
the era of “complete metagenomics” [24, 25]. However, the algorithms for generating and
analyzing MAVs in long-read assemblies remain underexplored. In the absence of bench-
mark datasets with known references (such as the HMP mock and SYNTH datasets for
bacterial metagenomes [33]), comparing different assembly methods is a difficult task.
Nevertheless, we have shown that viralFlye improves reconstruction and analysis ofMAVs
as compared to the previously described approaches [14, 15, 27] to MAV identification in
long-read assemblies.
We showed that the previously developed custom pipelines for MAV generation may

lead to both missing and incorrectly assembled MAVs. In the case of the HUMAN_GUT

dataset, viralFlye identified 5 timesmoreMAVs than the pipeline in [15]. In the case of the
ALOHA_VIROME dataset, viralFlye increased the number of identified MAVs by 63% as
compared to the pipeline in [27] (across all three samples). Interestingly, viralFlye revealed
manymulti-edge viral components in long-read assemblies (across all datasets) that either
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represent viruses that have long repeats or a population of multiple viral strains (species)
that have structural variations or highly diverged regions. Since our knowledge of the
diversity and frequency of structural variations in viruses is limited [34], decomposing
these viral components into individual strains would contribute to evolutionary studies
of viral populations. However, dissecting these viral components into individual strains
represents an open computational problem. Since viruses forming multi-edge connected
components remained below the radar of previous studies, solving this problem will likely
reveal many previously unknown viruses and will provide insights into how multi-strain
viral communities are organized and how they evolve.
Although identification of known CRISPR spacers in MAVs is a widely used approach

for predicting potential known hosts for novel viruses, this sample-independent approach
does not analyze bacteria present in the sample and is not applicable to still unknown
CRISPR spacers. We demonstrate that the identification of novel CRISPR arrays in bacte-
rial genomes from a newly assembledmetagenomic sample (sample-dependent approach)
provides information for predicting potential novel hosts for novel viruses and results
in a large number of identified virus-host associations. Interestingly, there is a very
small overlap between the viral-host pairs identified by the sample-dependent and the
sample-independent approaches, suggesting that these approaches are complementary.
Our study revealed 1036 uncharacterized circular (15967 linear) contigs which can orig-

inate from novel and unusual viruses and plasmids. There are multiple reasons that may
explain a large number of uncharacterized potentially viral contigs in our assemblies.
First, since the existing viral identification tools were trained on known viruses, they are
unlikely to classify a contig as viral if it represents a highly diverged virus. Second, since
the Stop codon reassignment is common [3, 35], these tools may mispredict genes and
again fail to characterize a contig as viral. Third, some of the uncharacterized contigs may
represent assembly artifacts or represent contigs with basecalling errors that affected gene
prediction and downstream viral identification. Thus, identifying uncharacterized con-
tigs that originate from viral genomes remains an open problem that we plan to address
in a follow-up study.

Conclusions
Although metagenomic sequencing has greatly expanded our knowledge of the Earth’s
virome, extracting complete sequences of viral genomes from metagenomic assemblies
remains challenging. Previous studies, aimed at the discovery of novel viruses, often
focused on viral contigs in metagenomic assemblies and thus missed an opportunity to
sequence complete viral genomes by switching from the contig-based to the assembly
graph-based analysis. Emergence of long reads opened a possibility to sequence many
complete viral genomes that evaded all attempts to sequence them using short reads.
We demonstrated that viralFlye improves identification of complete viruses from

long-read metagenomic datasets and has a potential to transform metagenomics-based
assembly of novel viruses from a challenging task into a routine procedure. viralFlye
recovers up to 2.25 times more complete or nearly complete MAVs, as compared to the
previously published pipelines, while reducing the number of misassemblies. We also
show that long reads improve the accuracy of virus-host association predictions and
reveal many viral quasispecies, populations of multiple viral strains (species) that have
structural variations or highly diverged regions.
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Methods
Modifying metaFlye for viral assembly

metaFlye generates disjointigs and “glues” them into the metagenome assembly graph
[24]. This procedure typically results in generating many short disjointigs (with length
comparable to the length of a single read), most of which represent assembly artifacts
rather than real biological sequences. However, some of them may represent short plas-
mids and viruses. Since it is unclear how to separate artifacts from viral and plasmid
contigs, metaFlye (that was originally designed for bacterial assemblies) discards many
short disjointigs, thus filtering out short viral disjointigs. Another limitation ofmetaFlye is
that it may connect two ormore linear viruses in a single chimericMAV, an artifact caused
by chimeric reads formed by concatenating segments from multiple viruses. It turned
out that chimeric reads are often formed by concatenating the ends of two different viral
genomes.
To address these complications, we modified the disjointing assembly algorithm in

metaFlye by (i) preserving rather than discarding short disjointigs derived from reads cov-
ering the entire viral genome and (ii) aggressively filtering possibly chimeric reads that
resulted from multiple linear viruses. To enable (i), in the updated metaFlye_v tool, we
allow a disjointig to be represented by a single read, provided that such read is supported
by other reads. To enable (ii), metaFlye_v detects ends of linear viruses characterized by
a sharp drop in coverage by reads; such regions are then subjected to stricter parame-
ters for the chimera detection algorithm [24]. Applying this approach led to a significant
reduction in misassemblies, e.g., by an order of magnitude on the WARWICK_VIROME
dataset.

Polishing the metaFlye assembly with short reads

In the case when both long error-prone reads and short accurate (Illumina) reads are
available, viralFlye polishes the metaFlye long-read assembly using short reads. The pol-
ishing step reduces the number of base-calling errors and indels in metaFlye assemblies
of long error-prone reads (particularly in the case of low-coverage genomes) and thus
improves gene prediction, an important step for the success of the downstream virus iden-
tification tools [10, 29]. viralFlye uses the freebayes tool [36] (with the bwa mem aligner
[37]) followed by the bcftools consensus tool [38] for polishing.

Identifying isolated viral contigs in the assembly graph

There exist multiple viral detection tools that classify each contig into viral and non-
viral, such as viralVerify [10] and checkV [29]. viralFlye analyzes the extracted contigs
using the viralVerify v1.1 tool [10] with default parameters to select contigs rep-
resenting putative viral sequences. Since some contigs may represent partial rather
than complete viral genomes, we have additionally checked the completeness of lin-
ear and circular contigs using the viralComplete tool [10]. Since viralComplete eval-
uates the completeness of a viral genome based on its similarities to known viral
genomes (using the completeness threshold), it often underestimates the completeness
in the case of novel viral genomes with limited similarities to known viral genomes.
Since metagenomic samples likely contain many viruses without close database refer-
ences, we have reduced the completeness threshold to 50% and provided an option
to change it.
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Identifying multi-edge viral components in the assembly graph

Even thoughmost viral genomes aremuch shorter than bacterial genomes, environmental
viral samples often have high inter- and intra-species heterogeneity [39]. This hetero-
geneity leads to fragmentation of both short-read and long-read metagenomic assemblies
[24, 33]. Ideally, complete viral genomes are represented as isolated edges (linear viruses)
or isolated loops (circular viruses) in themetagenomic assembly graphs [15, 20]. However,
as we have shown in the “Results” section, many viruses form more complex multi-
edge connected components in the long-read assembly graphs. The ComponentTraverser
module of the viralFlye pipeline analyzes such components and identifies the components
that are likely formed by viral genomes.
A connected component of an assembly graph is called viral if it represents a viral

genome (possibly with the addition of a small number of edges from non-viral genomes).
Although there exist multiple viral detection tools that classify isolated contigs into
viral and non-viral ([10, 29]), classification of multi-edge connected components of an
assembly graph into viral and non-viral is an open problem.
We define the length of a connected component Component in an assembly graph

(denoted as length(Component)) as the total length of its edges. A connected component
is called small if minLength < length(Component) < maxLength, where minLength, and
maxLength are thresholds with default values minLength=5 kb and maxLength=1 Mb
(length of most viruses falls into this range). The coverage of a connected component
Component is defined as the average coverage of its edges normalized by the edge length,
i.e, as

∑
each edge e in Component coverage(e) · length(e)/length(Component)

The ComponentTraverser module classifies each small high-coverage connected com-
ponent of the assembly graph as either viral or non-viral. Given a connected component,
it generates random traversals of this component and then launches a viral detection tool
on each random traversal. To generate a random traversal, ComponentTraverser launches
a random walk that starts from a path formed by a single edge (the longest edge in
the component) and gradually extends this path in both directions by randomly adding
still untraversed edges until no such edges are found. ComponentTraverser generates
numberTraversals such paths (default value 10).
viralFlye classifies a multi-edge component as viral if one of the generated traversals is

classified as viral by a viral detection tool. It further reports all multi-edge viral compo-
nents in individual files for further manual examination. Figure 3 shows some examples
of viral multi-edge components found by ComponentTraverser.

Classifying MAVs into linear and circular

Many linear viruses have direct terminal repeats (DTRs) on both ends that can span 10 kb
andmore in length [40]. Since linear viruses with long DTRs are typically assembled into a
loop in the assembly graph, they are often misclassified as circular viruses. Although this
misclassification is particularly rampant in short-read assemblies [41], it extends to long-
read assemblies in the case when the DTR length is similar or longer than the typical read
length. For example, as shown in [15], five viruses from the crAssphage family reported
as circular MAVs in the previous short-read study [42] represent linear MAVs. The Cir-
cularDisconnector module of viralFlye checks each circular viral contig in the assembly
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graph and attempts to figure out whether it is in fact a linear contig “glued” into a circular
contig by DTRs.
CircularDisconnector is based on the observation that the two DTR regions in a linear

genome (at the beginning and at the end of the genome) are “glued” into a single region
with sharply increased coverage (as compared to the average coverage of this genome) in
the assembly graph. The coverage of this region is expected to be nearly twice larger (as
compared to the average coverage of the viral genome) because it is covered by reads from
both the beginning and the end of the genome.
A position in a contig is classified as a coverage jump (coverage drop) if its coverage

is larger (smaller) than the coverage of the neighboring 100 bp long region by a factor
of CoverageJump (default value CoverageJump=1.5). To decide whether a circular contig
represents a linear genome, CircularDisconnector checks whether there exist coverage
jumps/drops in this contig. Figure 4 shows an example of an increased coverage in the
DTR region that reveals one coverage jump and one coverage drop.
Another indication that a region between two positions in a circular contig actually rep-

resents a DTR in a linear virus is the sharp drop in the number of reads spanning these
two positions (as compared to the average number of reads spanning segments of the
same size). Although we do not expect to see any reads spanning both these positions of
a linear genome (and extending beyond them), (i) chimeric reads, (ii) reads arising from
a linear genome in the lysogenic stage, and (iii) reads arising from a linear genome con-
catenation during the rolling circle replication may span these positions. However, since
the number of such reads is typically small, we classify a region between two positions
as a low-coverage region if the number of reads spanning both these positions is at least
coverageReduction times lower than the average number of reads spanning regions of the
same size in the assembled genome (default value coverageReduction=10).
CircularDisconnector examines each circular viral contig in the metaFlye assembly,

aligns all reads to this contig, and detects all coverage jumps/drops using the slid-
ing window technique [43]. It further identifies contigs with a single coverage jump

Fig. 4 Alignment of long reads from the sample apr34 to crAssphage apr34_000142F genome (MK415399.1)
analyzed in [15]. The alignments of reads covering the region (from positions 72850 to 76060) that contain
the DTR location of length 2 kbp (positions from 73630 to 75800). There is a roughly double increase in
coverage in the DTR, and only two reads that traverse through this DTR. The figure was generated using the
Tablet visualization software [48]



Antipov et al. Genome Biology           (2022) 23:57 Page 18 of 21

and a single coverage drop and analyzes them as potential indicators of the DTR
gluing in assembly graphs of linear genomes. It classifies a contig as linear if the
identified coverage jump and coverage drop (located at positions jump and drop sep-
arated by distance span = |drop − jump|) satisfy the following two conditions: (i)
the region between positions jump and drop is a low-coverage region and (ii) span >

minSpan. The default value of minSpan equals the parameter min-overlap (default
value 1000 bp) in metaFlye that defines the minimum overlap between disjointigs
in the metaFlye gluing procedure (overlaps smaller than minSpan are not glued by
metaFlye).

CRISPR-based prediction of virus-host associations

The standard approach for predicting potential known hosts for novel viruses from
metagenome assemblies is based on identifying knownCRISPR spacers inMAVs [1, 32]. It
is thus limited by the CRISPR arrays available in the existing (rather incomplete) CRISPR
databases. The “Results” section demonstrates that the novel CRISPR arrays identi-
fied in a newly assembled metagenomic sample provide additional and more accurate
information for predicting potential novel hosts for novel viruses.
Given a metagenomic dataset, viralFlye considers all high-coverage circular MAVs,

linear MAVs, and multi-edge viral components in its assembly graph (with length vary-
ing from 5 kbp to 1 Mb), predicts candidate MAVs using viralVerify, and checks them
for completeness using viralComplete (at least 50%). Afterward, it predicts the CRISPR
arrays in this assembly using the Minced v. 0.4.2 tool (based on the CRISPR Recognition
Tool [44]) and aligns the predicted spacers against all selected MAVs (with parameters
max evalue 1E-5, min identity 0.9, blastn-short). The resulting alignments reveal puta-
tive virus-host associations. To assess how many of these associations represent known
versus novel virus-host associations, the spacers from the CRISPRCasdb database ([45],
accessed Nov 5, 2020) are aligned to the predicted MAVs with the same parameters.
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