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MOTIVATION Because they are easier tomeasure in high throughput, mRNA abundances are often used as
a proxy measurement for protein abundances. However, there is only a moderate correlation between the
two, and it is unclear to what extent this moderate correlation reflects post-transcriptional regulation and to
what extent it can be attributed to measurement error. Here, by analyzing samples with replicate pro-
teomes, we quantify the extent to which replicate measurements of the same proteins are correlated. We
rank proteins according to their reproducibility and show that more reproducibly measured proteins
have highermRNA-protein correlation, suggesting thatmeasurement error limitsmRNA-protein correlation.
SUMMARY
Large-scale studies of human proteomes have revealed only amoderate correlation betweenmRNA and pro-
tein abundances. It is unclear to what extent this moderate correlation reflects post-transcriptional regulation
and towhat extent it reflectsmeasurement error. Here, by analyzing replicate profiles of tumors and cell lines,
we show that there is considerable variation in the reproducibility of measurements of transcripts and pro-
teins from individual genes. Proteins with more reproducible measurements tend to have a higher mRNA-
protein correlation, suggesting that measurement reproducibility accounts for a substantial fraction of the
unexplained variation between mRNA and protein abundances. The reproducibility of individual proteins is
somewhat consistent across studies, and we exploit this to develop an aggregate reproducibility score
that explains a substantial amount of the variation in mRNA-protein correlations across multiple studies.
Finally, we show that pathways previously reported to have a higher-than-averagemRNA-protein correlation
may simply contain members that can be more reproducibly quantified.
INTRODUCTION

Proteins are the primary actors in our cells, responsible for

almost all biological activities. Therefore, understanding how

protein abundances vary between healthy and disease states

can provide an insight into how biological activities are altered

in disease conditions. Among patients with the same disease,

e.g., breast cancer, variation in protein abundances may explain

differences in survival outcomes (}Osz et al., 2021) and drug re-

sponses (Shenoy et al., 2020). Consequently, significant efforts

have been made recently to characterize proteomes across

large patient cohorts (Ellis et al., 2013). However, our ability to

quantify protein abundances at scale has lagged behind our abil-

ity to sequence genomes and quantify mRNA abundances.

Large-scale efforts to molecularly characterize healthy and dis-
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ease samples from humans have therefore primarily focused

on DNA sequence variation and transcriptomic variation.

As transcriptomes are easier to quantify than proteomes,

mRNA abundances are often used as a proxy for protein abun-

dances. However, the relationship between mRNA abundances

and protein abundances is complex and non-linear and varies

significantly from protein to protein. Consistent with this, large-

scale studies in humans and model organisms have revealed

that for most genes there is only a moderate correlation between

mRNA and protein abundances (Buccitelli and Selbach, 2020;

Vogel and Marcotte, 2012). We note that correlations between

mRNA and protein abundances can be calculated in two

different ways: across all proteins within a given sample (i.e., in

a given cell line, are the most abundant proteins also the most

abundant transcripts?) or for a single protein across multiple
ts Methods 2, 100288, September 19, 2022 ª 2022 The Authors. 1
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samples (i.e., do the samples with the highest levels of a specific

protein also have the highest number of transcripts coding for

that protein?) (Franks et al., 2017; Liu et al., 2016; Vogel andMar-

cotte, 2012). Here, we are concerned with variation across indi-

viduals, and so throughout when we discuss mRNA-protein cor-

relations, we are calculating the correlation between the protein

and transcript abundance for an individual protein across

samples.

Tumor samples in particular have been subject to transcrip-

tomic and proteomic profiling efforts, and these have provided

insight into how variation in mRNA abundances across individ-

uals is associated with variation in protein abundances across

the same individuals. These studies have reported an average

mRNA-protein correlation in the range of �0.2–0.5 (Mertins

et al., 2016; Zhang et al., 2014, 2016). This moderate correlation

between mRNA and protein abundances can be attributed to

both biological and technical factors. Major biological factors

that influencemRNA-protein correlation include translation rates

that vary across proteins and conditions, highly variable half-

lives for both proteins and mRNAs, and post-translational mod-

ifications that can alter protein stability and degradation (Bucci-

telli and Selbach, 2020).

Different proteins have been observed to have very different

mRNA-protein correlations, and pathway enrichment analyses

have identified specific functional groups with lower- or higher-

than-average mRNA-protein correlations. For instance, a num-

ber of metabolic pathways have been shown to have higher-

than average mRNA-protein correlations (Clark et al., 2019;

Huang et al., 2021; Jarnuczak et al., 2021; Mertins et al., 2016;

Zhang et al., 2014, 2016), suggesting limited post-transcriptional

regulation of these proteins. In contrast, subunits of large protein

complexes have been shown to have lower-than-average

mRNA-protein correlations, suggesting significant post-tran-

scriptional regulation (Gonçalves et al., 2017; Ryan et al., 2017;

Taggart et al., 2020; Wang et al., 2017; Wu et al., 2013). Another

factor that might influence mRNA-protein correlations across

samples is the intrinsic variability in mRNA expression. mRNAs

that do not vary across samples, such as those whose expres-

sion is usually tightly regulated, will not correlate with their corre-

sponding proteins because variation is essential to observe cor-

relation. As we focus our analysis on tumor profiles, where

extensive copy-number alterations result in significant variation

in mRNA abundances, this issue is a smaller concern.

Our technical ability to accurately and reproducibly quantify

both mRNAs and proteins is potentially a major factor that influ-

ences the mRNA-protein correlation. If the error in our measure-

ments is large, we would expect this error to reduce the correla-

tion between mRNA and protein even in the absence of the

biological factors outlined above. A number of studies have

separately assessed the reproducibility of either mRNA (’t

Hoen et al., 2013; Marioni et al., 2008; SEQC/MAQC-III Con-

sortium, 2014) or proteomic (Casey et al., 2017; Tabb et al.,

2010) profiling approaches. Others have explored howmeasure-

ment errors in mRNA or proteomic profiling can influence the re-

ported correlation between mRNA and protein abundances

within sample correlations (across all proteins within a single

sample/cell line) rather than across samples (for individual pro-

teins across many samples) (Csárdi et al., 2015; Li et al., 2014).
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Here, we analyze studies of tumors and cancer cell lines with

replicate proteomic profiles in order to assess the impact of

measurement reproducibility on mRNA-protein correlation that

can be observed for individual proteins across samples.

RESULTS

A standardized pipeline reveals differences in the
mRNA-protein correlation across studies
The average mRNA-protein correlation reported for different tu-

mor proteomic profiling efforts varies substantially across

studies—ranging from 0.23 in an early proteomic study of colo-

rectal cancer (Zhang et al., 2014) to 0.53 in a recent study of

lung adenocarcinoma (Gillette et al., 2020) (Table 1). However,

it is not meaningful to directly compare the reported correlations

because the methods used to quantify the mRNA-protein corre-

lation have varied across studies—different studies have used

different summary statistics (mean versus median), different cor-

relation metrics (Pearson versus Spearman), and different

criteria for protein inclusion (e.g., no missing values, at least

30%measured values, only the 10%most variable proteins) (Ta-

ble 1). To enable a more direct comparison across studies, we

calculated the mRNA-protein correlation for thirteen proteomic

studies using a standardized pipeline. The datasets analyzed

comprise ten studies of tumor samples (Clark et al., 2019; Dou

et al., 2020; Gillette et al., 2020; Huang et al., 2021; Krug et al.,

2020; Mertins et al., 2016; Vasaikar et al., 2019; Wang et al.,

2021; Zhang et al., 2014, 2016), two studies of cancer cell lines

(Guo et al., 2019; Nusinow et al., 2020), and one study of healthy

tissues (Jiang et al., 2020). Within each study, we calculated the

median Spearman correlation between mRNA and protein for all

proteins that were measured in at least 80% of samples (STAR

Methods; Tables 1 and S1). Applying the same pipeline using

Pearson correlation rather than Spearman correlation revealed

broadly similar results (Table 1), and so throughout the remainder

of the paper, we focus our analysis on correlation calculated us-

ing Spearman correlation as it is themetric most commonly used

in proteogenomic studies (9 of 13 studies).

Across all studies, the median recalculated correlation was

0.43 with a maximum of 0.55 (lung adenocarcinoma [LUAD]; Gil-

lette et al., 2020) and a minimum of 0.21 (colorectal cancer

[CRC]; Zhang et al., 2014). In some instances, the recalculated

correlation was similar to that originally reported, but in others

there was a substantial difference. For example, the correlation

recalculated for endometrial cancer (0.48) was the same as orig-

inally reported (Dou et al., 2020), while the recalculated correla-

tion for colon cancer was much lower than that reported by the

authors (0.27 versus 0.48) (Vasaikar et al., 2019). This is because

the colon cancer study reported the mean mRNA-protein corre-

lation for only the 10%most variable proteins rather than the full

set of proteins. These highly variable proteins have higher than

average mRNA-protein correlations.

More recent studies appear to have higher mRNA-protein cor-

relations, e.g., we observe a mean of 0.49 for studies published

after 2019 versus 0.35 for studies published in 2016 or earlier

(Table 1). This cannot simply be attributed to differences in the

cancer types studied in different years, as the two cancer types

profiled twice (colon and breast) see an improvement from the



Table 1. Analysis of mRNA-protein correlation using a standardized pipeline

Data

Published

year

Reported

correlation

Protein inclusion criterion in

reported correlation

Computed median

Spearman correlation

Computed median

Pearson correlation

GTEx 32 healthy tissues

(GTEx)

2020 0.46 <5 tissues with missing values for

both protein and RNA measurements

0.51 0.59

Cancer Cell Line

Encyclopaedia (CCLE)

2020 0.48 quantified in at least one ten-plex

(9 cell lines)

0.46 0.48

NCI-60 cancer cell lines

(NCI60)

2019 not reported – 0.36 0.40

Glioblastoma (GBM) 2021 not reported – 0.50 0.51

Head and neck squamous

cell

carcinoma (HNSCC)

2021 0.52 <50% missing values 0.54 0.56

Lung adenocarcinoma

(LUAD)

2020 0.53 <50% missing values 0.55 0.56

Endometrial cancer (EC) 2020 0.48 contain mRNA and protein

measurements across all patients

0.48 0.51

Breast cancer (BrCa 2020) 2020 0.41 contain mRNA and protein

measurements (proteins

<70% missing values)

0.44 0.43

Clear cell renal carcinoma

(ccRCC)

2019 0.43 contain mRNA and protein

measurements across all patients

0.41 0.42

Colon cancer (colon) 2019 0.48 top 10% most variably expressed

proteins quantified in both platforms

0.27 0.28

Ovarian cancer (ovarian) 2016 0.45 contain mRNA and protein

measurements across all patients

0.41 0.41

Breast cancer (BrCa 2016) 2016 0.39 contain mRNA and protein measurements

across all patients passing quality control

checks.

0.42 0.42

Colon and rectal cancer

(CRC 2014)

2014 0.23 protein measurement with average spectral

count across all patients R1.4

0.21 0.22
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earlier studies (Table 1). This would suggest that technical and

experimental factors may influence the reported mRNA-protein

correlations and that improvements in either technology or

experimental protocols have resulted in improvedmRNA-protein

correlations over time.

The correlation across replicate proteomic profiles is
only moderate
To assess the reproducibility of mass spectrometry-based pro-

teomic measurements, we analyzed three studies containing

replicate proteomic profiles: ovarian tumor samples (Zhang

et al., 2016), colon tumor samples (Vasaikar et al., 2019), and

cancer cell lines of mixed lineages from the Cancer Cell Line

Encyclopedia (CCLE) (Nusinow et al., 2020) (Figure 1A). The na-

ture of the replicates varies across the different studies: for

ovarian cancer, the same tumor sample was profiled in two

different laboratories, for the cancer cell lines, biological repli-

cates were performed within the same lab 1 year apart, while

for colon cancer, the same tumor samples were profiled with

two different mass spectrometry (MS) techniques, i.e., isotope-

based protein quantification (TMT-10) and label-free spectral

counting MS. Thus, there is diversity in the replicate proteomic

profiles in terms of sample types (tumor samples and cancer

cell lines), sites, and techniques used to quantify the proteins.
Many biological factors that influence mRNA-protein corre-

lation, such as post-transcriptional regulation, are not relevant

in the case of replicate measurements of proteins, and so we

expected the replicate proteomic profiles to be more highly

correlated than mRNA and protein profiles. This was indeed

the case for all studies. The median protein-protein reproduc-

ibility for the replicate proteomic profiles from the CCLE data-

set was 0.72 (Figure 1B; Table S2), whereas the median

mRNA-protein correlation was only 0.48 (Table 1). The median

protein-protein reproducibility for the replicate proteomic pro-

files of ovarian tumors was 0.57 (Figure 1B), which is higher

than the median mRNA-protein correlation of 0.41 (Table 1).

The replicate protein-protein reproducibility for the colon study

(median 0.28) was much lower than that observed for the other

studies. However, it was still higher than the median-calcu-

lated mRNA-protein correlation (0.21). One reason for the co-

lon study to have a low median protein-protein reproducibility

is that one of the two replicate proteomic profiles is quantified

using label-free/spectral counting MS, which is not as accu-

rate as the stable isotope-based protein quantification

methods (Liu et al., 2016). Overall, we can conclude that

although protein-protein reproducibility is consistently higher

than mRNA-protein correlations, the protein-protein reproduc-

ibility is still only moderate.
Cell Reports Methods 2, 100288, September 19, 2022 3
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Figure 1. Protein-protein reproducibility across replicates is moderate and variable

(A) Overview of the replicates available for the three different proteomic studies.

(B) For each study, we calculate the Spearman correlation for individual proteins across the proteomic replicates. The distribution of the protein-protein

reproducibility is shown in the histogram for all measured proteins. For each study, the black dashed line represents the median.
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Proteins with higher reproducibility have higher mRNA-
protein correlation
The moderate correlations reported between mRNA and protein

abundances have been attributed to a variety of biological fac-

tors, including post-transcriptional regulation, varying translation

rates, and varying degradation rates (Buccitelli and Selbach,

2020; Payne, 2015; Vogel and Marcotte, 2012). However, our

observation that some proteins can be quantified more repro-

ducibly than others suggests that noise in quantification may

also be a major factor. If this is the case, we would expect that

proteins that can be more reproducibly quantified will have a

higher mRNA-protein correlation. To assess this, for each study

we used the replicate proteomic profiles to stratify the proteins

into deciles, ranging from the 10% of proteins with the lowest

protein-protein reproducibility to the 10% with the highest pro-

tein-protein reproducibility (STAR Methods). We then calculated

the mRNA-protein correlation for all of the proteins within each

decile. We found, for all three studies, that the median mRNA-

protein correlation increases with protein-protein reproducibility

(Figure 2). The colon cancer study shows a difference in the me-

dian mRNA-protein correlation of 0.33 between the first and last

deciles of protein reproducibility. Similarly, ovarian cancer data

show a difference of 0.35, and the CCLE data show a difference
4 Cell Reports Methods 2, 100288, September 19, 2022
of 0.37. This indicates that the reproducibility of proteomic mea-

surements has a major impact on the calculated mRNA-protein

correlation. We used a linear regression model to understand

how much of the variation in mRNA-protein correlation can be

explained by variation in protein-protein reproducibility and

found that it explains approximately 14%, 17%, and 23% in

the ovarian, CCLE, and colon studies, respectively (STAR

Methods; Figure 2 and S1A).

Previous work has identified protein complex membership as

the factor most predictive of variation in mRNA-protein correla-

tion, with subunits of protein complexes typically having lower-

than-average mRNA-protein correlation (Gonçalves et al.,

2017; Ryan et al., 2017). Using the same linear modeling

approach as above, we found that protein complex membership

explains approximately 3%, 8%, and 6.7% of the variation in the

ovarian, CCLE, and colon studies, respectively (Figure S1A). This

suggests that noise in the quantification of protein abundances

explains much more (on average �3 times) of the variance in

mRNA-protein correlation than the most predictive previously

identified factor. Combined, the protein-protein reproducibility

and protein complex membership features explained approxi-

mately 17%, 23%, and 26% of the variation in mRNA-protein

correlation in the ovarian, CCLE, and colon studies, respectively
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Figure 2. Proteins with higher reproducibility have higher mRNA-

protein correlation

(A–C) Boxplots showing the distribution of mRNA-protein correlation for pro-

teins binned according to their protein-protein reproducibility in the colon (A),

ovarian (B), and CCLE (C) studies. The total number of proteins considered for

each plot is indicated at the top right corner. The bins are deciles—each

containing �10% of the proteins. The decile is indicated on the x axis along

with the highest correlation between experimental replicates present within

that decile. For each box plot, the black central line represents the median, the

top and bottom lines represent the 1st and 3rd quartiles, and the whiskers

extend to 1.5 times the interquartile range past the box. Outliers are not shown.

The median of each decile is indicated above/below the black central line for

each box plot. The median mRNA-protein correlation across all proteins for

each study is indicated as a dotted gray line in each plot. The R2 obtained from

regressing the mRNA-protein correlation on protein-protein reproducibility is

in the bottom right corner.
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(Figure S1A). This is significantly more than protein complex

membership or protein-protein reproducibility alone (p < 0.001,

likelihood ratio test), suggesting that protein complex member-

ship and protein reproducibility independently contribute to the

variation in mRNA-protein correlation. This is also evident

when binning proteins into reproducibility deciles—although

proteins that are complex subunits are present in every decile,

they have consistently lower mRNA-protein correlations

(Figures S1B–S1D).

Proteins with high reproducibility in one study are also
highly reproducible in other studies
In addition to providing a summary of how reproducible the pro-

teinmeasurements from each study are on average, the replicate

profiles enable us to see which proteins are most reproducibly

quantified overall. In the CCLE study, the median correlation be-

tween replicate measurements calculated across all proteins

was 0.72, but this ranged from�0.2 to 1.0 for individual proteins.

Similarly, the median for all proteins in the ovarian study was

0.57, but the individual correlations ranged from �0.6 to 1.0,

and the median for the colon tumor study was 0.28 with a range

from �0.2 to 0.8. This suggests that, at least within individual

studies, some proteins may be more reproducibly quantified

than others.

To understand whether the same proteins were reproducibly

quantified across multiple studies, we analyzed pairs of studies

together. We found that there was a moderate correlation

(0.38) between the protein reproducibility calculated using the

ovarian tumor replicates and the colon cancer replicates (Fig-

ure 3A). Combinations of other pairs of studies revealed similar

moderate correlations: colon and CCLE (0.31) and ovarian and

CCLE (0.24) (Figures 3B and 3C). Although the nature of the sam-

ples (tumor versus cell line) and the quantification approaches

(TMT/label-free quantification) varied across studies, this sug-

gests that there is some agreement in terms of which proteins

can be reproducibly quantified. In general, proteins that are high-

ly reproducible in one study tend to be highly reproducible in

others, while proteins that show poor reproducibility in one study

tend to show poor reproducibility in others (Figure 3). For

example, GBP1 is one of the proteins with reproducibility that

is consistently high across all three studies (Figure 3D), while

RPS29 has consistent low reproducibility (Figure 3E).

An integrated ranking of protein reproducibility partially
explains the variable mRNA-protein correlation in 10
additional studies
Proteogenomic studies with large numbers of replicates, such as

the three we analyzed above, are the exception rather than the

rule. Consequently, for most studies, we do not know how repro-

ducible the proteomic measurements are. However, as noted

above, proteins that are highly reproducibly quantified in one

study are more likely to be highly reproducible in others. We

therefore sought to aggregate the replicate protein correlations

from all three studies (CCLE, ovarian, colon) into a single list con-

taining a ranking of protein reproducibility (STAR Methods; Fig-

ure S2A; Table S2). We evaluated a number of different aggrega-

tion approaches and found that a simple method using average

normalized rank explained the most variance in mRNA-protein
Cell Reports Methods 2, 100288, September 19, 2022 5
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correlations of the three studies containing proteomic replicates

(STAR Methods; Figure S2B). We used this approach to create a

ranked order of protein reproducibility for the 5,211 proteins that

were quantified in at least two out of the three studies. We then

used this aggregated list to assess the extent to which ‘‘average’’

protein reproducibility explains the varying mRNA-protein corre-

lations observed in ten other studies (Clark et al., 2019; Dou

et al., 2020; Gillette et al., 2020; Guo et al., 2019; Huang et al.,

2021; Jiang et al., 2020; Krug et al., 2020; Mertins et al., 2016;

Wang et al., 2021; Zhang et al., 2014) (Figure 4). For all these

studies, we find that proteins with more reproducible measure-

ments tend to have higher mRNA-protein correlations. Although

the aggregated ranks are based on data from cancer studies, we

observe the same trend in healthy tissues obtained from the

GTEx project (Figure 4J). Similarly, although the aggregated

ranks are generated using studies that quantify proteins through

data-dependent acquisition (DDA) approaches, we observed the

same trend for a study that quantified proteins using data-inde-

pendent acquisition (DIA)-based proteomics (sequential window

acquisition of all theoretical mass spectra [SWATH-MS]) in the

NCI-60 cancer cell lines (Figure 4I). In general, the mRNA-protein

correlation increases with protein reproducibility for samples

from both healthy and diseased conditions and irrespective of

the proteomic quantification approach.

To quantify the amount of variation in mRNA-protein correla-

tion that could be explained by our aggregated protein reproduc-

ibility ranks, we used a linear regression model for the ten

different studies. We found that the aggregated ranks explain

�10%–20% (median 14%) of the variation in these studies

(Figure 4).

To test if there was an advantage to using the aggregate pro-

tein reproducibility over protein reproducibility measured in

either of the three individual studies (CCLE, ovarian, colon), we

compared the variance explained by the aggregate ranks with

that explained by each individual study. In all ten studies without

proteomic replicates, the aggregated ranks explained the varia-

tion in mRNA-protein correlation better than the ranks from any

individual dataset (Figure S3).

A number of efforts have been made to use machine learning

to predict protein abundances from mRNA abundances (For-

telny et al., 2017; Li et al., 2019; Yang et al., 2020). Recently,

the NCI-CPTAC DREAM proteogenomics challenge engaged

the community to predict protein abundances of breast and

ovarian tumor profiles using their corresponding genomic and

transcriptomic information (Yang et al., 2020). We hypothesized

that proteins whose measurements are highly reproducible

could be predicted better using machine-learning algorithms.

Hence, we analyzed the prediction scores from the best-per-

forming model using the protein reproducibility data. We

observed a stark difference in the prediction scores of the lowest

and highest deciles of the protein reproducibility (Figures S4A

and S4B). While the lowest decile has a correlation of �0.35 be-

tween themeasurements and predictions, the highest decile has

a correlation of �0.7. The aggregated protein reproducibility

ranks could explain�25%and 26%of the variation in the predic-

tion scores of breast and ovarian cancer studies, respectively,

again outperforming the reproducibility measured in any individ-

ual study (Figure S4C).
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Protein measurement reproducibility is influenced by
abundance, variance, and unique peptides
To understand what causes some proteins to be more reproduc-

ibly measured than others, we analyzed a number of factors that

we hypothesized might influence the reliability of their

measurements.

All of the studies analyzed heremake use of ‘‘bottom-up’’ quan-

tification approaches where proteins are first digested into pep-

tides; these peptides are then quantified using a mass spectrom-

eter, and peptide quantifications are converted into protein

abundances computationally. This quantification is a stochastic

process, and there is no guarantee that every peptide in a given

samplewill bedetectedby themassspectrometer. Thequantifica-

tion of proteins that have lowabundance, and hence fewer detect-

able peptides, is especially likely to be subject to substantial sto-

chastic variation. A small number of peptides missed can make

a big difference to the quantification of these low abundance pro-

teins, while for highly abundant proteins, a few extra or missing

peptideswillmake only a small difference. To assess the contribu-

tion of protein abundance to proteinmeasurement reproducibility,

we obtained the protein abundancesmeasured in 201 tissue sam-

ples from 32 healthy human tissues collected by the GTEx project

(Jiangetal., 2020).For eachprotein,wecalculated themeanabun-

dance across all samples and tissues. We found a clear relation-

ship between the mean protein abundance and the aggregated

protein reproducibility rank—more abundant proteins are more

reproducibly measured (Figure 5A). We performed a similar anal-

ysis for the three individual proteomic replicate studies and found

the result to be consistent (Figures S5A–S5C).

Proteins whose abundances do not vary significantly across

individuals are unlikely to have high mRNA-protein correlations,

as correlation measures are dependent on there being meaning-

ful variation in the data. Furthermore, as the variation observed

experimentally is likely a combination of both real biological vari-

ation and experimental noise, proteins with lower biological vari-

ation in abundance will tend to be more affected by measure-

ment noise. For each protein, we computed the variance in

protein abundance across samples from the GTEx project (Jiang

et al., 2020). We then assessed the influence of this variance on

the reproducibility of measurements of individual proteins.

Similar to the mean protein abundance above, we found that

proteins with a higher variance of protein abundance are more

reproducibly measured (Figure 5B). Furthermore, the variance

of protein abundance explains �20% of the variation in the

aggregated protein reproducibility ranks. Similar trends were

observed for the three individual proteomic replicate studies

(Figures S5A–S5C).

The number of unique peptides generated per protein is also

crucial for protein quantification by MS. To assess the impact

of this, we identified the number of unique peptides identified

per protein using the GTEx study. We stratified all proteins into

deciles based on the number of unique peptides identified and

found that the aggregated protein reproducibility increased

with every decile of unique peptides identified (Figure 5C). This

pattern was also evident in the protein reproducibility measured

in each of the three individual studies (Figures S5A–S5C). Thus,

the more unique peptides identified per protein, the higher the

confidence of the measured protein levels.
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Figure 3. Proteins with high reproducibility in one study are also highly reproducible in other studies

(A–C) Binned heatmaps showing the relationship between the protein-protein reproducibility calculated in different studies. Each heatmap shows the relationship

between two studies, indicated on the x and y axes. The regions of the heatmaps are colored according to the number of proteins present in the region as

indicated in the color bar. The number of proteins in common and Spearman correlation between the two studies, with the associated p value, are specified in the

box for each of the plots.

(D and E) For each study with experimental protein replicates, scatter plots illustrating the relationship between protein-protein reproducibility are shown for a

protein with high reproducibility, GBP1 (D), and a protein with low reproducibility, RPS29 (E). For each scatter plot, the Spearman correlation coefficient of the

protein-protein reproducibility and the associated p value is indicated at the bottom.
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One of the biological reasons proposed for the weak mRNA-

protein correlation is the difference inmRNA and protein half-lives

(Vogel and Marcotte, 2012). mRNAs typically have a half-life of
2.6–7 h, while proteins have half-lives ranging from a few seconds

to a few days (Vogel and Marcotte, 2012). Recently, proteins with

longer half-liveswere found to bemore predictable usingmachine
Cell Reports Methods 2, 100288, September 19, 2022 7
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learning, irrespective of the transcript half-lives (Yang et al., 2020).

This led us to assess protein half-life as a potential factor for the

reproducibility of protein measurements. We obtained protein

half-lives estimations from a previous publication (Zecha et al.,

2018) and divided them into two categories—long and short

half-lives (STAR Methods)—as was done in Yang et al. (2020).

Although both categories contain proteins with reproducibility

scores ranging from 0 to 1, proteins with a long half-life have a

higher median protein reproducibility score (p = 9.70e�25,

Mann-Whitney U test, two-sided; Figures 5D and S5A–S5C).

We note that there is some correlation between the attributes

considered, in particular more abundant proteins tend to have

more unique peptides identified. To understand the relative contri-

bution of each factor, we performed rank regression by using the

individual factors as the explanatory variables and the ranks of the

proteomic reproducibility as the response variable (STAR

Methods).We found in all cases that amodel including all four fac-

tors performed better than amodel including only the best individ-

ual factor, suggesting that variance in reproducibility can best be

explained by a combination of factors (Figure S5D).

The factors above all contribute to protein-protein reproduc-

ibility, raising the question of whether they themselves might

be sufficient to explain variation in mRNA-protein correlation.

To assess this, we performed linear regression with these factors

(abundance, variance, unique peptides, and protein half-lives) as

explanatory variables and the mRNA-protein correlation of each

of the 13 different studies as response variables. We found that a

combined model of the factors explained �3%–17% of the vari-

ation in mRNA-protein correlation of the different studies (Fig-

ure S6). However, the aggregated protein reproducibility ex-

plains a considerably higher percentage of the variation in

mRNA-protein correlation in 12 of 13 studies. The GTEx study

is the lone exception, likely a result of the independent variables

(protein abundance, variance, number of unique peptides) being

calculated from the GTEx study itself (Figure S6).

Transcriptomic reproducibility also contributes to the
variance in mRNA-protein correlation
Thus far,wehaveprimarily focusedonunderstanding the influence

of protein quantification reproducibility on mRNA-protein correla-

tion.However, it is also likely that the reproducibility ofmRNAmea-

surements is an important factor in determining mRNA-protein

correlations. To assess the impact of transcriptomic reproduc-

ibility on mRNA-protein correlation, we compared transcriptomic

profiles for 382 cancer cell lines from the CCLE (Ghandi et al.,

2019) with those generated in a separate profiling effort (Klijn

et al., 2015). We find that the median gene-wise Spearman corre-

lation across studies was 0.75 (STARMethods; Figure 6A). Again,

this varied significantly across transcripts, ranging from �0.05 to

0.96. As with protein reproducibility, we find that transcriptomic

reproducibility is influenced by both mRNA abundance and vari-

ance (STAR Methods; Figure S5E).
Figure 4. Aggregated protein reproducibility ranks partially explains th

(A–J) For studies without experimental proteomic replicates, boxplots showing t

aggregated protein reproducibility ranks. (A)–(H) are the CPTAC tumor studies; (

computing the mRNA-protein correlation, is obtained from data-independent a

tissues study from the GTEx Consortium. Box plot details as in Figure 2.
Weuseda linear regressionmodel to quantify, in all thirteenpro-

teogenomic studies, how much of the variation in mRNA-protein

correlation could be explained by transcriptomic reproducibility.

We found that the median variance explained was 15%. In most

studies (8/13), our aggregated protein reproducibility explained a

higher proportion of the variance than the mRNA reproducibility

(Figure 6B).

Compared with the other studies, the CCLE study had a

strikingly higher percentage of variance explained by tran-

scriptomic reproducibility (40%). This is presumably because

there is a large overlap in the set of samples used to compute

the transcriptomic reproducibility and the CCLE mRNA-pro-

tein correlation, unlike the other studies. For the CCLE, the

variance explained by mRNA-mRNA reproducibility is higher

than the variance explained by protein-protein reproducibility.

However, the mRNA-mRNA reproducibility was estimated us-

ing a much higher number of cell lines (382 versus 18 for pro-

tein-protein reproducibility), which we reasoned could explain

the increased variance explained. To test this hypothesis, we

downsampled the available transcriptomic data to make the

comparison more equal (sampling 18 cell lines with transcrip-

tomes at random; STAR Methods). We found that, using this

approach, the protein-protein reproducibility explained more

of the mRNA-protein variability than the mRNA-mRNA repro-

ducibility (on average, �2.8 times). This suggests that pro-

tein-protein reproducibility may influence mRNA-protein cor-

relation more than mRNA-mRNA reproducibility does but

that 18 cell lines is not sufficient to obtain a robust estimate

of protein-protein reproducibility.

The Spearman correlation between aggregated protein

reproducibility and CCLE transcriptomic reproducibility is

0.37 across 4,795 proteins. This suggests that there is

some agreement between the reproducibility of proteins

and transcripts and that, to some extent, proteins that are

reproducibly measured are encoded by transcripts that are

more reproducibly measured. To assess if both mRNA and

protein reproducibility independently contribute to the vari-

ability of mRNA-protein correlation across all 13 studies,

we used a linear model with the two factors as independent

variables and mRNA-protein correlation as the dependent

variable. We found that in all cases, the two factors together

explained a higher proportion of variance than either factor

alone (p < 0.001, likelihood ratio test). In the case of the

CCLE study (used to calculate the mRNA reproducibility

and one of the three studies used to calculate protein repro-

ducibility), the two factors together explained 48% of the

variance. For the 12 other studies, the two factors together

explained �14%–26% of the variance (Figure 6B). These ob-

servations suggest that the reproducibility in transcriptomic

and proteomic data contribute strongly and somewhat inde-

pendently to the variability observed in mRNA-protein

correlation.
e variable mRNA-protein correlation in 10 additional studies

he distributions of mRNA-protein correlation for proteins in each decile of the

I) is the NCI-60 cancer cell lines study wherein protein quantification, used for

cquisition-based untargeted proteomics (SWATH-MS); and (J) is the healthy

Cell Reports Methods 2, 100288, September 19, 2022 9
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Figure 5. Protein reproducibility is mainly influenced by abundance, variance, and unique peptides and not protein half-lives

(A–C) Boxplots showing the distribution of aggregated protein reproducibility ranks for proteins binned according to protein abundance (A), variance (B), and

number of unique peptides (C). Box plot details as in Figure 2.

(D) Boxplot showing the distribution of aggregated protein reproducibility ranks for proteins with short and long protein half-lives.
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Metabolic pathways with higher-than-average mRNA-
protein correlations may reflect differential
reproducibility rather than differential post-
transcriptional regulation
Previous work has found that certain pathways and processes

are enriched in proteins that have higher- or lower-than-average

mRNA-protein correlations. For instance, ribosomal subunits

have been found to have consistently lower-than-average

mRNA-protein correlations across multiple studies (Clark et al.,

2019; Mertins et al., 2016; Zhang et al., 2014, 2016), while mem-

bers of pathways related to amino acid metabolism have been

found to have higher-than-average mRNA-protein correlation

(Clark et al., 2019;Huanget al., 2021; Jarnuczak et al., 2021;Mer-

tins et al., 2016; Zhang et al., 2014, 2016). This variation across

functional groups has been attributed to differential post-tran-

scriptional regulation. However, our observation that both pro-

tein-protein measurement reproducibility and mRNA-mRNA

measurement reproducibility contribute significantly to the varia-

tion inmRNA-protein correlation across genes suggests an alter-

native explanation—some pathways may have higher- or lower-

than-average mRNA-protein correlations simply because their

component proteins are more reproducibly measured. To test
10 Cell Reports Methods 2, 100288, September 19, 2022
this hypothesis, we first performed pathway enrichment analysis

on themRNA-protein correlations from theCCLEandovarian da-

tasets (STARMethods; Figures 7 and S7). Consistent with previ-

ous studies, we observed that proteins with high mRNA-protein

correlations are enriched in gene sets involved in environmental

information processing and metabolic pathways, while proteins

with low mRNA-protein correlations are enriched in annotations

related to housekeeping protein complexes (Figure 7;

Tables S3 and S4). To assess whether these enrichments could

simply be attributed to variable reproducibility, we next per-

formed pathway enrichment analysis on the CCLE and ovarian

mRNA-protein correlation data after accounting for variation in

protein-protein and mRNA-mRNA reproducibility (STAR

Methods).We found in both studies that the ‘‘housekeeping’’ pro-

tein complexeswere still identified as being enriched among pro-

teins with lower-than-average mRNA-protein correlations but

that the metabolic pathways were no longer enriched in proteins

with higher-than-average mRNA-protein correlations (Figures 7

and S7; Tables S3 and S4). Other pathways with higher-than-

average mRNA-protein correlations related to environmental

information processing were also no longer significant after ad-

justing for reproducibility. This suggests that while large
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housekeeping protein complexes such as the ribosome have

lower-than-average mRNA-protein correlation that may be

attributed to post-transcriptional mechanisms, the higher-than-

averagemRNA-protein correlation previously observed formeta-

bolic pathways may simply reflect more reproducible measure-

ments of their constituent proteins and transcripts.

DISCUSSION

Here, we have demonstrated that the reproducibility of protein

and transcript measurements is a very significant factor in the

observed correlations between mRNA and protein abundances.
After taking this into account, we found that some pathways pre-

viously identified as having a high mRNA-protein correlation are

likely just more reproducibly measured. We therefore suggest

that conclusions about functional groups with higher or lower

mRNA-protein correlations, especially with regard to the poten-

tial role played by post-transcriptional regulation, should be

made only after accounting for variation in the measurement

reproducibility of their constituent proteins. To this end, we

have generated an aggregate protein reproducibility rank for

each protein that can explain a significant amount of the variance

across multiple proteogenomic studies and that may be useful

for identifying those proteins that can be reliably and
Cell Reports Methods 2, 100288, September 19, 2022 11
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reproducibly measured by mass spectrometry. Such proteins

may be more useful to assay in, e.g., diagnostic panels.

Recently, there have been a number of attempts to predict pro-

tein abundances from transcriptomic data that have achieved

modest success (Barzine et al., 2020; Fortelny et al., 2017; Li

et al., 2019; Yang et al., 2020). We found here that proteins that

are more reproducibly measured across experimental replicates

are better predicted using machine-learning. This suggests that

one of the factors limiting the accuracy of machine-learning

methods to predict protein abundances is that the protein abun-

dance measurements themselves are not reproducible. It may

therefore beworth evaluating futuremethods on the subset of pro-

teins that can be reproducibly measured.

Limitations of the study
Our emphasis here has been on understanding how variability in

the measurements of individual proteins can influence the

mRNA-protein correlations observed in published tumor proteo-

genomic studies. We have shown that proteins/transcripts that

aremore reproduciblymeasured tend to have highermRNA-pro-

tein correlations, and we have identified a number of factors

(e.g., protein abundance) that influence variation in measure-

ment reproducibility. There are of course additional factors that

influence the global reproducibility of proteomes and transcrip-
12 Cell Reports Methods 2, 100288, September 19, 2022
tomes quantified from ‘‘replicates’’ of the same sample. These

include real biological variation (e.g., tumor heterogeneity result-

ing in two samples of the same tumor having different profiles)

and technical variation (e.g., variation in sample preparation be-

tween different runs of the same sample). We have not been able

to address how much of the variance in the measurements of in-

dividual proteins can be attributed to these global factors. It is

likely that reducing these sources of global variation, e.g.,

through automated sample preparation, will improve the overall

reproducibility of protein measurements. We note also that our

analyses do not reflect the best possible reproducibility of prote-

omic and transcriptomic measurements, but rather they reflect

the reproducibility observed in existing large-scale proteoge-

nomic datasets. Indeed, we see that more recent proteogenomic

studies have higher mRNA-protein correlations, suggesting that

methodological improvements are already reducing the sources

of noise in these approaches.

Our results from analyzing the CCLE dataset, where the repli-

cate correlation is highest, give what is likely the most realistic

assessment of proteomic reproducibility using modern MS pipe-

lines. The replicates in the CCLE study were generated by the

same lab, using the samemethodology, 1 year apart. In contrast,

the ovarian cancer study contains replicates generated in

different labs (introducing significant measurement
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heterogeneity), while the colon cancer study makes use of repli-

cates generated using two entirely different MS approaches (la-

bel free versus TMT). Consequently, these likely represent lower-

bound estimates of the reproducibility that can be observed us-

ing modern MS proteomic pipelines. Nonetheless, they likely

reasonably approximate the non-biological heterogeneity

observed between transcriptomes and proteomes in the studies

analyzed, where mRNA and proteins are quantified separately

using orthogonal techniques.

In the case of the CCLE data, we have a small number (18) of

samples with replicate proteomic profiles available and a larger

number (382) with replicate transcriptomes. However, only 8

samples have both replicate transcriptomes and replicate pro-

teomes. Having a larger number of samples with both replicate

proteomes and replicate transcriptomes would allow us to better

estimate the actual correlation between mRNA and protein

across samples after correction for measurement error, as has

previously been done to estimate the true "within sample"

mRNA-protein correlation in yeast (Csárdi et al., 2015;

Spearman, 1904).

Here, we have shown that a number of factors measured using

the GTEx dataset, including measured protein abundance,

measured protein variance, and measured unique peptides,

are associated with proteomic reproducibility in cancer studies.

Across studies, a model that incorporates all three factors out-

performed models using each variable alone. However, this

may be because all three represent imperfect measurements

of the same underlying variable—real average protein abun-

dance. Previous work has demonstrated that statistical

modeling that integrates multiple mRNA and protein datasets

and explicitly takes into account different sources of noise and

error can be used to provide improved estimates of mRNA-pro-

tein correlation within samples (Csárdi et al., 2015). As additional

studies with proteomic replicates and transcriptomic replicates

become available, it may be possible to develop improved

models that provide more reliable estimates of protein reproduc-

ibility and the factors that influence it. Such estimates could be

improved through the incorporation of additional estimates of

average protein abundance and variation (e.g., from Wang

et al., 2019).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

cBioPortal Cerami et al. (2012); Gao et al. (2013) https://www.cbioportal.org/;

RRID:SCR_014555

Cancer Dependency Map (DepMap) 20Q4 Ghandi et al. (2019) https://depmap.org/portal/ccle/;

https://figshare.com/articles/

dataset/DepMap_20Q4_Public/

13237076; RRID:SCR_017655

LinkedOmics Vasaikar et al. (2018) http://www.linkedomics.org/

CPTAC Python API Lindgren et al. (2021) https://pypi.org/project/cptac/

CORUM 3.0 Giurgiu et al. (2019) http://mips.helmholtz-muenchen.de/

corum/; RRID:SCR_002254

KEGG Pathway Kanehisa (2019); Kanehisa and Goto

(2000); Kanehisa et al. (2021)

https://www.genome.jp/kegg/

pathway.html; RRID:SCR_018145

Colorectal cancer transcriptomics Cancer Genome Atlas Network (2012) https://cbioportal-datahub.s3.amazonaws.com/

coadread_tcga_pub.tar.gz

Colorectal cancer proteomics Zhang et al. (2014) Published supplemental Table S4

Ovarian cancer transcriptomics Cancer Genome Atlas Research

Network (2011)

http://gdac.broadinstitute.org/runs/

stddata__2016_01_28/data/OV/20160128/

gdac.broadinstitute.org_OV.mRNA_Preprocess_

Median.Level_3.2016012800.0.0.tar.gz

Ovarian cancer proteomics Zhang et al. (2016) Published supplemental Table S2

Breast Cancer (2016) transcriptomics Ciriello et al. (2015) https://cbioportal-datahub.s3.amazonaws.com/

brca_tcga_pub2015.tar.gz

Breast Cancer (2016) proteomics Mertins et al. (2016) Published supplemental Table S3

Colon Cancer Vasaikar et al. (2019) http://linkedomics.org/cptac-colon/

Clear cell renal carcinoma Clark et al. (2019) https://pypi.org/project/cptac/

Breast Cancer (2020) Krug et al. (2020) https://pypi.org/project/cptac/

Endometrial Cancer Dou et al. (2020) https://pypi.org/project/cptac/

Lung Adenocarcinoma Gillette et al. (2020) https://pypi.org/project/cptac/

Head and Neck Squamous

Cell Carcinoma

Huang et al. (2021) https://pypi.org/project/cptac/

Glioblastoma Wang et al. (2021) https://pypi.org/project/cptac/

NCI60 cancer cell lines Guo et al. (2019) Published supplemental Tables

S6 and S1

Cancer Cell Line Encyclopedia

(CCLE) transcriptomics

Ghandi et al. (2019) https://depmap.org/portal/ccle/;

RRID:SCR_013836

CCLE proteomics Nusinow et al. (2020) Published supplemental Tables S2

and S3; https://gygi.hms.harvard.edu/

publications/ccle.html

GTEx healthy tissues Jiang et al. (2020) Published supplemental Tables S3 and S4

RNA-seq of 675 commonly used

human cancer cell lines

Klijn et al. (2015) ArrayExpress: E-MTAB-2706

Protein half-life Zecha et al. (2018) Published supplemental Table S3

NCI CPTAC DREAM Proteogenomics challenge

prediction scores of the best performing model

(Team Guan)

Yang et al. (2020) https://heidelberg.shinyapps.io/proteoexplorer/

(Continued on next page)
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Software and algorithms

All analysis code This study https://github.com/cancergenetics/

limitations_of_omics_reproducibility;

https://doi.org/10.5281/zenodo.6956546

Python version 3.8 Python Software Foundation https://www.python.org/; RRID:SCR_008394

Pandas 1.2.5 McKinney (2011) https://pandas.pydata.org/;

RRID:SCR_018214

Numpy 1.20.2 Harris et al. (2020) https://numpy.org/; RRID:SCR_008633

StatsModels 0.12.2 Seabold and Perktold (2010) https://www.statsmodels.org/stable/

index.html; RRID:SCR_016074

SciPy 1.7.1 Virtanen et al. (2020) https://www.scipy.org/; RRID:SCR_008058

Matplotlib 3.3.4 Hunter (2007) https://matplotlib.org/; RRID: SCR_008624

Seaborn 0.11.0 Waskom (2021) https://seaborn.pydata.org/; RRID:SCR_018132
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Colm Ryan (colm.ryan@

ucd.ie).

Materials availability
This study did not generate new materials.

Data and code availability
d This paper analysed existing, publicly available data. The accession numbers for the datasets are listed in the key resources

table.

d All original code has been deposited at Github and Zenodo and is publicly available as of the date of publication. DOIs are listed

in the key resources table.

d Any additional information required to reanalyse the data reported in this work paper is available from the lead contact upon

request.
METHOD DETAILS

Data collection
The datasets analysed were downloaded from the links provided in the key resources table.

For studies (Clark et al., 2019; Dou et al., 2020; Gillette et al., 2020; Huang et al., 2021; Krug et al., 2020; Wang et al., 2021) both the

transcriptomic and proteomic profiles were obtained from the CPTAC API (Lindgren et al., 2021). For colorectal (Zhang et al., 2014)

and breast cancer (Mertins et al., 2016) studies, the transcriptomic data were downloaded from cBioPortal while proteomic data was

obtained from the supplemental materials. For the ovarian cancer study (Zhang et al., 2016), the transcriptomic data were down-

loaded from the https://gdac.broadinstitute.org/ and proteomic data from the supplemental materials. For colon cancer (Vasaikar

et al., 2019), GTEX (Jiang et al., 2020) and NCI60 (Guo et al., 2019) cancer cell lines studies, both the transcriptomic and proteomic

data were obtained from the supplemental tables. For CCLE study, the transcriptomic data was downloaded from the cancer depen-

dency map portal (https://depmap.org/portal/ccle/) and proteomic data was downloaded from the supplemental materials.

Pre-processing proteomic and transcriptomic profiles
Proteomics and transcriptomics data were obtained from the studies listed in the Key resources table. The proteomics datasets con-

tained a considerable number of missing values, identified as NaNs in most studies or 0s in (Zhang et al., 2014). Within each study we

restricted our analyses to proteins that were measured in at least 80% of samples. The same filtering was applied to transcriptomics,

requiring transcripts to be measured in 80% of samples. In some datasets, multiple protein isoforms from the same gene were avail-

able, we aggregated these using the mean to calculate a ‘gene level’ summary.

The CCLE study repeatedly profiled two 10-plexes (18 cell lines) one year apart in order to assess the reproducibility of the pro-

teomic profiling. These replicates are used to perform the assessment of the reproducibility of protein measurements presented

in Figure 1. In addition to these 18 cell lines, 3 cell lines were screened in duplicate as part of standard 10-plex runs. As suggested
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in the CCLE guide (Nusinow and Gygi, 2020) for these three cell lines we selected the profiles which correlate best with the transcrip-

tomic data for our analyses here.

Computation of correlation coefficient
All data was processed through the standard pipeline described above before computing correlation. Correlation between (i) mRNA-

protein, (ii) protein-protein and (iii) mRNA-mRNAwas computed using the Spearman rank correlation. For each protein in each study,

samples with missing values were ignored when computing the correlation.

Assessing proteomic and transcriptomic reproducibility
The quantitative proteomics of the CCLE (Nusinow et al., 2020) data contained three replicates of the proteomic profiles. In the first

year, 18 cell lines (two 10-plexes) were quantified (R1). The same cell lines were quantified twice (R2, R3) the following year. The cor-

relation between replicates: R1-R2, R1-R3 and R2-R3 were 0.7, 0.71 and 0.88 respectively. We chose to use the R1 and R3 prote-

omic profiles to compute the replicate correlation as R1-R3 has the median correlation out of the three replicate pairs.

To assess the reproducibility of transcriptomic data we considered two studies that had quantified transcripts in tumour-derived

cell lines. One of the studies chosen was the CCLE transcriptomic study for which we have previously assessed the mRNA-protein

correlation. The CCLE transcriptomic study (Ghandi et al., 2019) had profiled 1076 and (Klijn et al., 2015) had profiled 675 cancer cell

lines using RNA-Seq. These two studies had quantified the transcripts in different labs in different years. However, the two studies

had 382 cell lines and 13,226 genes in common. The transcriptomic reproducibility was computed using the Spearman rank corre-

lation coefficient for the transcriptomicmeasurements across the 382 common cell lines of the studies. The standard pipeline for pre-

processing was applied before assessing the reproducibility of the transcriptomic studies.

While the CCLE transcriptomic reproducibility was computed using 382 cell lines, the CCLE proteomic reproducibility was

computed using 18 cell lines only. The common cell lines between the transcriptomic and proteomic replicates were <10. Therefore,

to compare the predictive power of transcriptomic reproducibility and proteomic reproducibility in explaining the variation in mRNA-

protein correlation of the different studies, the transcriptomic reproducibility was computed for 18 random cell lines over 100 itera-

tions. The transcriptomic reproducibility was then used to predict the mRNA-protein correlation of the thirteen proteogenomic

studies. For each study, the mean R2 obtained across all 100 random cell line selections was then used to compare the predictive

power of transcriptomic reproducibility and proteomic reproducibility over the same number of proteins.

Computation of deciles
Deciles were computed using the pandas qcut method. Each decile contains�10% of the overall number of items to be stratified. In

some cases, due to ties, these deciles are not uniformly sized.

Protein complex membership
Information on protein complex membership was obtained from CORUM (Giurgiu et al., 2019) (all complexes data). A protein was

marked as a protein complex subunit if it is identified in CORUM data.

Protein half-lives
The half-lives of proteins were obtained from (Zecha et al., 2018) study. Themedian half-life of all proteins from the list was computed.

Proteins with half-lives > median were encoded to have ‘long’ half-life while the others were encoded to have ‘short’ half-life.

Rank aggregation
For each of the three proteomic studies with replicates (ovarian, colon, CCLE) ranks were assigned based on increasing correlation

and normalized by dividing over the total number of proteins in the dataset. Only proteins that were measured in 2 out of the 3 data-

sets were considered for the aggregated list. For proteins measured in only 2 studies, we imputed the third normalised rank as 0.5.

For all proteins, we then computed the mean rank as the aggregated rank of the protein (Figure S2A).

We compared the aggregated list of proteins obtained through our method of aggregation (Figure S2A) with other aggregated lists

which we calculated using other algorithms - robust rank aggregation (Kolde et al., 2012), Stuart (Stuart et al., 2003), BordaFuse

(Aslam and Montague, 2001) and, Markov Chain Aggregator (MC4) (Dwork et al., 2001). To assess the performance of different ag-

gregation methods, we used linear models wherein the mRNA-protein correlation of the three studies containing replicate proteomic

profiles was regressed on the different aggregated lists of protein reproducibility. The aggregated list using our ‘average normalized

rank’ approach could best explain the variation in mRNA-protein correlation in the colorectal cancer and CCLE studies, while the

BordaFuse method best explained the variation in the ovarian cancer study (Figure S2B), followed by our approach. As our ‘average

normalized rank’ approach overall has the highest R-squared, we chose this method to aggregate the correlations of proteomic repli-

cate profiles.

Linear regression models
All linear regression was carried out using the statsmodel package in Python.
e3 Cell Reports Methods 2, 100288, September 19, 2022
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Assessing the relationship between protein-protein reproducibility, mRNA-mRNA reproducibility, and mRNA-protein correlation

(Figure 6B)

To understand the variance in mRNA-protein correlation explained by protein-protein reproducibility and mRNA-mRNA reproduc-

ibility we used three different linear models given by the equations -

d Protein-protein reproducibility only: c ðgÞ = a+ b � pa ðgÞ
d mRNA-mRNA reproducibility only: c ðgÞ = a+ b �mðgÞ
d Protein-protein reproducibility and mRNA-mRNA reproducibility: c ðgÞ = a+ b1 � p ðgÞ+ b2 �m ðgÞ

where c ðgÞ is the mRNA-protein correlation for each protein, pa ðgÞ is the aggregated protein reproducibility rank for each protein,

m ðgÞ is the mRNA-mRNA reproducibility of the corresponding transcript of each protein and the coefficients a; b; b1 and b2 are

computed using the ordinary least squares regression method. For all the models, mRNA-protein correlation is assessed over the

same set of proteins in each study. R2 is used to assess the predictive power of the explanatory variables in explaining the variation

of the response variable.

Assessing the relationship between protein-protein reproducibility and mRNA-protein correlation (Figure S1A)

To understand the variance in mRNA-protein correlation explained by protein complex membership and protein-protein reproduc-

ibility we used three different linear models given by the equations -

d Protein complex membership only: c ðgÞ = a+ b � pcm ðgÞ
d protein-protein reproducibility only: c ðgÞ = a+ b � pðgÞ
d Protein complex membership and protein-protein reproducibility: c ðgÞ = a+ b1 � pcm ðgÞ+ b2 � p ðgÞ

where c ðgÞ is themRNA-protein correlation for each protein, pcm ðgÞ is the protein complexmembership for each protein, pðgÞ is the
protein-protein correlation for each protein and the coefficients a; b; b1 and b2 are computed using the ordinary least squares regres-

sion method. The protein complex membership is indicated as 1 if a protein is a protein complex member, else 0. For all the models,

mRNA-protein correlation is assessed over the same set of proteins in each study. R2 is used to assess the predictive power of the

explanatory variables in explaining the variation of the response variable.

Assessing the ability of different aggregation approaches to rank protein-protein reproducibility (Figure S2B)

To identify the best aggregation method for protein-protein reproducibility, we compared the variance in mRNA-protein correlation

explained by different aggregation methods using linear models given by the equations -

d Robust rank aggregation: c ðgÞ = a+ b � prraðgÞ
d Stuart aggregation method: c ðgÞ = a+ b � pstuartðgÞ
d BordaFuse aggregation method: c ðgÞ = a+ b � pbf ðgÞ
d Markov chain aggregator 4: c ðgÞ = a+ b � pmc4ðgÞ
d Average normalized rank: c ðgÞ = a+ b � paðgÞ

where c ðgÞ is the mRNA-protein correlation for each protein, prraðgÞ; pstuartðgÞ; pbf ðgÞ; pmc4ðgÞ and paðgÞ are the aggregated protein

reproducibility ranks computed using robust rank aggregation, Stuart, BordaFuse, Markov chain aggregator 4 and average normal-

ized ranks respectively for each protein. The coefficients a and b are computed using the ordinary least squares regression method.

For all the models, mRNA-protein correlation is assessed over the same set of proteins in each study. R2 is used to assess the pre-

dictive power of the explanatory variables in explaining the variation of the response variable.

Comparing the ability if aggregated rank reproducibility to predict mRNA-protein correlation compared to reproducibility calcu-

lated in individual studies (Figure S3)

For each study, we compared four different models given by the equations -

d Ovarian protein reproducibility rank: c ðgÞ = a+ b � povarianðgÞ
d CCLE protein reproducibility rank: c ðgÞ = a+ b � pccleðgÞ
d Colon protein reproducibility rank: c ðgÞ = a+ b � pcolonðgÞ
d Aggregated protein reproducibility rank: c ðgÞ = a+ b � paðgÞ

where c ðgÞ is the mRNA-protein correlation for each protein, povarianðgÞ; pccleðgÞ; pcolonðgÞ and paðgÞ are the aggregated protein

reproducibility computed using the ovarian, CCLE and colon proteomic replicates individually and collectively respectively for

each protein. The coefficients a and b are computed using the ordinary least squares regression method. For all the models,

mRNA-protein correlation is assessed over the same set of proteins in each study. R2 is used to assess the predictive power of

the explanatory variables in explaining the variation of the response variable.

Assessing the impact of protein measurement reproducibility on the accuracy of machine learning prediction of protein abundance

(Figure S4C)

To understand the variation in protein prediction scores that can be explained by protein-protein reproducibility, we compared four

different models on prediction scores of breast and ovarian tumour studies given by the equations -
Cell Reports Methods 2, 100288, September 19, 2022 e4
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d Ovarian protein reproducibility rank: pscoresðgÞ = a+ b � povarianðgÞ
d CCLE protein reproducibility rank: pscoresðgÞ = a+ b � pccleðgÞ
d Colon protein reproducibility rank: pscoresðgÞ = a+ b � pcolonðgÞ
d Aggregated protein reproducibility rank: pscoresðgÞ = a+ b � paðgÞ

where pscoresðgÞ is the prediction score that is the Pearson correlation between the predicted and actual protein abundance value

obtained from the best predicting model in NCI CPTAC Proteogenomics DREAM challenge, povarianðgÞ; pccleðgÞ; pcolonðgÞ and

paðgÞ are the aggregated protein reproducibility computed using the ovarian, CCLE and colon proteomic replicates individually

and collectively respectively for each protein. The coefficients a and b are computed using the ordinary least squares regression

method. For all the models, protein reproducibility rank is assessed over the same set of proteins in each study. R2 is used to assess

the predictive power of the explanatory variables in explaining the variation of the response variable.

Assessing the impact of mRNA abundance, mRNA variance on the reproducibility of transcripts (Figure S5E)

To understand the variation in mRNA reproducibility explained by the potential factors (mRNA abundance, mRNA variance), we

used two different linear models given by the equations -

d mRNA abundance only: t ðgÞ = a+ b �mabundanceðgÞ
d mRNA variance only: t ðgÞ = a+ b �mvarianceðgÞ

where t ðgÞ is the transcript reproducibility correlation for each transcript, mabundanceðgÞ is themRNAmean abundance for each tran-

script obtained fromCCLE transcriptomic data, mvarianceðgÞis the variance of themRNA abundance for each transcript obtained from

CCLE transcriptomic data and the coefficients a and b are computed using the ordinary least squares regression method.

Assessing the impact of protein abundance, protein variance, unique peptides, protein half-lives and aggregated protein reproduc-

ibility on mRNA-protein correlation (Figure S6)

To understand the variance in mRNA-protein correlation explained by the factors (protein abundance, protein variance, unique

peptides, and protein half-lives) influencing protein reproducibility, we used two different linear models given by the equations -

d Other factors ():
c ðgÞ = a+ b1 � pabundanceðgÞ+ b2 � pvarianceðgÞ+ b3 � ppeptidesðgÞ+ b4 � phalf � lives� longðgÞ+ b5 � phalf � lives� shortðgÞ

d Aggregated protein reproducibility: c ðgÞ = a+ b � paðgÞ

where c ðgÞ is the mRNA-protein correlation for each protein, pabundanceðgÞ is the protein abundance for each protein obtained from

the GTEx project, pvarianceðgÞ is the variance of the protein abundance for each protein obtained from theGTEx project, ppeptidesðgÞ is

the number of unique peptides for each protein obtained from the GTEx project, phalf � lives� longðgÞ and phalf � lives� shortðgÞ are the half-

lives of each protein (long and short), paðgÞ are the aggregated protein reproducibility computed using the ovarian, CCLE and colon

proteomic replicates individually and collectively respectively for each protein and the coefficients: a; b; b1; b2; b3; b4 and b5 are

computed using the ordinary least squares regression method. For all the models, mRNA-protein correlation is assessed over the

same set of proteins in each study. R2 is used to assess the predictive power of the explanatory variables in explaining the variation

of the response variable.

Rank regression
We used rank regression to assess the contribution of various factors (protein abundance, unique peptides, and protein half-lives) to

explaining the variance in protein measurement reproducibility. We assessed both the aggregated ranks and the reproducibility

measured in each individual study. We converted the protein reproducibility measurements from the three studies with replicates

(ovarian, colon, CCLE) to ranks.

The potential factors such as protein abundance and unique peptides had a large range, therefore both the factors were log trans-

formed and linear regression was performed.

Assessing the impact of protein abundance, protein variance, unique peptides, protein half-lives on the reproducibility of proteins

(Figure S5D)

To understand the variance in protein reproducibility ranks explained by the potential factors (protein abundance, protein variance,

unique peptides, and protein half-lives), we used four different linear models given by the equations -

d Protein abundance only: rank ðgÞ = a+ b � pabundanceðgÞ
d Protein variance only: rank ðgÞ = a+ b � pvarianceðgÞ
d Unique peptides only: rank ðgÞ = a+ b � ppeptidesðgÞ
d Protein half-lives encoded as long and short: rank ðgÞ = a+ b1 � phalf � lives� longðgÞ+ b2 � phalf � lives� shortðgÞ
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d Protein abundance, unique peptides and protein half-lives combined: rank ðgÞ =

a+ b1 � pabundanceðgÞ+ b2 � pvarianceðgÞ+ b3 � ppeptidesðgÞ+ b4 � phalf � lives� longðgÞ+ b5 � phalf � lives� shortðgÞ

where rank ðgÞ is the protein reproducibility rank for each protein, pabundanceðgÞ is the protein abundance for each protein obtained

from the GTEx project, pvarianceðgÞ is the variance of the protein abundance for each protein obtained from the GTEx project,

ppeptidesðgÞ is the number of unique peptides for each protein obtained from the GTEx project,phalf � lives� longðgÞ and

phalf � lives� shortðgÞ are the half-lives of each protein (long and short) and the coefficients a; b; b1; b2; b3; b4 and b5 are computed

using the ordinary least squares regression method. For all the models, protein reproducibility is assessed over the same set of pro-

teins in each study. R2 is used to assess the predictive power of the explanatory variables in explaining the variation of the response

variable.

Pathway enrichment analysis
Pathway enrichment analysis was performed using the Mann-Whitney U test. Firstly, the KEGG pathways (Kanehisa et al., 2021) and

their associated genes forHomo sapienswere downloaded using the KEGGAPI (https://www.kegg.jp/kegg/rest/keggapi.html). Only

KEGG pathways with more than 3 genes with measured correlations were included for the enrichment analysis. The computed

mRNA-protein correlations of CCLE and ovarian cancer studies were used to rank the proteins. A Mann-Whitney U test was per-

formed to assess the rank of each pathway in each dataset and p-values obtainedwere corrected for false discovery rate (FDR) using

the Benjamini-Hochberg method. For the figures presented in Figure 7 and S7 we specifically included pathways which have been

previously identified as enriched in different cancer studies (Clark et al., 2019; Huang et al., 2021; Mertins et al., 2016; Zhang et al.,

2014, 2016). To identify enriched pathways after accounting for experimental reproducibility, we regressed the CCLE and ovarian

mRNA-protein correlation on both aggregated protein reproducibility ranks and mRNA-mRNA reproducibility correlations, which

are based on the equations c ðgÞ = a+ b1 �m ðgÞ + b2 � p ðgÞ, where c ðgÞ is the mRNA-protein correlation, m ðgÞ is the mRNA-

mRNA reproducibility and p ðgÞ is the protein-protein reproducibility and the coefficients a;b1 and b2 are computed based on the

ordinary least squares regression method. The residuals obtained from the regression were used to rank the proteins in pathway

enrichment analysis. The top level categories (e.g., Metabolism, Genetic Information Processing) of the pathways were obtained

from KEGG and are used to annotate the pathways in Figure 7 and S7.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis is described in the Method details and was carried out using Python 3.8, Pandas 1.2.5 (McKinney, 2011), numpy

1.20.2 (Harris et al., 2020), SciPy 1.7.1 (Virtanen et al., 2020) and StatsModels 0.12.2 (Seabold and Perktold, 2010). The figures were

created with Matplotlib 3.3.4 (Hunter, 2007) and Seaborn 0.11.1 (Waskom, 2021).
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