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Incidence of cardiac arrhythmias increases significantly with age. In order to

effectively stratify arrhythmic risk in the aging population it is crucial to elucidate

the relevant underlying molecular mechanisms. The changes underlying age-related

electrophysiological disruption appear to be closely associated with mitochondrial

dysfunction. Thus, the present review examines the mechanisms by which age-related

mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via

alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions,

cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients’ mitochondrial

function status permits application of appropriate anti-arrhythmic therapies. Here, we

discuss novel potential anti-arrhythmic pharmacological interventions that specifically

target upstream mitochondrial function and hence ameliorates the need for therapies

targeting downstream changes which have constituted traditional antiarrhythmic therapy.
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INTRODUCTION

Aging is the progressive decline in the fitness of an organism due to cumulative organ-specific
physiological deterioration (1, 2). The advancement of modern medicine is thus reflected in
increasing human life expectancy (3). However, an aging population offers novel medical challenges
with increasing prevalence of a number of conditions including cardiovascular, oncological, and
neurological diseases. The incidence of cardiovascular diseases increases exponentially in the
elderly population (4, 5). In the aging population, cardiovascular diseases are the leading cause
of morbidity and mortality (3, 5, 6). Thus, cardiovascular diseases have a prevalence of 82.6 million
(36.2%) in the United States (4) carrying a greater financial burden than any other group of diseases
including cancer and benign neoplasms (4). In 2007, 33.6% of all deaths (∼814,000 people) in the
United States had cardiovascular disease as the underlying cause of death (4). It is estimated that
eliminating mortality from cardiovascular diseases would add between 5.5 and 7 years to mean life
expectancy (4, 7). As the aging population continues to increase, with the number of elderly people
predicted to double in the next 25 years in the United States age related cardiovascular diseases will
continue to represent a major public health concern (5, 8). As such, it is increasingly important to
be able to stratify risk of cardiovascular diseases by age and understand their underlying age-related
molecular mechanisms in order to develop effective pharmacological therapies.
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Within cardiovascular diseases, cardiac arrhythmias arise due
to disruption in the orderly sequence of cardiomyocyte action
potential activation and recovery through successive regions of
the myocardium compromising cardiac function (9, 10). Of atrial
arrhythmias, atrial fibrillation (AF) is the most common type.
It is associated with major morbidity by increasing the risk of
stroke and heart failure, as well as all-cause mortality (11–13).
Ventricular arrhythmias such as ventricular tachycardia often
degenerating into ventricular fibrillation (VF) are also a major
public health concern. They constitute the primary cause of
sudden cardiac death (SCD), which accounts for 4–5 million
deaths/year worldwide (14) representing over 5% of overall
mortality (15).

Incidence of cardiac rhythm abnormalities increases
exponentially with age (6, 16, 17). Hence, incidence of AF in
the general population increases 23-fold from the 20–24 to the
55–59 years age group (18, 19) and reaches a prevalence of over
13% in the >80 years age group (20). Similarly, incidence of VF
in the general population increases 18-fold from the 20–24 to the
55–59 years age group (21).

Primary electrical abnormalities due to congenital
channelopathies represent an important cause of arrhythmias
and SCD (15, 22, 23). These include long QT syndrome 3
(LQT3) arising from a gain-of-function mutation in the cardiac
sodium NaV1.5 channel gene SCN5A, Brugada Syndrome (BrS)
arising from a loss-of-function mutation in the SCN5A gene,
and catecholaminergic polymorphic ventricular tachycardia
(CPVT) arising from a gain-of-function mutation in RyR2 gene
or loss-of-function mutation in CASQ2 gene encoding cardiac
calcium homeostasis proteins (23, 24). Proarrhythmic inherited
channelopathies demonstrate how each component of the cardiac
electrophysiological system contributes to arrhythmogenesis.
Thus, studying those channelopathies has been crucial to
elucidating the mechanisms underlying arrhythmogenesis in the
general and aging population.

Interestingly, arrhythmic risk in individuals with many
inherited channelopathies, such as BrS and LQT3, increases
markedly with age, despite these individuals carrying the
proarrhythmic mutation from birth (25). For example, LQT3
patients show significantly increased arrhythmic risk after the
40 years of age (26, 27). In CPVT however, patients are usually
diagnosed in the first or second decade of life with the mean
age of onset of symptoms, usually a syncopal episode, is between
age seven and 12 years (28). Therefore, select channelopathies
demonstrate an excellent paradigm to study the effects of age-
related molecular changes on susceptible hearts with inherent
proarrhythmic tendency. This will elucidate the molecular
mechanisms underlying proarrhythmic changes with age and
hence offer novel anti-arrhythmic pharmacological targets.

AGING AND ENERGETIC DYSFUNCTION

It has long been established that central to the aging process
of any organ is energetic dysfunction giving rise to free
radical reactive oxygen species (ROS) that cause damage to
cellular macromolecules, accumulation of this damage leads to
the physiological compromise seen in aging (5, 29). Current
evidence suggests that mitochondrial dysregulation is the cause

and primary target of energetic dysfunction and free radical
production (5, 30). Thus, transgenic mice overexpressing the
cellular antioxidant catalase targeted to the mitochondria had
a reduced ROS-induced damage of the mitochondria and
significantly increased lifespan (31).

A clear link exists between aging and mitochondrial
dysfunction, occurring through various mechanism which
include mitochondrial DNA damage, clonal expansion of
deleterious mutations in mitochondrial DNA and deficiencies
in the enzymes of the mitochondrial respiratory chain,
such as cytochrome-c-oxidase (32–36). This phenomenon of
aging driving mitochondrial genetic instability has thus been
observed not just in humans but several other mammalian
species, including in mice, rats, and rhesus monkeys (37–
39). The link between aging and mitochondrial dysfunction
appears to be bidirectional. For example, increased levels of
mitochondrial DNA mutations are associated with a premature
aging syndrome in mice (34, 40). Therefore, it is apparent
that understanding the biology of mitochondrial instability via
mitochondrial DNA mutations and enzyme deficiencies is key
to understanding cellular- and tissue-level changes that underlie
aging-related pathology.

As such, damaged and dysfunctional mitochondria result
in production of high levels of ROS, disrupted mitochondrial
membrane potentials, reduced ATP production capacity, and
altered cellular redox potential (5, 41–44). The consequent
aberrant mitochondrial signaling predisposes the myocardium to
arrhythmias (9, 43).

This is demonstrated clinically and experimentally.
Mitochondria from human AF patients are abnormal in
terms of morphology and function and show DNA damage
(45–48). Abnormal mitochondria are also seen in animal
models of AF and ventricular arrhythmia (49–51). Additionally,
inherited errors of metabolism involving mitochondria such
as Kearns-Sayre syndrome manifest symptomatically as fatal
rhythm abnormalities (52). Detailed electrophysiological studies
in peroxisome proliferator-activated receptor gamma coactivator
1-alpha (Pgc-1α) and Pgc-1β knockout models of mitochondrial
dysfunction yield similar overt arrhythmic phenotypes whilst also
yielding information on the ionic basis of these arrhythmias. For
example, Pgc-1β-/- mice show decreased atrial and ventricular
conduction velocity, which may be attributed to reduced voltage
gated inward Na+ currents (53–60).

The present review separates the pro-arrhythmic molecular
changes in aging into multiple pathways. However, this is largely
to make the topic more accessible and easier to conceptualize.
In reality these pathways are dependent upon and interact
with each other through complex feedback loops. Physiological
interactions which are important to the arrhythmic process are
also highlighted.

MICE MODELS

Animal models have been pivotal in studying arrhythmias,
permitting experimentation on the cellular and system level.
Mice, often with electrophysiologically stable 129/Sv or C57BL/6
genetic backgrounds, have thus far represented the main
transgenic system for modeling arrhythmic syndromes (61,
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62) typically via well-defined mutations strategically positioned
to reflect the genotypes associated with these syndromes and
reliably reflecting their phenotype (9, 23, 63). From a practical
aspect, mice are inexpensive, easily maintained, and reproduce
rapidly thus allowing provision of aged mice over relatively short
periods (25). Mice also reflect the human aging process such
that they complete their growth before reproduction commences
(1, 64). Furthermore, confounding risk factors which influence
cardiovascular health (e.g., smoking and hypercholesterolaemia)
are absent in murine models and as such their hearts reflect
intrinsic cardiac aging (1). Together, these features of murine
models make them valuable in the study of the mechanisms
underlying cardiac aging.

Despite differences with regards to heart rate, heart size,
as well as calcium- and potassium-mediated repolarization
currents, which limits their ability to model conditions
such as LQT1 and LQT2, murine and human hearts show
significant structural and physiological resemblances (65).
Structural similarities include similar conducting, sinoatrial and
atrioventricular nodes, His-Purkinje systems and contracting
atrial and ventricular chambers (25, 65, 66). Important
electrophysiological similarities exist especially with respect to
their action potential (AP) waveforms where they both share the
same role of the inward sodium current in mediating phase 0
depolarization (25, 65) as well as similar transmural differences
in AP duration and AP conduction velocities (65, 67, 68). These
similarities are critical in permitting mice to effectively model
LQT3 and BrS (9).

MITOCHONDRIAL DYSFUNCTION AND
DISRUPTED SURFACE MEMBRANE IONIC
CURRENTS

Mitochondrial Dysfunction and Sodium
Currents
ROS promote both arrhythmic triggers and substrates and hence
exert numerous proarrhythmic actions through modulation
of intracellular and cell surface ion channels. Firstly, ROS
modifies the expression and function of voltage gated Na+

carrying channel, NaV1.5, causing a decrease in the fast
depolarizing component of the sodium current (INa) but
an increase in the late sodium current (INa−L) (9, 69–72).
Thus, in human embryonic kidney (HEK) cells and C57BL/6
murine cardiomyocytes, application of cytosolic NADH and
mitochondrial ROS-generating molecules, such as the complex
III inhibitor Anti-mycin A, reduced INa (69, 70). However, this
effect was blocked by application of mitoTEMPO a specific
scavenger of mitochondrial superoxide (69, 70). In murine hearts
modeling mitochondrial dysfunction, increased age and Pgc-
1β-/- genotype interacted to decrease atrial NaV1.5 channel
expression (36). Furthermore, the A280V mutation in glycerol-
3-phosphate dehydrogenase 1-like (GPD1-L) protein, which
causes Brugada syndrome, reduces INa via increasing cytosolic
NADH and mitochondrial ROS levels (73, 74). Additionally,
through oxidation of the Ca2+-/calmodulin-dependent kinase

II (CaMKII), ROS has also been shown to enhance INa−L (75–
78). Together, these alterations in the cardiomyocyte sodium
current promote arrhythmogenesis through increased triggered
activity and arrhythmic substrate. These findings are summarized
in Figure 1.

Increased INa−L prolongs membrane repolarization and as
such allows the development of early-after depolarizations
(EADs) through reactivation of voltage-gated Ca2+ channels
(VGCC), and in turn, EADs can trigger arrhythmic events
(79, 80). In addition, repolarization defects caused by increased
INa−L promote spatiotemporal heterogeneity and transmural
dispersion of repolarization arrhythmic substrate (79, 80).
The changes in INa have profound consequences on ordered
action potential propagation through the myocardium. Cardiac
conduction velocity is largely determined by the maximum
rate of membrane depolarization (dV/dt)max, which in turn
is determined by INa and conducted by the NaV1.5 channel.
Reduced conduction velocity forms the arrhythmic substrate
associated with re-entrant arrhythmias (81, 82). Interestingly,
these findings may explain the change in phenotype with age
in certain channelopathies. For example, an overlap syndrome
in aging LQT3 patients describes the emergence of Brugada
syndrome patterns on surface ECGs in addition to the
prolonged QT interval indicative of LQT3 (83, 84). Similarly,
electrophysiological studies on murine LQT3 models report
decreased conduction velocity in aged, but not young, hearts
(85, 86). Therefore, age-related mitochondrial dysfunction and
ROS generation may account for the activation abnormalities
that appear later in life in LQT3 patients and associated with
increased arrhythmic risk. Another important consideration is
the close link between intracellular Na+ and Ca2+ regulation.
Hence, the increase in INa−L causing increased [Na+]i has
been shown to increase [Ca2+]i largely through reversing the
activity of the sodium-calcium exchanger (NCX) (87, 88). In
turn, as discussed later, elevated [Ca2+]i promotes proarrhythmic
electrophysiological changes including inhibition of INa (89, 90).

Mitochondrial Dysfunction and Gap
Junctions
Cardiac conduction velocity is also influenced by the axial
resistance (ra) to local current flow between cells as determined
by intercellular gap junction channels formed by connexin (Cx)
proteins (82, 91). ACE8/8 mice are produced by placing the
angiotensin-converting enzyme (ACE) gene under the control of
the α-myosin heavy chain promoter using targeted homologous
recombination. This results in significantly increased cardiac
ACE and angiotensin II levels. Studies on ACE8/8 mice
demonstrated that increased ROS production through renin-
angiotensin system (RAS) activation, increased expression
and activation of the redox-sensitive tyrosine kinase cSrc in
ventricular cardiomyocytes resulting in reduced Cx43 function
and expression (74, 92, 93). This reduced conduction velocity
and increased risk of ventricular arrhythmias (74, 94). Similarly,
Pgc-1β-/- transgenic mice reflecting mitochondrial dysfunction
showed reduced atrial Cx protein expression (36). The latter
finding may represent a direct consequence of ROS induced
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FIGURE 1 | (A) Summarizes the interacting mechanisms by which mitochondrial dysfunction promotes arrhythmogenesis. Mitochondrial dysfunction driven by

mitochondrial DNA damage and defective electron transport chain (ETC) enzymes results in reduced ATP and increased reactive oxygen species (ROS) production. In

turn, this modifies function and/or expression of sarcolemmal ATP-sensitive K+ channels (sarcKATP), gap junction proteins (Cx43), cardiac sodium channels (NaV1.5),

cardiac L-type voltage gated Ca2+ channels (CaV1.2), and cardiac voltage gated potassium channels (KV ). Moreover, ROS modify endoplasmic reticulum Ca2+

homeostasis proteins ryanodine receptor (RyR) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) resulting in elevated cellular Ca2+ levels which drives the

depolarizing Na+-Ca2+ exchanger (NCX). Together, these changes increase arrhythmic triggers and substrates. APD/ERP: action potential duration/effective refractory

period ratios; DADs: delayed after-depolarizations; EADs: early after-depolarizations; TDR: transmural dispersion of repolarization. (B) Summarizes mitochondrial Ca2+

(Continued)
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FIGURE 1 | handling and its relation to mitochondrial dysfunction and elevated cytosolic Ca2+. Ca2+ enters the mitochondria via voltage dependent anion channels

(VDAC) and mitochondrial calcium uniporter (MCU). This is driven by the negative mitochondrial membrane potential (∼−180mV). Increased cytosolic Ca2+ through

mechanisms demonstrated in (A) will result in increased uptake and concentration of mitochondrial Ca2+. Mitochondrial Ca2+ overload contributes to mitochondrial

dysfunction. Firstly, Ca2+ stimulation of the Krebs cycle and the oxidative phosphorylation electron transport chain increasing electron leakage and ROS by-products.

Secondly, Ca2+-cardiolipin complexation disrupting mitochondrial lipid and protein arrangement causing proteins such as cytochrome c dislocation and inhibition of

the electron transport chain and ROS production. Thirdly, through activation of nitric oxide synthase generating NO radicals which inhibit components of the ETC and

promote ROS production. Increased ROS and cytosolic Ca2+ also inhibit mitochondrial permeability transition pores (mPTP) impairing Ca2+ uptake and contributing

to increased cytosolic Ca2+. Ca2+ is also extruded through the hydrogen-calcium exchanger (HCX) and the mitochondrial sodium-calcium exchanger (NCX).

pathophysiology, although it may also be linked to the increased
cardiac fibrosis which is seen in these mice, and discussed later in
this review.

Mitochondrial Dysfunction and Potassium
Currents
Voltage gated potassium (KV) channels are regulated by cellular
metabolism. KV channels give rise to the transient outward K+

current (Ito) underlying phase 1 repolarization, and the delayed
rectifier K+ current (IK) underlying repolarization during phases
2 and 3 of the action potential (95). Electrophysiological
studies on diabetic rats have demonstrated repolarization
abnormalities resulting from downregulation KV currents (96,
97). Experimentally, increased ROS has been shown to reduce
Ito and IK (including IKr, IKs and IKur) currents (74, 98,
99). This inhibition can be reversed through application of
cellular antioxidant glutathione (74, 97, 100). ROS reduces
KV currents through reducing channel mRNA and protein
expression levels (74, 99, 101). Peroxisome proliferator-activated
receptor α (PPARα) upregulation during metabolic dysfunction
has specifically been associated with reduced transcription
of KV channels (102). Additionally, ROS modulates KV

channel function by altering their phosphorylation status
particularly acting through PKC and PKA (74, 103). Reduced
KV currents results in repolarization abnormalities resulting
in prolonged action potential duration (APD) promoting
EAD arrhythmic triggers (9, 95). Furthermore, altered APD/
effective refractory period (ERP) ratios result in spatiotemporal
heterogeneity in activation and repolarization hence furnishing
an arrhythmic substrate for re-entry arrhythmias (9, 81,
95).

Another group of K+ channels conduct an inwardly rectifying
K+ current (Kir). These include sarcolemmal ATP-sensitive
K+ channels. (sarcKATP) predominantly formed by Kir6.2 and
SUR2A and are important in the electrophysiological response to
stresses such as ischemia (104). These are activated by a reduced
ATP/ADP ratio during metabolic stress (105). The high density
of sarcKATP channels means that only 1% of those channels need
to open to significantly shorten the APD and hence the ERP and
action potential wavelength (9, 106). Furthermore, opening of a
large number of channels drives the membrane potential toward
EK causing the cardiomyocyte to become hyperpolarized and
unexcitable (107). Thus, opening of sarcKATP channels generates
a “current sink” which can slow or block action potential
propagation (108). Together, these changes promote re-entrant
arrhythmias (9, 106, 108, 109).

MITOCHONDRIAL DYSFUNCTION AND
DISRUPTED CALCIUM HOMEOSTASIS

With a 10,000-fold transmembrane gradient, Ca2+ is the most
tightly regulated intracellular ion being utilized virtually
ubiquitously in cellular signaling pathways (110, 111).
Cardiomyocyte Ca2+ homeostasis is heavily influenced by
cellular metabolism with increased ROS levels increasing
cytosolic Ca2+ concentration ([Ca2+]i) (74, 112). These findings
are summarized in Figure 1. The addition of H2O2 generating
ROS in guinea pig ventricular myocytes resulted in increased
current through the L-type voltage gated Ca2+ channels (ICaL)
and hence significantly increased [Ca2+]i (113). This, however,
was reversed by application of the mitochondrial inhibitor
myxothiazol or the L-type channel inhibitor nisoldipine (113).
CAMKII activated by ROS has been shown to increase ICaL
via phosphorylation of the CaV1.2 subunit (114) and similar
accentuating effects on ICaL were induced by oxidized LDL
in rat ventricular cardiomyocytes (115). Furthermore, L-type
channel appear to undergo direct redox modification and
glutathionylation at cysteine residues in the alpha interacting
domain (116, 117). Interestingly, the effect of ROS accentuating
ICaL has been challenged by other findings obtained under
different experimental conditions which reported reduced ICaL
following oxidative stress (118).

In addition to sarcolemmal Ca2+ entry, ROS modulates
intracellular Ca2+ handling proteins. Both canine and rat
cardiomyocytes show increased opening of RyR2 in response
to elevated ROS which triggers RyR2 Ca2+ sparks and
accentuated Ca2+ efflux from the sarcoplasmic reticulum
(119–121). Similarly, old rabbit hearts had more depolarized
mitochondria membrane potential and increased rate of ROS
production associated with increased RyR activity and Ca2+

leak which was accentuated under conditions of β-adrenergic
stimulation (122). Treatment with antioxidant dithiothreitol
reduced RyR-mediated SR Ca2+ leak to levels of young hearts
highlighting the role of thiol-oxidation of RyR in underlying
pathological SR Ca2+ release (122). This response also appears to
depend on calmodulin as a functional mediator of ROS-triggered
Ca2+ release (119). In contrast to RyR2, the sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) activity is reduced in response
to ROS (123, 124). SERCA inhibition by oxidative stress appears
to arise through multiple mechanisms including reduced ATP
supply (125), direct oxidation of thiol groups by ROS (123), and
CAMKII-dependent phosphorylation (74, 126). Interestingly,
adult rat ventricular myocytes expressing redox-insensitive
SERCA where C674 is replaced by serine (C674S) decreased
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basal SR calcium content, attenuated the rise in mitochondrial
Ca2+, and prevented cytochrome c release and apoptosis
(127). Furthermore, beyond ROS generation, dysfunctional
mitochondria contribute to disrupted Ca2+ homeostasis through
reduced Ca2+ storage capacity. Mitochondria function as an
important cellular Ca2+ store with Ca2+ ions entering the
inner mitochondrial membrane via the mitochondrial Ca2+

uniporter (MCU) (128). However, under conditions of metabolic
stress, mitochondrial Ca2+ handling is disrupted (101). This
results in increased size and frequency of cytosolic Ca2+

transients resulting in arrhythmogenic Ca2+ alternans (129).
For example, in rat ventricular myocytes, stress induced
by thoracic aortic banding enhanced mitochondrial Ca2+

accumulation and hence disrupted global Ca2+ handling,
increased spontaneous Ca2+ waves, shortened RyR refractoriness
and decreased SR Ca2+ content (130). These effects were
inhibited by MCU inhibitor Ru360 which normalized RyR
oxidation state, improved intracellular Ca2+ homeostasis and
reduced triggered activity (130). However, other studies have
produced contradicting evidence (130–133). In rabbit atrial
myocytes MCU inhibitor Ru360 increased the severity of
Ca2+ alternans whereas stimulation of Ca2+ uptake was
protective (133). In fact, diabetic cardiomyopathy has been
associated with abnormal mitochondrial Ca2+ handling with
altered MCU expression and reduced mitochondrial Ca2+ levels
(134, 135). As such, the mechanisms by which mitochondrial
dysfunction contributes to abnormal Ca2+ transients remain
controversial with further experiments required to clarify this
relationship particularly in the context of the pro-arrhythmic
aging heart.

Intriguingly, mitochondrial Ca2+ overload itself contributes
to mitochondrial dysfunction and ROS generation (136, 137).
This perpetuates a positive feedback cycle of ROS-induced Ca2+

overload, Ca2+ -induced ROS generation, and ROS-induced ROS
release (74, 138, 139). This occurs via multiple mechanisms.
Firstly, Ca2+ stimulation of the Krebs cycle and the electron
transport chain increasing electron leakage and ROS by-products
(140, 141). Secondly, Ca2+-cardiolipin complexation disrupting
mitochondrial lipid and protein arrangement causing proteins
such as cytochrome c dislocation and inhibition of the electron
transport chain and ROS production (142, 143). Thirdly, through
activation of nitric oxide synthase generating NO radicals which
itself has been shown to disrupt Ca2+ handling proteins (144,
145) but also to inhibit components of the respiratory chain and
promote ROS production (146, 147).

Therefore, age-related mitochondrial dysfunction results in
disrupted cellular Ca2+ handling causing elevated [Ca2+]i. The
pro-arrhythmic consequences of elevated [Ca2+]i are evident
in CPVT hearts occurring due to mutations in cellular Ca2+

handling components, typically RyR2 or calsequestrin (148–150).
This leads to potentially fatal ventricular arrhythmic episodes,
often biventricular or polymorphic ventricular tachycardia and
VF (151, 152). Interestingly, compared to aging mice where
mitochondrial dysfunction disrupts multiple aspects of Ca2+

homeostasis, 129/Sv mice modeling CPVT demonstrated that
altered function of only one of the Ca2+ handling proteins is
sufficient to result in the proarrhythmic phenotype (150, 153).

Disrupted cardiomyocyte Ca2+ homeostasis develops a
number of pro-arrhythmic pathways. Firstly, elevated [Ca2+]i
promotes the activity of the electrogenic NCX resulting in
the generation of delayed after-depolarizations (DAD) which
act as arrhythmic triggers (154, 155). As such, ROS causing
cytosolic Ca2+ overload has been shown to stimulate NCX
activity in guinea pig ventricular myocytes (112, 156). Secondly,
dysregulation of Ca2+ handling allows pathological Ca2+

cycling which has been associated with APD alternans and
spatiotemporal heterogeneities in repolarization (9, 157, 158).
Thirdly, cytosolic Ca2+ interacts with surface membrane NaV1.5
and Cx channels causing reduced conduction velocity. Thus,
Ca2+ regulates NaV1.5 and reduces INa through (1) directly
binding to the EF hand motif, (2) associating with calmodulin
and binding to the IQ domain, and (3) CAMKII-mediated
phosphorylation (89, 90, 159). Inhibition of Cx function occurs
through activating calcineurin-dependent Cx phosphorylation
(160). Finally, increased cytosolic Ca2+, through increased ROS
production, promotes tissue fibrosis which is associated with
slowed conduction velocity (161).

MITOCHONDRIAL DYSFUNCTION AND
CARDIAC FIBROSIS

Aging is associated with increased cardiac fibrosis. Histological
analysis of human hearts also demonstrates age-related
progressive increase in collagen content and myocardial fibrosis
(162, 163). Clinically, this is reflected in echocardiographic
studies in both males and females which showed increased
left ventricular wall thickness representing increased left
ventricular hypertrophy (LVH) with age even in the absence
of cardiovascular risk factors such as hypertension (5, 164). As
such, age-related myocardial fibrosis has been shown to reduce
ventricular elasticity, compromise left ventricular filling, and
cause diastolic dysfunction (164, 165). Similarly, experimental
mouse models also demonstrate increased collagen deposition
in the aging myocardium (166). Transgenic premature aging
(Polgm/m) mice show increased interstitial and subendocardial
fibrosis along with greater amyloid deposition, vacuolization of
cytoplasm and hyaline cytoplasmic change (5, 167).

Increased cardiac fibrosis with age reflects a disruption in
the equilibrium of extracellular matrix (ECM) synthesis and
degradation. ECM synthesis is stimulated by fibrogenic growth
factors, such as transforming growth factor (TGF)-β which
induce fibroblast production of matrix proteins and protease
inhibitors such as tissue inhibitors of metalloproteinases (TIMPs)
(168). However, ECM degradation is dependent on tumor
necrosis factor (TNF)-α and interleukin (IL)-1β stimulating
fibroblast production of matrix metalloproteinases (MMPs)
(168). Hence, reduced MMP expression and inhibited ECM
degradation appears to play a pivotal role in increased tissue
fibrosis. As such, aging in murine models was associated
with reduced MMP-1 and MMP-2 transcription and activity
(169, 170).

With age, elevated ROS generation increases TGF-β and its
downstream effector connective tissue growth factor (CTGF)
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(168). TGF-β in turn activates Smad2/3 signaling inducing
fibroblast proliferation, differentiation into myofibroblasts, and
the production of ECM components such as fibrillar collagen,
fibronectin, and proteoglycans (168, 171). This is supported
by studies in C57BL/6 mice which found increased cardiac
fibrosis under conditions of immune dysregulation and tissue
inflammation known to promote ROS production (172).
Additionally, mice overexpressing catalase targeted to the
mitochondria shoed reduced cardiomyocyte hypertrophy and
significantly diminished cardiac fibrosis (167). Similarly, knock-
out of SIRT3, which deacetylates the regulatory component of
the mitochondrial permeability transition pore (mPTP), resulted
in mitochondrial dysfunction, increased ROS production and
accelerated signs of cardiac hypertrophy and fibrosis (173).
Cardiac fibrosis also appears to be regulated by the renin-
angiotensin system (RAS) signaling (174, 175). Angiotensin II
(ANG II) activates the pro-fibrotic Smad2/3 signaling directly
by acting on the ANG II type 1 receptor (AT1) and indirectly
by promoting TGF-β production (168, 176). Furthermore, RAS
has been shown to increase ROS levels through mechanisms
including activation of NADPH oxidase (168, 177). ROS in turn
have been found to promote the pro-fibrotic effects of ANG II
which were suppressed through the application of antioxidants
and AT1 antagonist losartan (177). Consistent with this,
aged rat hearts demonstrate significantly increased angiotensin
converting enzyme (ACE) and ANG II concentrations (167, 178,
179). Hence, mice carrying a gain-of-function mutation in the
Ang II receptor type 1A developed early and progressive cardiac
fibrosis (180).

Clinical studies strongly associate fibrosis with increased
arrhythmic risk. For example, the origin of arrhythmia post-
myocardial infarction is often mapped to the fibrotic border of
the infarcted zone in patients undergoing ablation for recurrent
VT (181). Similarly, most cases of AF are thought to originate
from the atrial myocardial sleeve extending into the pulmonary
veins. Histological analysis of pulmonary veins of patients with
AF demonstrates increased myocardial content characterized
by severe hypertrophy and fibrosis (182). Isolated Langendorff-
perfused explanted human hearts with extensive infarction or
dilated cardiomyopathy demonstrated increased vulnerability to
triggering of VT due to cardiac fibrosis facilitating re-entry
mechanisms (183, 184). Correspondingly, aged (24 months)
Kunming mice had greater electrocardiographic abnormalities
and inducibility of AF compared to young (2 months) mice
which was associated to age-related increase in atrial fibrosis
(185). Furthermore, transgenic Mkk4 knockout mice had
dysregulated MMP function and upregulated TGF- β signaling
causing increased susceptibility to atrial tachyarrhythmias (186).
Importantly, these effects were more prominent in aged than
young mice (186).

Interestingly, despite the primary biophysical defect of NaV1.5
haploinsufficiency being present from birth, BrS symptoms occur
mainly in adulthood with mean age of SCD in BrS patients being
40 years (187, 188). The increased arrhythmogenicity later
in age has thus been attributed to age-related structural
changes primarily cardiac fibrosis (25, 188). Hence, old
Scn5a+/− BrS mice demonstrated reduced conduction

velocity and increased myocardial fibrosis compared to young
mice (189, 190).

Age-related cardiac fibrosis increases arrhythmic tendency
through a variety of mechanisms. Firstly, fibrosis causes slowed
cardiac conduction velocity (82). Fibrosis creates strands of
cardiomyocytes which are electrically isolated from each other
by collagenous septa (191). Thus, this forces the action potential
waves to follow a “zigzag” pattern, conducting circuitously from
one strand to the other resulting in slowed conduction velocity
(181, 192). Fibrosis also results in Cx-mediated cardiomyocyte-
fibroblast coupling which increases cardiomyocyte membrane
capacitance (Cm) slowing down action potential propagation
(193, 194). Additionally, fibrosis reduces myocyte-myocyte
coupling by decreasing Cx expression and promoting their
redistribution away from the intercalated discz and hence
increasing axial resistance resulting in slowed conduction
velocity (195–198). Secondly, spatial heterogeneity in cardiac
fibrosis and hence in compromised Cx function and altered ionic
currents, including reduced Na+ current density, promotes APD
alternans and dispersions of refractoriness causing unidirectional
conduction block arrhythmic substrate (199–202). Additionally,
patchy or interstitial fibrosis creates cardiomyocyte strands that
are electrically coupled to nonfibrotic regions. Hence, creating
a situation that reflects a 1 dimensional cable entering a 3
dimensional syncytium at which the interface acts as a “current
sink” generating a “current-sink mismatch” due to the unequal
transfer of depolarizing charge (191). Thus, if charge transfer
to the syncytium is insufficient to depolarize the syncytium
then action potential propagation fails (203). On the other
hand, conduction from the syncytium to the 1-dimensional cable
will succeed as the source-to-sink ratio is reversed. Therefore,
this establishes a unidirectional conduction block facilitating
arrhythmic re-entry circuits (191, 204).

TARGETED PHARMACOLOGICAL
THERAPY

Elucidation of the mechanisms by which age-related
mitochondrial dysfunction and ROS generation increases
arrhythmic risk offers a number of potential anti-arrhythmic
pharmacological targets. Some of these targeted therapies,
differentiated from non-targeted antioxidant therapies, are
highlighted in Table 1.

Antioxidant Therapy
Since mechanisms of ionic current dysregulation, disrupted
Ca2+ homeostasis, and increased fibrosis all occur downstream
of mitochondrial dysfunction, then it is likely that targeting
upstream mitochondrial dysfunction and ROS generation will
result in significant anti-arrhythmic effects.

Non-targeted Antioxidant Therapy
The first attempts to counteract oxidative damage in aging has
been with the administration of non-targeted antioxidants such
as vitamins E and C and β-carotene. While initial small studies
indicated some protective effects of non-targeted antioxidants
on cardiac function, meta-analysis of larger clinical randomized
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TABLE 1 | Potential targeted therapeutics which may alleviate arrhythmogenic

mitochondrial dysfunction.

Mitochondria-

targeted

pharmacological

therapy

Mechanism Therapeutic effect

Antioxidants

TPP+ conjugated

antioxidants

Highly lipophilic

antioxidants

conjugated to

strongly positive

cations accumulate in

mitochondria

Reduce ROS production

Reduce mitochondrial component

oxidation

Reduce ROS-induced apoptosis

and necrosis

Szeto-Schiller

peptides

Cationic

tetrapeptides,

accumulate in the

inner mitochondrial

membrane

Scavenge ROS

Reduce lipid peroxidation

Reduce Ca2+ induced

mitochondrial swelling

Reduce reperfusion injury

Modifiers of mitochondrial biogenesis

SIRT1 activators Upregulation of

SIRT1 transcription

Increasing PGC-1α expression

Antioxidant properties (see above)

Reduced NF-κB activation

Electrophysiological modifications:

Inhibition of INa−L, ICa−L

Reduction of intracellular

Ca2+ transients

Rapamycin Inhibition of mTOR

signaling

Reduced ROS production

Reduced cardiac hypertrophy

Normalization of age-related Ca2+

homeostasis disruption

Increased SERCA expression

Reduced RyR current amplitude

Increased mitophagy

PGC-1a, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; ROS,

reactive oxygen species; RyR, ryanodine receptor; SERCA, sarco-/endoplasmic reticulum

Ca2+-ATPase; TPP, triphenylalkylphosphonium ion.

controlled trials collectively involving tens of thousands of
patients found no significant positive effects of non-targeted
antioxidants on cardiovascular health or overall mortality (205–
207). This may be due to the types of antioxidants investigated by
clinical studies. For example, vitamin E has been shown to have
pro-oxidant effects (208). Endogenous non-targeted antioxidant
enzymes such as superoxide dismutase and catalase which were
used in experiments to support the use of antioxidant therapy
are not feasible in a clinical setting due to their size, rapid
degradation, and potential antigenicity (5).

The failure of non-targeted antioxidants in clinical studies
coupled to experimental findings that the source of ROS in
aging arises primarily from the mitochondria has motivated the
development of mitochondria-targeted antioxidants.

Triphenylalkylphosphonium Ion (TPP+)
Conjugated Antioxidants
The highly negative mitochondrial membrane potential
(150-180mV) has been utilized to target molecules to the
mitochondria. Thus, coupling lipophilic antioxidants to
strongly positive cations such as TPP+ increases accumulation

in the mitochondria by 100- to 1000-fold compared to the
cytosol (5). Such antioxidants include coenzyme Q (MitoQ),
plastoquinone (SkQ1), and piperidine nitroxide in combination
with triphenylphosphonium chloride (MitoTEMPO) (209, 210).
Experimental studies found that they significantly reduce
ROS generation, oxidation of mitochondrial components
such as cardiolipin, ROS-induced apoptosis and necrosis,
and prolonged lifespan of the fungus Podospora anserina,
the crustacean Ceriodaphnia affinis, Drosophila, and mice
models (210–212). Additionally, SkQ1 inhibited development of
age-related conditions including retinopathy and osteoporosis
in mammalian models of those conditions (210). In a rat
model of H2O2- and ischemia/reperfusion-induced cardias
arrhythmias, treatment with SkQ1 for 3 weeks abolished the
steady heart arrhythmia (213). Furthermore, experiments in a
guinea pig model of non-ischemic heart failure that recapitulates
features of prolonged QT interval and high incidence of
spontaneous arrhythmic SCD, MitoTEMPO normalized cellular
ROS levels, avoided and reversed heart failure, and prevented
SCD by decreasing dispersion of repolarization and ventricular
arrhythmias (214). So far, clinical trials are yet to investigate
the anti-arrhythmic effects of TPP+ conjugated antioxidants on
human patients.

Limitations of TPP+ conjugated antioxidants include their
reliance on the mitochondrial membrane potential gradient.
This gradient is disrupted with mitochondrial dysfunction in
aging, as well as a direct effect of the antioxidants at high
concentrations hence limiting their uptake and effectiveness (5,
211, 212). Additionally, at higher micromolar concentrations,
these molecules appear to show pro-oxidant rather than
antioxidant effects (212). It is thus important to clarify the
window between anti- and pro-oxidant concentrations before
proceeding to clinical trials.

Szeto-Schiller (SS) Peptides
SS peptides are synthetic aromatic-cationic tetrapeptides that
selectively target and concentrate in the inner mitochondrial
membrane (215, 216). Hence, in vitro experiments have
shown that SS peptides scavenge ROS including hydrogen
peroxide, hydroxyl radical, and peroxynitrite (215, 217). As
such, they prevent lipid peroxidation as well as Ca2+-mediated
mitochondrial swelling or reperfusion injury by inhibiting
mitochondrial permeability transition and cytochrome c release
(215, 216, 218, 219). In mouse models of ANG II-induced
cardiomyopathy and Gαq-overexpression induced heart failure,
SS peptide administration prevented mitochondrial dysfunction
and ROS generation, downregulated pro-oxidative pathways, and
reduced cardiac hypertrophy and fibrosis (220). Similarly, in a rat
model of ischemia-reperfusion injury, SS peptides significantly
reduced myocardial lipid peroxidation and infarct size as well as
reducing the frequency and severity of cardiac arrhythmias (221).

A significant advantage of SS peptides over MitoQ and SkQ1,
is that SS peptides do not depend on the mitochondrial
membrane potential gradient for accumulation in the
mitochondria as they have been shown to concentrate in
dysfunctional depolarized mitochondria (5, 215). Additionally,
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unlike most oligopeptides, SS peptides are water soluble and
have good transcellular permeability (215, 222).

Targeting Mitochondrial Biogenesis
SIRT1 Activators (Caloric Restriction Mimetics)
Caloric restriction (CR) has been identified as one of the most
potent interventions to improve health and slow down aging
(223). Though the beneficial effects of CR are likelymultifactorial,
the sirtuin family of NAD+-dependent histone deacetylases, of
which the predominant mammalian isoform is SIRT1, appear
to be responsible for a large number of those beneficial effects
(224, 225). SIRT1 acts through multiple pathways to regulate
inflammatory responses, cellular senescence and its associated
secretory phenotype, telomere attrition, and DNA damage
responses (161, 226). As such, aging and its relatedmitochondrial
dysfunction and ROS production are associated with decreased
SIRT1 expression and activity (227). Thus, expression of SIRT1
was induced in rats undergoing CR and in human cells exposed
to serum from CR rats, and in turn SIRT1 deacetylated the
DNA repair factor Ku70 and sequestered the proapoptotic
factor Bax away from mitochondria (224, 227). In mice, gain-
of-function mutation of SIRT1 improved endothelial function
through activating endothelial NO synthase (eNOS), preventing
ROS production, inhibiting NF-κB signaling by deacetylating
RelA/p65, and reducing the inflammatory response (228).
Similarly, other experiments replicated the positive effects of
SIRT1 activation including enhanced mitochondrial biogenesis
by inducing eNOS expression (229). Therefore, it is expected
that compounds capable of activating SIRT1 will recapitulate
the protective anti-aging effects of caloric restriction and
hence prolong life and improve cardiovascular health including
reduced arrhythmic risk. Resveratrol is one such compound
being investigated. Its presence in red wine is thought to account
for the cardiovascular protective effects of red wine drinking
particularly in southern France (230). Resveratrol induced
similar transcription profiles as SIRT1 and CR and promoted
the same protective effects in heart, skeletal muscle and brain
tissue in mice where it also prolonged lifespan and prevented
age-related cardiac dysfunction (231).

One of the main mechanisms through which SIRT1 acts
is through stimulating PGC-1α expression which acts as an
important regulator of mitochondria bioenergetics (232, 233). In
rats, resveratrol demonstrated significant antioxidant properties
in cultured aortic segments and endothelial cells through
reducing ROS production and damage by reducing H2O2 levels
and H2O2-mediated apoptosis, preventing UV-induced DNA
damage, as well as increasing expression of antioxidant enzymes
glutathione peroxidase, catalase, and heme oxygenase-1 (230).
Similar antioxidant effects were reported in experiments using
guinea pigs (234). Furthermore, it inhibited NF-κB activation
and reduced vascular tissue inflammation (235). As such,
it has been shown to block age-related cardiac hypertrophy
and fibrosis in animal models (173, 236, 237). Interestingly,
resveratrol has been suggested to normalize intracellular Ca2+

in a murine model of chronic diabetes through increasing
SERCA2a expression (238, 239). Moreover, resveratrol exerts
its antiarrhythmic effects on cardiac electrophysiology through

regulating a number of ionic currents including inhibition of
INa−L, inhibition of ICaL and reduction in the amplitude of
intracellular Ca2+ transients, (232, 237, 240, 241). Intriguingly,
resveratrol effects on repolarization currents appear more
complex with studies finding contradictory changes, nonetheless,
in all of those studies the change exerted antiarrhythmic effects
(232, 233, 241–243). Additionally, resveratrol promotes the
inotropic effect of sympathetic stimulation, without enhancing
their proarrhythmic effects and hence evading sinoatrial
tachycardia (244).

Therefore, in a rat model where ventricular arrhythmias
are enhanced via ischemia-reperfusion, application of
resveratrol significantly reduced the severity of ventricular
arrhythmia and mortality rate (245, 246). Similarly, in a rabbit
model of heart failure, inducibility of atrial fibrillation was
markedly reduced by treatment with resveratrol (237). These
antiarrhythmic properties have been demonstrated under a
number of different experimental models (232, 233, 240, 243)
confirming the potential of resveratrol to act as an effective
cardioprotective antiarrhythmic agent. While significant clinical
data regarding the protective effects of resveratrol, particularly
its antiarrhythmic potential, are yet to be obtained, initial clinical
trials focusing pharmacokinetics and metabolism of resveratrol
have found it to be safe and reasonably well-tolerated at doses of
up to 5 g/day (247).

Rapamycin and mTOR
In addition, mammalian target of rapamycin (mTOR) is an
important component of nutrient signaling pathways implicated
in the aging process (248). mTOR is a protein kinase that forms
the core of two protein complexes, mTOR complex 1 and mTOR
complex 2, which play an important role in aging through
regulation of a variety of cellular pathways controlling cell growth
and proliferation (249). Of those, complex 1 appears to be
more important in cardiac aging accelerating ribosomal synthesis
and cap-dependent translation through phosphorylation of
p70S6K (S6K1) and 4E binding protein 1, respectively (5, 249).
mTOR signaling is increased with age reflecting its role in the
aging mechanism but is normalized with caloric restriction in
mice (250).

Inhibition of mTOR signaling through rapamycin has been
shown to prolong lifespan in numerous animal models including
mice (251). In a murine model of load-induced cardiac
hypertrophy via aortic constriction, rapamycin application
suppressed S6K1 levels and prevented cardiac hypertrophy (252).
Furthermore, application of rapamycin following established
cardiac fibrosis improved ventricular function and reversed
cardiac fibrosis (253, 254). Similar results were replicated
clinically where patients who received rapamycin following
cardiac transplant had reduced cardiac hypertrophy and
improved cardiac function (255). Rapamycin has also been
shown to normalize age-related disruption in ion homeostasis
particularly of Ca2+. As such, rapamycin increased SERCA
expression, and reduced RyR current amplitude, elevation
in [Ca2+]i and activation of downstream Ca2+ pathways
such as mitogen-activated protein (MAP) kinases (253, 256,
257). Mitochondrial ROS production and pro-arrhythmic
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disturbances in Ca2+ homeostasis are also caused by age-related
decrease in mitochondrial autophagy (mitophagy) (258–260).
Autophagy is negatively regulated by mTOR. Hence enhancing
autophagy via Torin1 potent mTOR inhibitor in aged rabbit
hearts reduced the rate of ROS production and restored both
the depolarized mitochondrial membrane potential and defective
Ca2+ handling (261). Therefore, rapamycin pharmacological
inhibition of mTORmay offer feasible anti-aging and hence anti-
arrhythmic therapy. However, the anti-arrhythmic effects are yet
to be explored by laboratory and clinical studies.

CONCLUSION

Aging is a cardinal risk factor for arrhythmic incidence
in the general population and in individuals with inherited
channelopathies. Aging is closely related to mitochondrial
dysfunction which promotes arrhythmogenesis whereby it
increases arrhythmic triggers and substrates via modifying

sodium (NaV1.5) and potassium (KV, sarcKATP) ion channels,
gap junctions, Ca2+ homeostasis (CaV1.2, SERCA, RyR), and

tissue fibrosis. Hence, stratification using “mitochondrial health”
as a marker of arrhythmic risk such as through the utilization
of metabolomics to analyze biopsy samples allows identification
of vulnerable patients amenable to pharmacological therapy. As
such, a number of exciting pharmacological therapies targeting
mitochondrial dysfunction have been discussed including
targeted antioxidants (TPP+-conjugated antioxidants and Szeto-
Schiller peptides), SIRT1 activators (resveratrol), and mTOR
inhibitors (rapamycin).
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