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In this article, we address the problem of the classification of the health state of the colon’s wall of 
mice, possibly injured by cancer with machine learning approaches. This problem is essential for 
translational research on cancer and is a priori challenging since the amount of data is usually limited 
in all preclinical studies for practical and ethical reasons. Three states considered including cancer, 
health, and inflammatory on tissues. Fully automated machine learning-based methods are proposed, 
including deep learning, transfer learning, and shallow learning with SVM. These methods addressed 
different training strategies corresponding to clinical questions such as the automatic clinical state 
prediction on unseen data using a pre-trained model, or in an alternative setting, real-time estimation 
of the clinical state of individual tissue samples during the examination. Experimental results show the 
best performance of 99.93% correct recognition rate obtained for the second strategy as well as the 
performance of 98.49% which were achieved for the more difficult first case.

Classically the characterization of colon’s pathology is realized from histology1 but is now also investigated with 
in vivo imaging techniques which enable the oncological2 early detection of abnormal physiological processes 
such as inflammation of dysplastic lesions. This includes chromoendoscopy3, confocal laser endomicroscopy4,5 or 
multiphoton microscopy6. These modern video-microscopies introduced in preclinical studies on mice with the 
promises of translational research7.

These imaging techniques are producing videos which for the inspection of one colon of one mouse corre-
sponds to thousands of frames to be further multiplied by the number of mice inspected. Each frame of these vid-
eos can be different in the structure and texture as it is recorded over a colon’s wall with movement of the probe, 
spurious presence of unexpected items between probes and colon, variation of contrast agent concentration. To 
draw benefit from such imaging protocols, the bottleneck is thus the automation of the image analysis. In this 
article, we consider one of these protocols and propose a fully automated solution for the classification of colon 
wall images into healthy, inflammation and dysplastic tissues.

We work with the confocal endomicroscopy imaging protocol of5 for the classification of the health state 
of the colon’s wall of mice. Since its introduction, this protocol has seen widespread usage in multiple research 
groups8–10. So far, image analysis for the classification of colon’s wall health state with this protocol has been rela-
tively limited. The existing literature is based on handcrafted features5,8–10.

In this article, we go beyond the sole characterization (feature handcrafting) and, for the first time on Mice 
colon in cancer study from confocal laser endomicroscopy, in the growing trend of machine learning applied to 
medical image analysis11–13, propose a fully automated classification method based on supervised learning that we 
validate on thousands of images. This work is a priori challenging since the amount of data in preclinical studies, 
such as in our case, is rather limited compared to the usual amount of data available in medical applications of 
machine learning. Also, another a priori open question addressed in the preclinical study is the question of trans-
lational research, i.e. the reusability of the knowledge gained for animals on human or human on animals. We 
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address this question here, for the first time to our knowledge, in the perspective of machine learning. As the last 
innovation in our methodology to address a specific unsolved preclinical problem, we discuss different scientific 
use cases and corresponding strategies for training concerning some properties of confocal laser endomicroscopy. 
Images are acquired at the video frame rate while the expert holding the endoscopic probes moves it slowly to 
inspect the tissue when located close to the tissue of interest. Consequently, though the imaging system is produc-
ing vast amounts of images, a large number of images are very similar. We consider the possibility of taking ben-
efit from this self-similarity in order to significantly reduce the size of the data set requested during the training 
stage. This training approach is vital for the expert in charge of the annotation of the training data sets since it is a 
highly time-consuming task. In a second configuration, we also discuss the performance obtained with different 
machine learning approaches when we learn on images corresponding to a given set of mice while applying the 
classification on a distinct cohort of mice. This cross-subject training is relevant for clinical purposes because 
it quantifies to which extend the disease observed is generic or patient-specific. The performances of these two 
training strategies compared to the best performance obtained with a brute force random sampling on a whole 
cohort for the training of the classification algorithm.

In the literature, several studies have focused on the classification of colon’s health state from endomicroscopy. 
Up to our knowledge, this body of work based on the classical methodology of handcrafted feature design (taking 
into account domain knowledge), followed by supervised machine learning.

A method based on global descriptors proposed in5, whose introduced fractal box-counting metrics and illus-
trated them on two images. Vessel detection was proposed in8 after a Hessian-based filter in addition to length 
area and diameter measurements of vascular crypts of the colon’s wall. Blood vessels of the colon’s wall character-
ized in9 from Fourier analysis. Also, vascular networks of colon’s wall were characterized in terms of graphs in10 
after skeletonization on few hundreds of images.

Closest to our work is the method by Ştefănescu et al., which is based on machine learning with neural net-
works of images of human tissues14 acquired with confocal laser endomicroscopy. However, the images are clearly 
different; in contrast, the field of view and resolution, as can be seen in Fig. 1. These differences motivate our 
proposition of designing a specific method for mice trained on mouse images. In contrast to14, we (i) propose a 
method based on representation learning15 as opposed to handcrafted features, and (ii) specifically discuss differ-
ent experimental protocols and develop different training strategies adapted to these protocols.

Figure 1.  Top: Human samples of colon’s wall images: healthy (left) and unhealthy (right) tissues observed 
from fluorescent confocal endomicroscopy. Bottom: Mouse samples of colon’s wall images: healthy (left) and 
unhealthy (right) tissues observed from fluorescent confocal endomicroscopy.
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Results
In this section, we give experimental results using the experimental protocol and training strategies described in 
the method section as well as the different feature extraction and feature learning techniques.

Cross-subject training.  For this protocol, the most challenging one of all considered cases, where gener-
alization to unseen subjects (mice) is required, randomly chosen images of mice for three datasets of training, 
validation, and testing as shown in Table 1. While the training set is used to adjust the parameters of the model, 
the validation set is used to minimize overfitting and tune the parameters. The test set of unseen data is used 
to confirm the predictive power and that the model generalises. The final classification of trials is computed 
as the average performance of each fold. The number of healthy and unhealthy mice are not equal. We simu-
lated cross-validation for this approach by changing mice between training, validation, and testing for each new 
experiment.

Table 2 gives results with the different feature representations and classifiers described in the method section. 
In addition, Table 3 shows classification accuracy of a transfer learning method with different freezing layers dis-
cussed in section. Our proposed architecture trained from scratch shows the best recognition rate compared to 
handcrafted features, and state of the art high-capacity architectures with pre-training. The experiments indicate 
that high-capacity networks overfit on this amount of target data even when they are pre-trained on large datasets 
of natural images. We conjecture that the shift in data distributions is too large in the case of this application. 
The last layer of the network, still trained from scratch even in the case of transfer learning, overfits on the small 
target data set. To sum up the essence of the contribution, we train a high-capacity model on a large scale data set, 
followed by fine-tuning of a low capacity SVM model on the small volume target data set.

Also, we studied the dependency of the classification results on the number of subjects in the training data, 
as illustrated in the Fig. 2. For this study, we chose the LBP based representation and the SVM classifier since it 
can work better when a small size of the database is available for training. As expected, the system performance 
increases significantly when additional mice are added to the training set, as each mouse potentially has its spe-
cific pattern for health, inflammation, and cancer tissues.

Figure 3 shows some cases of correctly and wrongly classified images with their coarse localization maps. As 
can be seen, these images are indeed difficult to assess as the miss classified images have a similar pattern with 
another class.

Cross-sample training with all samples.  Let us recall that in another use case of cross-sample training, 
subjects (mice) are mixed between training and test sets. In our setup, the 7 fold cross-validation approach used 
where almost 75% of images are dedicated for training and 25% of images for testing purposes, which corre-
sponds to the proportions chosen for a similar problem in14, albeit for human colon’s walls. When needed, the 
validation set was chosen from the training set. Table 4 gives the prediction performance of the different classifiers 
on this data. We report means and standard deviations of ten runs.

In this more natural case, where correlations between subsequent frames in the input video can be exploited, 
our CNN architecture still outperforms other models and feature learning methods with a close to perfect perfor-
mance of 99.33%. Even transfer learning of deep networks cannot compete in this section, where generalization 
to unseen subjects is not an issue. We conjecture that the reason is that pre-training on the large-scale data set 

Healthy 
mice

Mice with 
cancer

Mice with 
inflammation

Training 5 7 7

Validation 1 2 2

Testing 3 4 7

Table 1.  Number of mice in each dataset.

Left Right

Classifiers
Transfer 
learning Accuracy

True 
Cancer

True 
Inflammation

True 
Healthy

Proposed CNN 
architecture — 98.49% ± 0.6 Predicted Cancer 13107 0 0

DenseNet X 94.54% ± 2.9 Predicted Inflammation 0 5012 46

VGG16 + linear SVM X 90.60% ± 0.4 Predicted Healthy 0 75 2011

VGG16 X 89.62% ± 3.3

ResNet50 X 75.93% ± 4.1

VGG16 — 74.82% ± 3.2

LBP features + linear 
SVM — 83.01% ± 0.4

Proposed method at14 — 77.41% ± 1.3

Table 2.  Left: Results of cross-subject training with full data, where all images of 6 healthy mice, 9 mice with 
cancer, and 9 mice with inflammation used for training the system. Right: Confusion matrix of cross-subject 
performance where our proposed CNN architecture is used.
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learns a representation tailored for high generalization, which requires encoding invariances to large defor-
mation groups into the prediction model. These invariances help to recognize natural classes, like animals and 
objects from daily life, even though their viewpoints and shapes might be profoundly different. It is clearly not the 

No. Freezing
Conv. layers 1 2 3 4 5 6 7 8 9 10 11 12 13

Accuracy 40.8% ± 17.4 65.6 ± 29.9% 89.6 ± 3.3% 89.2% ± 3.9 42.8% ± 21.9 43.4% ± 23.25 70% ± 24.1 52.8% ± 22.2 75.4% ± 23.9 82.2% ± 9.4 65.8% ± 29.9 41.2% ± 18.3 33% ± 0

Table 3.  Results of cross-subject training with different numbers of frozen layers when transferring the VGG16 
network from ImageNet to the target dataset.

Figure 2.  Dependency on the number of training subjects for cross-subject training (LBP features + SVM 
classifier).

Figure 3.  Example of correctly and miss classified images of the proposed CNN architecture for the cross-
subject training strategy. Each cell consists from left to right of a grayscale image, a coarse localization map of 
the important regions in the image for the network40, and a high-resolution class-discriminative visualization40. 
Cells with dashed lines mean that there is no miss classified images for that class.

Left Right

Classifiers
Transfer 
learning Accuracy

True 
Cancer

True 
Inflammation

True 
Healthy

Proposed CNN 
architecture — 99.93% ± 0.13 Predicted Cancer 13994 0 0

LBP features + linear 
SVM — 97.7% ± 0.39 Predicted Inflammation 0 4032 0

VGG16 + linear SVM X 85.9% ± 0.4 Predicted Healthy 0 5 1849

VGG16 X 82.12% ± 4.1

ResNet50 X 79.94% ± 4.6

DenseNet X 79.51% ± 3.8

VGG16 — 78.49% ± 1.27

Table 4.  Left: Results of cross-sample training with full data. Right: Confusion Matrix of cross-sample 
performance where our proposed CNN architecture is used.
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objective for our cross-sample use case, where generalization is less an issue than encoding extremely fine-grained 
similarities between samples which are very close in feature space.

Overall deep learning methods with a pre-training, the best results were obtained by the VGG16 model 
pre-trained on ILSVRC and fine-tuned on our target data set, where after fine-tuning a linear SVM classifier was 
trained on the last feature layer of the deep network. Interestingly, this performance is comparable to what was 
obtained in14 for a similar colon’s wall classification but on humans.

Cross-sample and cross-subject training with sample selection.  We tested the performance of the 
handcrafted pipeline when the number of input data is limited. For this approach, images of each state are divided 
into training and testing sets, and then the training set is split into an increasing number of clusters based on their 
similarities. We stop at around 1000 clusters when a plateau of performance is reached. Then, a random image of 
each cluster in each state is selected to train the model, and the model is tested on the test data. Figure 4 shows the 
average recognition rate of the system after three trials as a function of the number of clusters, i.e., the size of the 
data set for the training for both cross-subject and cross-sample approaches. As visible in Fig. 4, the performance 
of both cross-sample and cross-subject training with sample selection overpasses the random selection of images 
with a gain approximately constant of 13% of recognition rate in all the range. However, at its maximum level, the 
performance is lower than the best performance obtained in Table 4. This approach can also be used for real-time 
applications as there is no need to use clustering on test data.

Methods
Experimental protocols and associated training strategies.  Our main objective is to automate 
the classification process of mouse tissues into three classes, healthy, inflammation, and cancer tissues. Below, 
we describe two different medical use cases, where these predictions are helpful. In other words, two different 
approaches of splitting data into training and testing for our experiments are introduced, which refers to two 
different clinical problems where prediction is required on subjects or samples.

Scientific use cases.  Cross-subject predictions.  This use case arises when a prediction must be made on 
unknown subjects (unknown mice) using a model which has been created (trained) during an off-line training 
phase. The underlying scientific question addressed by this use case is whether locally acquired samples of tis-
sue can be correctly classified without any additional information from the same subject. Alternatively, in other 
words, we would like to study whether prediction models based on machine learning can generalize to unseen 
subjects; it quantifies to which extent the observed diseases are generic or patient-specific.

In a real-world scenario, the corresponding prediction model is static in a sense that different predictions on 
new subjects will be based on the same model acquired by the medical personnel at a single instant (software 
updates not with standing). It means a model is trained on a given set of subjects, and will then apply it to new 
subjects (previously unseen). Decoupling training and prediction is the main advantage of this use case, as the 
prediction model does not require re-training between predictions, and results can be obtained using the same 
model on any new subject.

Cross-sample predictions.  The second use case focuses more on individual tissue samples. This situation arises 
when one or more subjects are studied in detail, and a large number of tissue samples need to be classified. The 
underlying scientific question is, whether tissue annotation can be done semi-automatically when a large number 
of tissues need to be annotated from a low number of subjects. Alternatively, in other words, we would like to 
study whether a prediction model based on machine learning can generalize to different regions from the same 
or different subjects.

Figure 4.  Average of recognition rate of cross-subject (left) and cross-sample (right) training respectively 
with sample selection in solid red line versus a random selection of data in dashed blue line as a function of the 
number of images in the training dataset. Yellow and purple lines show the average recognition rate plus and 
minus standard deviation respectively.
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In a real-world scenario, the corresponding prediction model is dynamic, as (on-line) re-training is necessary 
for regular intervals. The medical personnel uses an application, which allows them to view tissue samples and 
annotate them in real-time, available in the additional information section.

The two uses cases are inherently different. Cross-subject predictions are usually more difficult, as the shift 
between the training data distribution and testing data distribution is generally higher, putting higher require-
ments on the generalization performance of the predictors. In practice, both cases can be addressed using fully 
supervised machine learning.

Proposed training strategies.  We propose three different training strategies to address the scientific use 
cases described above.

Cross-subject training.  This training strategy is designed to cover the cross-subject use case. The data set is split 
cross-subject wise, i.e., that subjects (mice) whose samples are in the training set are not present in the test set. It 
should be considered that the colon’s wall of a subject can sometimes consist of all three labels at the same time, 
which means that a part of the colon’s wall show cancer tissues. Another part show some inflammation tissues, 
and the rest can be considered as healthy tissues. Thus, it is essential to design a classifier that tries to label every 
image independently. Later a subject could be labeled based on the majority of labels of its images.

Cross-sample training with all samples.  This strategy corresponds to the cross-sample use case. The data set is 
split into training and test sets by randomly sampling images of each type to be classified (health, inflammation, 
and cancer). In particular, this approach selects images without information on whether they are consecutive in 
video frames, or whether they belong to a given subject. In this strategy, images from one subject (a mouse) can 
be in both training and testing sets, but it does not mean that the same images are used in training and testing. As 
the microprobe captured images through the colon’s wall of subjects, each image is taken from one specific part 
(tissue) of the colon’s wall.

Cross-sample training with sample selection.  In an alternative training strategy for the cross-sample use case, 
we address the fact that images correspond to video frames which are acquired in the continuity of a local probe 
inspection process. Therefore, consecutive images are visually similar with a high probability. This temporal cor-
relation between frames can lead to skewed (unbalanced) data distribution and, if not dealt with, to sub-optimal 
performance.

We propose an unsupervised sample selection processing based on clustering. Features are extracted from 
each image, which includes standard deviation, mean, variance, and the skewness of the raw pixel values. The 
features are clustered with k-means, and a single sample is picked from each cluster for training. The rest of the 
images of the database are used for testing.

Features, feature learning and classification.  Independently of the training strategy, we proposed two 
different procedures, including both feature extraction and classification methods. The first is based on hand-
crafted features, whereas the second resort to automatic learning of the intermediate representation.

Handcrafted features.  In this methodology, we handcraft feature representations instead of learning them. 
Handcrafted representations have been optimized by the computer vision community over decades of research, 
including theoretical analysis and experiments. In our setting, we resort to the local binary patterns (LBP)16, a 
state-of-the-art handcrafted descriptor which has been used in a variety of tasks in computer vision, among which 
are face recognition, emotion recognition, and others, see the survey in17. Notably, LBPs have been shown to be 
valuable for medical image texture analysis18.

Under the original form of16 and as used in this article, for a pixel positioned at the point x y( , ), LBP indicates 
a sequential set of the binary comparison of its value with the eight neighbors. In other words, the LBP value 
assigned to each neighbor is either 0 or 1, if its value is smaller or greater than the pixel placed at the center of the 
mask, respectively. The decimal form of the resulting 8-bit word representing the LBP code can be expressed as 
follows:

∑= −
=

LBP x y s i i( , ) 2 ( )
(1)n

n
n x y

0

7

,

where ix y,  corresponds to the grey value of the center pixel, and in denotes that of the nth neighboring one. Besides, 
the function s x( ) is defined as follows:

= ≥
< .{s x x

x
( ) 1 0

0 0 (2)

The LBP operator remains unaffected by any monotonic gray scale transformation, which preserves the pixel 
intensity order in a local neighborhood. It is worth noticing that all the bits of the LBP code hold the same signif-
icance level, where two successive bit values may have different implications. The process of Eq. (1) is realized at 
the scale of a patch size of ×N N  pixels. The LBP x y( , ) of each pixel inside this patch are concatenated to create a 
fingerprint of the local texture around the pixel at the center of the patch. Eqs. (1) and (2) are applied on all 
patches of an image. Finally, all histogram outputs of patches (after applying LBP on them) are concatenated and 
considered as the feature vector of an image. This patch size N, in this study, is chosen in the order of an average 

https://doi.org/10.1038/s41598-019-56583-9


7Scientific Reports |         (2019) 9:20010  | https://doi.org/10.1038/s41598-019-56583-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

size of vesicular crypts on health images. In our database, a patch size of 8 × 8 can almost cover a healthy vesicular 
crypt. At the next step, a linear SVM is applied to classify the images based on their LBP features.

Representation learning.  Representation learning, or deep learning, aims at jointly learning feature rep-
resentations with the required prediction models. We chose the predominant approach in computer vision, 
namely deep convolutional neural networks19, which have proven to be well suited for standard tasks in the medi-
cal domain like cell segmentation20, tumor detection, and classification21, brain tumor segmentation22, De-noising 
of Contrast-Enhanced MRI Sequences23 and several other purposes15. We train two different models, one which 
was designed for the task and trained from scratch, and one which has been adapted from (and pre-trained on) 
image classification.

Training from scratch.  The baseline approach resorts to a standard supervised training of the prediction model 
(the neural network) on the target training data corresponding to the respective training strategies described in 
section. No additional data sources are used. In particular, given a training set comprised of K pairs of images xi 
and labels ŷi, we train the parameters θ of the network f using stochastic gradient descent to minimize empirical 
risk:

∑θ θ=
θ =

ˆ⁎ y f xarg min ( , ( , ))
(3)i

K

i i
1


 denotes the loss function, which is cross-entropy in our case. The minimization is carried out using the ADAM 
optimizer24 with a learning rate of 0.001.

The architecture of our proposed architecture ⋅ ⋅f ( , ), shown in Fig.  5, has been optimized on a 
cross-validation set and is given as follows: five convolutional layers with filters of size 3 × 3 and respective num-
bers of filters 64, 128, 256, 512, 512 each followed by ReLU activations and 2 × 2 max pooling; a fully connected 
layer with 1024 units, ReLU activation and dropout (p = 0.5) and a fully connected output layer for 3 classes 
(health, inflammation and cancer) and softmax activation.

Transfer learning.  Deep learning addresses complex prediction problems through neural networks with high 
capacity, i.e., highly non-linear functions with a large number of parameters, whose estimation typically requires 
a large amount of annotated training data. If this data is not available, the trained networks tend to overfit on the 
training data and thus generalize poorly to unseen data.

A standard solution to this problem is transfer learning or domain adaptation. The idea is to learn high capac-
ity models on large alternative source data sets whose content is sufficiently correlated with the target application 
and then transfer the learned knowledge to the target data. Various techniques have been proposed, which differ, 
among other in the way this transfer is performed and whether labels are available for the target data set (super-
vised techniques, e.g.25,26) or not (unsupervised techniques, e.g.27).

We perform supervised transfer using classical weight freezing and fine-tuning25, which transfers knowledge 
by first solving Eq. 3 on the target data set, and then using the obtained parameters θ⁎ as initialization (starting 
point) for the training of the network on the target data set. The assumption is somehow grounded by the exist-
ence of standard features in images from natural scenes, which transfer well to images from other domains.

We transfer knowledge from the well-known image classification task ILSCVR 2012 (aka ImageNet), a data-
set of roughly one million images and 1000 classes28. Our model architectures optimized for this task, and as 
described above, is very likely to underfit on this transfer learning setting. Its hyper-parameters, among which 
are its architecture and the number of parameters, has been optimized over a validation set, which is very much 
smaller than the ILVSRC data by roughly a factor of 500. Its design capacity will, therefore, tend to be much too 

Figure 5.  The proposed architecture of the deep network optimized for the task on the cross-validation set.
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small for the knowledge encoded in the source data (ILVSRC). For this reason, we take “classical” and well-known 
high-capacity models for the ILVSRC task, namely VGG1629, DenseNet30, and ResNet5031. From the pre-trained 
model, we remove the task-specific output layer (designed for 1000 classes) and replace it with a new layer for 
three classes. Among all possible combinations of freezing layers which tested, the model with freezing at the 
first 3 layers and fine-tuning the other layers on the validation data set returned the best performance shown in 
the Table 3. The results of the transfer learning method with different freezing layers on our database show the 
transferability of features from ImageNet database in the spirit of25.

We would liketo point out that the two different strategies (training from scratch vs. pre-training and transfer) 
are compared using two different model architectures. Our goal is to compare strategies, and different strategies 
can possibly have different optimal architectures. Network architectures need to be adapted to various parame-
ters of the problem, namely the complexity of the task and the number of training samples. As mentioned above, 
in our case, there is a big difference between the small size of our dataset and the large size of typical computer 
vision datasets like the ImageNet/ILSVRC dataset (1 M images). Therefore, this involves optimizing parameters 
(through SGD) as well as the hyper-parameters (through model-search). Only if both are optimized, the poten-
tials of the two strategies are compared. In contrast, comparing two identical architectures would have been 
inconclusive, as one of two architectures would have been better suited to the task at hand.

Research involving animals.  All applicable international, national, and/or institutional guidelines for the 
care and use of animals were followed. All procedures performed in studies involving animals were in accordance 
with the ethical standards of the institution or practice at which the studies were conducted.

Ethical standards.  This study was approved by the institutional review board of the Université Claude 
Bernard Lyon 1 (reference number: DR2014-62-v1) and complied with ethics committee standards.

Annotating software.  The annotating software tool has been specially developed for this study but is appli-
cable to any video endoscopy annotation for cancer. It is freely available at https://uabox.univ-angers.fr/index.
php/s/AZ2IZl6LDYRcd8P together with a demo video and some data sample.

Database
The experiments involving animals were led in accordance with the rules of the University Lyon 1 Ethics 
Committee on animal experimentation. Animals were acclimated for two weeks prior to the experiment in the 
following environment: a 12-hour day/night rhythm in 300 cm2 plastic cages (for four animals) with straw bed-
ding, pellet food, and tap water. The temperature of each cage was monitored and kept between 19 and 21 C. 
To induce colitis, mice were chemically treated with a single injection of azoxymethane (AOM, intraperitoneal 
injection, 10 mg/kg body weight) at the beginning and then, during six months, with dextran sulfate sodium in 
drinking water (DSS, concentration of 2%). During the experiment, a pressure sensor placed on the mouse’s chest 
in order to monitor the respiratory index of animals. Analyzed images used in this article chosen at the extrema 
of the respiratory cycle, where the movements are the slowest to minimize artifacts due to these movements. 
Mice anesthetized with 3% isoflurane and aspiration flow set at 0.4 L/min during the induction phase. A 25 μL 
solution of Fluorescein Isothiocyanate FITC- Dextran 5% (Sigma Aldrich), used as a contrast agent, is injected in 
retro-orbital of the mouse’s eye before the CEM investigation.

The anesthesia maintained during imaging with 1.4 to 1.7% isoflurane vaporization and aspiration flow set up 
on 0.4 L/min. The endoscopic test was conducted using a mini multi-purpose rigid telescope dedicated to small 
animals (Karl Storz). Acquisition of images made by using a 488 nm confocal endomicroscope CEM (CellVizio c, 
Mauna Kea Technologies) combined with a 0.95 mm outer diameter Proflex MiniZ microprobe (PF-2173, Mauna 
Kea Technologies). The microprobe was inserted through the operating sheath of this endoscope and positioned 
on the mice’s colon walls. During the acquisitions, the depth assessed was approximately 58 μm for a lateral res-
olution of 3.5 μm and a frame rate of 12 fps. The output image size is 329 × 326 μm2 corresponding to a matrix of 
292 × 290 pixels10.

In total, 38 mice were included in the study for a total of 66788 images which have been annotated as healthy 
tissue images (6474 images from 9 mice), cancer tissue images (46566 images from 13 mice) or inflammation 
tissue images (13748 images from 16 mice) by two experts together at the same time with a pre-knowledge of 
mice diseases. Images were also labeled according to the mice from which they were acquired. Annotation was 
realized with the help of an application (available in the additional information section) especially developed for 
this study freely available, as pointed in the supplementary material section. It enables the classification of images 
according to the three classes studied in this article but also other classes of interestin biomedical studies of the 
colon’s wall. This application is made available as supplementary material to this study. As mentioned in5, some 
of the raw images do not carry any information for diagnosis. This can be due to misposition of the probe which 
does not receive enough signal, a decrease of the fluorescence, saturation of the imaging sensor due to too high 
amount of fluorescence, due to residues, due to contrast agent extravasation or presence of some light-absorbing 
objects within mucous film located between the probes and the tissue. To prevent the expert from spending time 
on annotating such non-relevant images and improve the learning process, we decided, as usually done in video 
endomicroscopy32,33 to withdraw them automatically and only keep the informative frame. A simple test based on 
the computation of the skewness of the gray level histogram of the images demonstrated to be very efficient for 
this task. Images with a skewness higher than −5 (as an empirical threshold) were kept. The skewness captures the 
dissymmetry of the histogram around its mean value. This is useful to detect saturated or underexposed images. 
We estimated, on some 6000 images, that this simple statistical test performs 98% of good detection for the detec-
tion of images carrying no useful diagnostic information with a false alarm of 1%. Additionally, in order to assess 
the influence of theses artifactual images if they would not have been removed, an additional experiment has been 
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done on all raw data (without removing noisy data). This experiment showed a reduction of 2% (on average) on 
the recognition performance of each training strategy by using our proposed CNN model. This demonstrates the 
interest of the denoising step but also quantify the robustness of our model.

Based on the training strategies, the database was spilled into three datasets of training (for training of our 
model), validation (to optimize hyper-parameters), and testing (to report performance on). In the cross-subject 
training strategy, images of each subject (mouse) were transferred into one of the datasets of training, validation, 
and testing. The exact number of mice in each dataset shown in Table 1. In the cross-sample training strategy, 75% 
of the whole database transferred to the training dataset, and the rest of the data belonged to the testing dataset. 
In this case, the validation dataset was extracted from the training dataset for deep learning experiments. This 
splitting database approach made a guaranty that the test dataset was not seen during training and validation of 
the model.

Conclusion
In this paper, we have presented three classification approaches to classify three states of health, inflammation, 
and cancer on mice colon’s wall. Fully automated machine learning-based methods are proposed, including deep 
learning, transfer learning, and classical texture-based classification. Different training strategies are compared 
in order to find the best approach for this specific problem. The images processed in this paper were acquired in 
the framework of a preclinical study on colon mice. In this type of study (preclinical), the size of the database is 
not comparable with other domains in machine learningAs also underlined in34 on the different types of images, 
we found that a custom deep learning model shows superiority over handcrafted features and well-known deep 
learning-based architectures. The best classification performance on this type of images are achieved with our 
proposed CNN model which are trained on colon’s wall images.

In the cross-sample case, where generalization to unseen subjects is not an issue, Deep learning gave a per-
formance of 99.93% of correct classification. Similar to the cross-sample, in the cross-subject approach where 
classification on un-seen objects is an issue, our proposed CNN method showed a performance of 98.49% of cor-
rect classification. These are usual order of magnitude of performance obtained with nowadays machine learning 
approaches when vast data sets are available, but this can be considered as excellent performance indeed here 
since we worked with the typical small data sets available in preclinical studies.

This work corresponds to the first fully automated classification algorithm for mice colon’s wall images 
reported in the literature. Similar works were carried on the human colon’s wall with the same imaging system. 
The comparison of the closest work14 with our algorithm shows a comfortable margin of a 14% of accuracy. This 
is an interesting result which demonstrates that in the perspective of machine learning, there is no guarantee of 
translational research between human and animal. Also, a novel unsupervised sampling strategy based on the 
specific similarities of images in the acquisition of images with endomicroscopy in the colon has been designed. 
The interest of this sampling strategy has been demonstrated in terms of amount of data required in the training 
data sets to reach a plateau of performance. However, the performance of this sampling strategy is lower than 
brute forces classical approaches. It would be possible to improve the metric of similarity used to select the images 
in the training data sets automatically. This was based on first-order statistics in this study, but other approaches 
could be used to include more dynamical information. However, due to the multi-scale sources of temporal noise 
(movement of the probes35, passing of unexpected items between probe and tissues, biological movement,etc.) it 
would be an open question to determine a reasonable time scale for this smoothing.

Our clustering method is somewhat related to active learning, where the agent requests feedback on data 
from a user. The comparison is a little bit a stretch, as no new data is collected from decisions by an agent. In our 
current implementation, the dataset stays stable, and only a subset is actively chosen.

However, we plan to investigate active learning as future work, where a classifier is trained on a subject fol-
lowed by continued examination of the subject on new samples. Here, an agent could quickly provide decisions 
on (i) which samples should be added to the training set, and (ii) into which direction the user should emphasize 
its search in order to optimize performance and discovery. This leads to an exploitation/exploration trade-off 
known from Reinforcement learning.

Direct perspectives of other sampling strategies are possible. It would now be possible to apply the classifica-
tion scheme developed here to produce a score on individual mice quantifying the number of images with the 
disease. Such a quantification could then be compared with clinical scores realized on other types of imaging 
systems in a multimodal perspective such as the one recently shown with magnetic resonance imaging36. Also, the 
machine learning approach presented with a discussion on the different training strategies could be transposed 
to other bioimaging problems. In confocal endomicroscopy, this includes, for instance, the characterization of 
other colon’s diseases observed in confocal microscopy37 or other parts of the digestive system38 or also to other 
organs39 which have received interest and could benefit from machine learning approaches to perform automated 
characterization of tissues.
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