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Traumatic brain injury (TBI) is a common source of morbidity and mortality among
civilians and military personnel. Initial routine neuroimaging plays an essential role
in rapidly assessing intracranial injury that may require intervention. However, in
the context of TBI, limitations of routine neuroimaging include poor visualization of
more subtle changes of brain parenchymal after injury, poor prognostic ability and
inability to analyze cerebral perfusion, metabolite and mechanical properties. With the
development of modern neuroimaging techniques, advanced neuroimaging techniques
have greatly boosted the studies in the diagnosis, prognostication, and eventually
impacting treatment of TBI. Advances in neuroimaging techniques have shown potential,
including (1) Ultrasound (US) based techniques (contrast-enhanced US, intravascular
US, and US elastography), (2) Magnetic resonance imaging (MRI) based techniques
(diffusion tensor imaging, magnetic resonance spectroscopy, perfusion weighted
imaging, magnetic resonance elastography and functional MRI), and (3) molecular
imaging based techniques (positron emission tomography and single photon emission
computed tomography). Therefore, in this review, we aim to summarize the role of these
advanced neuroimaging techniques in the evaluation and management of TBI. This
review is the first to combine the role of the US, MRI and molecular imaging based
techniques in TBI. Advanced neuroimaging techniques have great potential; still, there
is much to improve. With more clinical validation and larger studies, these techniques
will be likely applied for routine clinical use from the initial research.
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BACKGROUND

Traumatic brain injury (TBI) is a common source of morbidity and mortality among civilians and
military personnel. It is estimated that the global incidence of TBI is at 10 million cases annually
(Hyder et al., 2007). A particularly high incidence of TBI is seen among military personnel. Overall
TBI admission rates ranged from 24.6 to 41.8% per 10,000 soldier-years in the Afghanistan and
Iraqi wars (Wojcik et al., 2010).

For modern service members, chronic exposure to repetitive shots from advanced weapon
systems near the head is a common cause of sub-concussive forces. Acute injury, such as explosive
injury, has a lower incidence but varies more in TBI severity range from mild to severe (Table 1).
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Glasgow Coma Scale (GCS) is one of the more common
methods of evaluating TBI severity. Of the three subtypes of
TBI, mild TBI is the most common subtype, accounting for
approximately 75–90% (Fehily and Fitzgerald, 2017). However,
mild TBI is often the most challenging subtype to diagnose, in
part because of a lack of clinically objective and measurable signs
of brain injury. Long-term sequelae of TBI ranges from mild
cognitive impairment to severe disability. In many cases, the
diagnosis becomes clear when a patient presents with physical
manifestations of intracranial injury and routine neuroimaging
findings, indicating that the injury may require urgent surgical
intervention and medication, such as intra-axial and extra-
axial hematoma resulting in life-threatening cerebral herniation.
Routine neuroimaging shortly after brain injury may also provide
information on future prognosis, such as the early mortality
and late morbidity (Maas et al., 2005). Routine neuroimaging
techniques for the clinical evaluation of TBI include head
computed tomography (CT), ultrasound (US) (He et al., 2013),
and conventional magnetic resonance imaging (MRI) sequences
(Shetty et al., 2016) (e.g., T1-weighted imaging (T1WI), T2-
weighted imaging (T2WI), fluid attenuated inversion recovery
(FLAIR), susceptibility weighted imaging (SWI), diffusion-
weighted imaging (DWI)), which can assist with detecting
acute intracranial injuries (e.g., hematoma) and chronic effects
of TBI (e.g., encephalomalacia, hemosiderin). However, in the
context of TBI, limitations of routine neuroimaging include poor
visualization of more subtle changes of brain parenchymal after
injury, poor prognostic ability, and inability to analyze cerebral
perfusion, metabolite and mechanical properties.

With the development of modern neuroimaging techniques, it
is possible to detect and display more subtle brain injury changes.
Routine neuroimaging findings might be negative for mild TBI.
However, advanced neuroimaging techniques are perhaps even
more promising in diagnosis, prognostication, and eventually
impacting treatment. Advances in neuroimaging techniques have
shown potential, including (1) US based techniques (contrast-
enhanced US, intravascular US, and US elastography), (2) MRI
based techniques (diffusion tensor imaging (DTI), magnetic
resonance spectroscopy (MRS), perfusion weighted imaging
(PWI), and magnetic resonance elastography (MRE), functional
MRI), and (3) molecular imaging based techniques (positron
emission tomography (PET) and single photon emission
computed tomography (SPECT)). Therefore, in this review, we
aim to summarize the role of advanced neuroimaging techniques
in the evaluation and management of TBI.

TABLE 1 | Guidelines for the diagnosis of TBI severity.

Mild TBI Moderate TBI Severe TBI

GCS 13–15 9–12 3–8

LOC ≤30 min >30 min but <24 h ≥24 h

PTA ≤24 h >24 h but <7 d ≥7 d

Imaging
findings

No CT
abnormalities

Abnormal CT
findings

Abnormal CT
findings

GCS, Glasgow coma scale; LOC, Loss of consciousness; PTA, Posttraumatic
amnesia; TBI, Traumatic brain injury; min, minutes; h, hours; d, days; CT,
Computed tomography.

SEARCH STRATEGY AND SELECTION
CRITERIA

This is a narrative review where search parameters were
used. Searches of PubMed were performed to obtain the
data and articles for this review. The search terms used
were “traumatic brain injury,” “TBI,” “magnetic resonance
imaging,” “ultrasound,” “ultrasound elastography,” “USE,” “MRI,”
“functional MRI,” “fMRI,” “diffusion tensor imaging,” “DTI,”
“magnetic resonance spectroscopy,” “MRS,” “perfusion weighted
imaging,” “PWI,” “magnetic resonance elastography,” “MRE,”
“positron emission tomography,” “PET,” “single photon emission
computed tomography,” and “SPECT.” Abstracts and articles
were reviewed and included only if they met our criteria of
discussing the role of neuroimaging techniques in evaluating TBI.
There was no date limitation to the articles included.

ADVANCED ULTRASOUND BASED
TECHNIQUES

Contrast-Enhanced Ultrasound
Contrast-enhanced US is particularly useful in assessing
microvascular perfusion (Bailey et al., 2017; Hwang et al.,
2017). Compared with conventional US, contrast-enhanced
US requires intravenous contrast agent (microbubble) to
enhance visualization of anatomical details, which can offer
high soft tissue contrast and improve diagnostic sensitivity.
Using contrast-enhanced US, the quantifiable perfusion kinetic
parameters can be obtained from the wash-in curve, wash-out
curve, and destruction-replenishment curve after intravascular
microbubble injection, which can be used as a valuable clinical
tool for monitoring vasospasm and reperfusion after TBI. This
technique can be performed at the bedside quickly and provide
serial monitoring of brain perfusion abnormalities, particularly
for hemodynamically unstable patients.

Compared with conventional US, intraoperative contrast-
enhanced US during open craniectomy shows more clearly
defined border and significantly larger measured size of the
trauma lesion in TBI patients (He et al., 2013). Contrast-
enhanced US provides more detailed information about vascular
perfusion, which help neurosurgeon distinguish contused brain
tissue (with low or absent enhancement) from healthy brain
tissue (with homogeneous enhancement). In 66% (21 of 32)
of the cases in a study, the procedure enlarged the area
originally planned to be removed. In the patients with TBI,
the severity of the trauma lesion was reclassified and surgical
intervention was redesigned with this technique in 21 (21/32,
66%) cases (He et al., 2013), indicating that contrast-enhanced
US helps neurosurgeons effectively remove hematoma, preserve
normal brain tissue, and prevent vascular injury during surgery.
Furthermore, a study by Heppner et al. has demonstrated
contrast-enhanced US has the potential for both intraoperative
and bedside evaluation of cerebral perfusion in patients with
TBI, which may be suitable for assessing its responses to
decompressive craniotomy and therapies aimed at preventing
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secondary ischemia (Heppner et al., 2006). Through the temporal
bone window, contrast-enhanced US also plays a promising
role in perfusion assessment even without craniotomy. Using
contrast-enhanced US, Eyding et al. demonstrated the difference
between the core region of no perfusion and the surrounding
region of hypoperfusion could be detected through the temporal
bone window (Eyding et al., 2004). In addition, Eyding et al.
evaluated the perfusion of cerebral parenchyma, they found the
hypoperfusion of cerebral parenchyma was associated with the
functional status in the patients of acute stroke (Eyding et al.,
2006). Contrast-enhanced US can provide important information
on the pathological changes of vasogenic edema and vascular
perfusion after brain injury. With no concerns for adverse
reactions in the brain, contrast-enhanced US has been approved
by the Food and Drug Administration in America. Nevertheless,
more future preclinical and clinical studies are needed to finally
generalize this technique for the patients with TBI.

Intravascular Ultrasound
Intravascular US is a rapidly evolving new imaging technique
that can be applied for a multitude of both diagnostic and
interventional purposes (Marteslo et al., 2020). Compared to
conventional US, intravascular US enables real-time cross-
sectional imaging of the vasculature from inside the vessel to the
adjacent extravascular structures without the problem of motion
artifacts or volume averaging, which may play a promising role in
endovascular treatment of vascular injuries in TBI.

In patients with equivocal CT angiography (CTA) in suspected
blunt traumatic aortic injury, intravascular US has been revealed
to be more sensitive than CTA (Azizzadeh et al., 2011).
Stager et al. reported successful endovascular treatment of
traumatic internal carotid artery pseudoaneurysm with bare
metal stenting by intravascular US guidance (Stager et al., 2011).
The neck of the pseudoaneurysm spanned 2 cm by intravascular
US compared with 1 cm by angiography. Therefore, based on
intravascular US findings, a longer stent was used, and 1-year
follow-up CTA showed no residual pseudoaneurysm. As shown
in the study of Stager et al., intravascular US enables clinicians to
more accurately visualize anatomic details of traumatic vascular
injuries, thus contributing to making an optimal treatment
decision. Similarly, a patient with traumatic carotid-cavernous
fistula was successfully monitored by intravascular US and
accurate coil embolization was achieved (Nishio et al., 2009).
Although intravascular US has shown the high diagnostic
accuracy in large vessels, further application of intravascular US
in TBI would require a smaller US transducer that can be placed
in the cerebral vessels (Peng et al., 2021). With the development
of hardware size, portability and resolution, intravascular US will
play a critical role in traumatic vessel imaging following TBI.

Ultrasound Elastography
Ultrasound elastography is an imaging technique sensitive to
tissue stiffness. In recent years, this technique has been further
developed and refined to achieve quantitative evaluation of tissue
stiffness. US shear-wave elastography generates a map of the
Young’s modulus, a property describing the stiffness of the
tissue of interest (Sigrist et al., 2017). US elastography takes

advantage the altered elasticity of in soft tissue that occur as a
result of specific pathological or physiological processes (Shiina
et al., 2015). Since the mechanical properties of living tissue
alter under different pathological or physiological conditions, US
elastography can detect these alterations and has been clinically
applied in the liver, breast, thyroid, kidney, prostate diseases
(Sigrist et al., 2017).

Using US elastography, Xu et al. found a decreased stiffness
values (as measured by Young’s modulus) due to subsequent
tissue edema in the ipsilateral hemisphere of cerebral ischemic
infarction (Xu et al., 2013). Furthermore, Xu et al. applied US
elastography at the craniectomy site after injury and compared
the hemispheric stiffness values in a rodent model of mild
TBI (Xu et al., 2014). They found that there was an ipsilateral
decrease and contralateral increase of the stiffness values by
24 h after injury. The observed decrease in the stiffness values
in the injured hemisphere is consistent with the findings from
MRE studies on TBI models of mice that showed a significant
reduction in the stiffness of the injured region immediately after
injury (Boulet et al., 2011, 2013). Tissue stiffness values are
sensitive to the tissue’s net fluid content. For example, all else
being equal, the greater the percentage of fluid in the tissue,
the lower the measured stiffness, and the less fluid, the greater
stiffness (Tanter et al., 2008). Therefore, the decreased stiffness
values in the injured hemisphere were mainly attributed to the
edema formation ipsilateral to injury by 24 h (Xu et al., 2014).
Moreover, Xu et al. explained that the increased stiffness values in
the contralateral hemisphere were attributed to reduced cerebral
perfusion pressure and cortical perfusion contralateral to the
injury. Reduced blood flow to the brain parenchyma resulted in a
reduction in the fluid content and an increased stiffness values
of the brain parenchyma. In addition, transcranial application
of a form of US called vibro-acoustography (VA) was applied to
detect cerebral changes in rat following TBI (Suarez et al., 2015).
The VA technique uses ≥2 US vibrations at slightly different
frequencies to characterize the material properties of the object
based on its acoustic response to the applied vibration. From
that study, the preliminary findings revealed that TBI model rats
showed decreased acoustic emissions relative to sham-TBI rats.
In the future, more studies are needed to understand the exact
mechanism behind the changes in the tissue stiffness values over
a chronic time course. Additionally, future studies of clinical
applications are needed to the human brain in vivo and further
improvements in US resolution may make the US elastography
useful in real clinical application.

ADVANCED MAGNETIC RESONANCE
IMAGING BASED TECHNIQUES

Diffusion Tensor Imaging
Diffusion tensor imaging, a more advanced MRI technique
based on DWI, measures the diffusion of water in multiple
spatial directions and provides information about axon bundles
(Mukherjee et al., 2008). DTI can calculate diffusion with a variety
of parameters. Of these parameters, the commonly reported
parameters are fractional anisotropy (FA), which quantifies the
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asymmetry of water diffusion, and mean diffusivity/apparent
diffusion coefficient (MD/ADC), which measures the average
magnitude of water diffusion.

Using DTI, Arfanakis et al. showed the white matter damage
could be detected within 24 h following TBI (Arfanakis et al.,
2002). Thus, they suggested DTI may be a promising technique
for detecting diffuse axonal injury in vivo. Since then, more
and more DTI studies of TBI have appeared. The reported
results vary widely depending on the TBI severity and imaging
time after injury. In the acute mild TBI, several DTI studies
showed increased FA of corpus callosum, which may be caused by
cytotoxic edema following TBI (Bazarian et al., 2007; Wilde et al.,
2008). To explore the pattern of the impact of moderate to severe
TBI on microstructural development, Wilde et al. demonstrated
microstructural FA decrease and ADC increase over 18 months
after injury (Wilde et al., 2012). A meta-analysis of 44 studies
found that moderate to severe TBI resulted in larger white matter
microstructural damage than mild TBI (Wallace et al., 2018a).
However, the findings from DTI performed in the acute, subacute
and chronic intervals did not show any time-dependent changes
(Wallace et al., 2018a).

In addition, using DTI, a number of studies focused on the
association between the cognitive and functional outcomes of
mild to severe TBI and white matter microstructural changes.
In patients with very mild TBI, to determine the association
between frontal white matter damage and acute executive
function impairment, a study by Lipton et al. showed that
decreased FA in the dorsolateral prefrontal cortex (DLPFC)
was significantly correlated with worse executive function
performance (Lipton et al., 2009). A meta-analysis investigated
the relationship between DTI and cognitive outcomes in TBI
patients (Wallace et al., 2018b). That meta-analysis included a
total of 20 DTI studies and reported that in most brain regions,
a high FA and low MD/ADC were found to be associated
with better cognitive performance, particularly memory and
attention (Wallace et al., 2018b). Furthermore, in mild TBI
patients, Yuh et al. utilized the DTI findings to predict 3-
and 6-month Glasgow outcome scale-extended (GOS) outcomes.
They demonstrated significantly reduced FA was correlated
with worse 3- and 6-month GOS outcomes (Yuh et al., 2014).
After mild TBI, a part of patients experienced persistent post-
concussion symptoms (PPCS) for several months to years
(Polinder et al., 2018). Compared to the patients who recovered
and healthy controls, mild TBI patients who developed PPCS
showed more severely damaged white matter microstructural
integrity after brain injury (Stenberg et al., 2021). In severe
TBI, high FA at the initial scan could predict favorable
GOS outcome of 1 year, and increased FA in the internal
capsule and in centrum semiovale during follow-up of 1 year,
particularly in patients with favorable GOS outcome (Sidaros
et al., 2008). The increased FA over time was hypothesized to
be secondary to axonal recovery or axonal regrowth during
later recovery (Sidaros et al., 2008). Although the time interval
following TBI, brain areas examined, magnetic strength and
analysis methods were various in these previous studies, most
studies have shown that DTI is a sensitive neuroimaging
technique detecting white matter microstructural damage in TBI.

Consensus guidelines for the application of DTI parameters are
needed in future TBI studies.

Magnetic Resonance Spectroscopy
Magnetic resonance spectroscopy relies on detecting magnetic
field interactions between protons according to their Larmor
resonance frequencies (Wintermark et al., 2015). MRS
can quantify chemicals in a certain tissue and manage to
generate a spectrum of the signal intensities of different
metabolites (Astrakas and Argyropoulou, 2016). The metabolites
include N-acetylaspartate (NAA) for neuronal viability,
creatine (Cr) for cellular energy utilization, choline (Cho) for
membrane turnover, lactate (Lac) for anaerobic metabolism,
glutamate/glutamine (Glx) for excitatory neurotransmission, and
myoinositol (mI) for membrane turnover and reactive gliosis
(Garnett et al., 2000).

Quantifying the metabolites, MRS is thought to be more
sensitive to detect and manage TBI, particularly when they occur
in the absence of visible injury on routine anatomic imaging. In
both acute and chronic phases, NAA/Cr ratios are decreased in
mild TBI patients (Henry et al., 2011). Further, a longitudinal
study showed NAA levels was decreased and remained low in
patients with unfavorable outcome, while NAA levels recovered
in patients with favorable outcome (Signoretti et al., 2002).
A meta-analysis by Gardner et al. identified 11 studies of
mild TBI and found that there were significant differences in
MRS after injury in most studies (Gardner et al., 2014). They
concluded that metabolic disruption remains even after the
resolution of symptoms. In addition, in mild TBI patients, a
prospective longitudinal study by George et al. revealed a positive
association between Cr levels in the centrum semiovale and
chronic neurocognitive performance, as measured half year after
injury (George et al., 2014). For moderate to severe TBI, early
decline in NAA levels in subcortical brain regions was an early
indicator of tissue injury, which could further predict long-term
neurocognitive outcomes (Holshouser et al., 2019). Similarly,
reduced NAA/Cho ratios and NAA/Cr ratios in the acute period
were correlated with poor neurologic outcome half year or more
after injury (Aaen et al., 2010). In addition to NAA, Cho and Cr,
mI was found to be elevated following TBI and associated with a
poor neurologic outcome (Ashwal et al., 2004). The mI elevation
was attributed to proliferative astrogliosis or disturbance in
osmotic function.

Taken together, decreases in the NAA and Cr, as well
as increases in Cho, usually occur in TBI patients, and the
magnitude of these metabolic changes correlate with the severity
of TBI and also with functional outcomes. MRS has shown
its potential role in detecting the metabolic changes of TBI.
However, clinical MRS applications for TBI are limited because of
their significant overlap with the metabolites changes that are also
seen in many other brain disorders, which reduces the specificity
of MRS for TBI. Therefore, more future studies are needed to
determine how to best apply this technique.

Perfusion Weighted Imaging
Traumatic brain injury is related to impaired cerebral vascular
auto-regulation function, vascular injury and increased
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blood-brain barrier permeability, then resulting in the changes of
cerebral blood flow (CBF), ischemia and even infarction (Bigler
and Maxwell, 2012). For these mechanisms, the studies using
perfusion imaging have long been a target technique for TBI.
Many imaging tools have been used in the previous studies,
such as CT perfusion (CTP) (Wintermark et al., 2004), xenon-
enhanced CT (Xe-CT) (Rostami et al., 2014), SPECT (Abu-Judeh
et al., 1998; Davalos and Bennett, 2002), PET (Yamaki et al.,
1996), and dynamic susceptibility contrast (DSC) PWI (Garnett
et al., 2001), and arterial spin-labeling (ASL) PWI (Ge et al.,
2009; Grossman et al., 2013). However, perfusion imaging
techniques using CT, SPECT, and PET all have radiation. For
example, previous study has demonstrated that single head CT
scan generates about 2 mSv of radiation, whereas a CT radiation
dose of 10 mSv is associated with fatal cancer in 1 per 2,000
patients (Costello et al., 2013). Multiple scans may increase the
risk of malignancy. However, MRI can be performed without
any radiation. Moreover, MRI has higher soft tissue resolution
and can may provide a higher level of anatomic detail of brain
injury than CT. DSC-PWI requires injection of intravenous
contrast agent, while ASL-PWI does not, and is based on labeling
endogenous water in the blood and using it as a tracer (Douglas
et al., 2018). Using DSC-PWI, Garnett et al. measured CBV
in both contused and normal-appearing brain tissue. Notably,
despite the small sample size, reduced CBV was not only detected
in contused regions but also normal-appearing brain tissue on
DSC-PWI. Furthermore, the reduced CBV correlated with worse
clinical outcomes (Garnett et al., 2001). Using DSC-PWI, in
mild TBI patients, Papadaki et al. found significantly reduced
CBF in DLPFC, putamen, and hippocampus, and reduced CBF
correlated with psychoemotional outcomes (e.g., anxiety and
depression) (Papadaki et al., 2021). ASL-MRI is an alternative
MRI perfusion technique. Using ASL-PWI, in mild TBI patients,
CBF was significantly reduced in the thalamus relative to
healthy controls (Ge et al., 2009; Grossman et al., 2013). And
the reduction of thalamic CBF was strongly correlated with
neurocognitive impairment (Ge et al., 2009). In addition, using
ASL-PWI, Li et al. investigated not only region CBF but also CBF
connectivity features in acute mild TBI patients, they reported
both regional CBF abnormalities and CBF connectivity deficits
in these patients (Li et al., 2020). Although the dynamics of
these studies are too weak to adequately assess the prognostic
power of ASL perfusion in mild TBI patients, the results are
interesting. These studies initially demonstrate the potential role
of PWI in TBI evaluation. In the future, more prospective and
longitudinal studies are needed to determine the role of PWI
in evaluating TBI.

Magnetic Resonance Elastography
Magnetic resonance elastography is scanned with an MRI
pulse sequence that generates propagating sound waves and a
measurable tissue displacement (Muthupillai and Ehman, 1996).
The pulses needed for MRE are created in an experimental
model whose driver converts compressed air into motion and
transmits it to a pillow beneath the patient’s head (Klatt et al.,
2015). Then, the displacement information is converted into
an elastic graph, and the intrinsic cerebral viscoelasticity of the

brain tissue being tested. Using MRE, the mechanical property of
the brain tissue can be visualized and measured non-invasively.
MRE is considered a particularly sensitive imaging tool that may
increase the potential for early diagnosis of neurological disorders
(Hiscox et al., 2016), which has been applied to a number of
neurological disorders, such as multiple sclerosis (Wuerfel et al.,
2010), Alzheimer’s disease (Murphy et al., 2016), frontotemporal
dementia (Huston et al., 2016), Parkinson’s disease (Lipp et al.,
2013), amyotrophic lateral sclerosis (Romano et al., 2014). With
MRE, several studies of preclinical models have indicated its
potential usefulness in TBI. The mechanical properties of the
brain (as measured by MRE) have been found to change following
brain injury in living rat and mice (Alfasi et al., 2013; Boulet et al.,
2013). Furthermore, using a TBI mouse model, a longitudinal
study of MRE demonstrated that the elastic modulus of the
injured brain tissue was higher than that of the contralateral
hemisphere 1 h after injury (Feng et al., 2017). However, the
elastic modulus decreased 1 day after injury, and recovered to
be close to the brain tissue in the contralateral hemisphere in
7 days. Although more preclinical and clinical validations are
needed for this emerging modality in the future, MRE technique
holds the promise in measuring the mechanical properties
of the brain in vivo through non-invasive scans, potentially
improving prognostication.

Functional Magnetic Resonance Imaging
Functional MRI relies on blood oxygen level-dependent (BOLD)
imaging, which reflects hemodynamic response associated with
neural activity. Transient local increases in neural activity lead to
changes in the ratio of oxygenated-to-deoxygenated hemoglobin,
which, in turn, affects the MRI signal response (Logothetis et al.,
2001). Functional MRI has been widely applied to investigate the
spontaneous activity of the human brain in vivo. It has been well-
established that human consciousness involves interconnected
circuits, of those, one most important network is called the
default mode network (DMN) (Mason et al., 2007). Using
resting-state functional MRI, Nathan et al. revealed the DMN
dysfunction in the military mild TBI patients (Nathan et al.,
2017). Furthermore, Zhou et al. investigated the integrity of the
DMN, and found the decreased posterior DMN connectivity
correlated positively with neurocognitive dysfunction, while the
increased anterior DMN connectivity correlated negatively with
posttraumatic symptoms (Zhou et al., 2012). Cognitive fatigue
is one of the most reported symptoms following TBI (Beaulieu-
Bonneau and Ouellet, 2017). Recently, Bruijel et al. found that
cognitive fatigue was linked to DMN connectivity and was
differently associated with striatal connectivity in moderate-
severe TBI patients relative to healthy controls (Bruijel et al.,
2022). This highlights the dynamic nature of DMN and suggests
how changes in one brain area may trigger compensatory neural
responses in other brain areas to achieve homeostasis of neural
information exchange (Andrews-Hanna et al., 2010).

In addition, DLPFC plays a critical role in cognitive control
(MacDonald et al., 2000). Using task-based functional MRI,
Witt et al. demonstrated that mild TBI patients exhibited
reduced BOLD activity in the DLPFC (Witt et al., 2010).
DLPFC also serves as a part of the pain modulatory system.
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Using pain anticipation task, Strigo et al. demonstrated that
mild TBI patients required greater DLPFC and subcortical
engagement and greater use of modulatory resources than
healthy controls to achieve comparable control over aversive
experiences during pain (Strigo et al., 2014). Cerebral functioning
and behavioral performance are influenced by pain following
TBI. Gosselin et al. found that mild TBI patients with severe
pain showed decreased BOLD activation of the DLPFC during
the working memory task and poorer task performance, while
patients with other injuries and severe pain showed that
pain was associated with increased BOLD activation of the
DLPFC and not correlated with task performance (Gosselin
et al., 2012). The authors suggest that the interactions among
pain, cognition, and cerebral functioning could not easily
be generalized from one type of injury to another type.
However, it should be noted that the possibility of partial
overlap between these functional networks cannot be ignored
in TBI patients. Functional MRI is a very promising technique
for evaluating the cerebral functioning change in TBI, but
further rigorous testing is needed before these results can be
generalized clinically.

ADVANCED MOLECULAR IMAGING
BASED TECHNIQUES

Positron Emission Tomography and
Single Photon Emission Computed
Tomography
Positron emission tomography and SPECT are performed with
tracer molecules tagged with radioisotopes. Early researches
employing PET and SPECT in TBI mainly focused on
perfusion imaging. TBI is related to impaired cerebral vascular
autoregulation and raised blood-brain barrier permeability,
resulting in CBF changes, ischemia and even infarction (Bigler
and Maxwell, 2012). In patients with mild and moderate TBI,
early SPECT studies showed hypoperfusion (Jacobs et al., 1994;
Abu-Judeh et al., 1998; Hofman et al., 2001; Davalos and Bennett,
2002). SPECT studies only allow qualitative comparisons
between brain regions, whereas PET is quantitatively accurate.
Similarly, hypoperfusion was also detect after severe TBI in
early PET study (Yamaki et al., 1996). In addition, with
metabolic imaging, primarily with fluorodeoxyglucose (FDG)-
PET, previous studies showed a broad pattern of prolonged brain
hypometabolism that may last for days to months following mild
TBI (Byrnes et al., 2014).

Although currently these PET and SPECT techniques have
limited clinical application in the patients with TBI, these
techniques have a lot of potential. In recent years, PET tracers
have the potential to target amyloid plaques and tau proteins
(Small et al., 2013; Hong et al., 2014). Chronic traumatic
encephalopathy (CTE) is a neurodegenerative disease linked to
chronic TBI. With amyloid PET, a study of small sample has
demonstrated an increased Aβ deposition in the cortical gray
matter and the striatum, but not in the thalamus or white matter
in mild-to-severe TBI up to 1 year after injury (Hong et al., 2014).

With tau PET, the patients with CTE have been found to show
increased tau levels compared to healthy controls (Stern et al.,
2019). These previous studies recruited only a small sample of
subjects and require further validation in the future studies before
routine clinical application.

CONCLUSION

Advanced neuroimaging techniques (i.e., MRI-based, US-based
and molecular imaging-based techniques) have great potential;
still, there is much to improve. With more clinical validation and
larger studies, these techniques will be likely applied for routine
clinical use from the initial research. Several specific injuries
of TBI hold promise for future innovation. Among them, mild
TBI have attracted much attention due to their high incidence
and lack of detection on routine imaging. The ability to predict
functional prognosis using advanced neuroimaging techniques is
another promising area of active research. With innovation and
improvements of technology, advanced neuroimaging techniques
will be further developed to likely guide which patients will
benefit from some specific therapy and also help track their
response to therapy.

For US-based advanced techniques (i.e., contrast-enhanced
US, intravascular US, and US elastography), although imaging
scientists and clinicians were unable to use US imaging as a
first-line and routine assessment tool for TBI patients due to
a lack of an adequate acoustic imaging window in the past,
there have been a lot of new advances in US-based imaging as
described above. US-based imaging can play a complementary
role in evaluating TBI in addition to routine imaging. Compared
to MRI-based and molecular imaging-based techniques, US has
several obvious inherent advantages, such as cost-effectiveness,
portability, rapid availability, and lack of radiation. Therefore,
in the future, with innovation of US equipment and further
improvements of US resolution, US-based advanced techniques
will play a critical role in the evaluation and management of
TBI patients. For MRI-based advanced techniques (i.e., DTI,
MRS, PWI, MRE, and functional MRI), multiple-modality and
various analytical methods are available for analysis of the
MRI-based data for population-based research. Nevertheless,
there is a lack of effective analytical methods that can be
clinically used to quantitatively analyze advanced MRI-based data
in an individual subject or patient. In recent years, machine
learning has been developed to make individual distinctions
in a number of neuroimaging studies in many neurological
or psychiatric disorders. Therefore, in the future, a novel
approach of quantitative analysis with machine learning in the
level of a single individual is needed before bringing these
techniques into routine diagnostic use in standard clinical care.
For molecular imaging-based techniques (i.e., PET and SPECT),
previous studies were case reports or small sample studies,
thus the findings require further validation in larger studies
before routine clinical application. In the future, combining
multimodal neuroimaging modalities, and developing multi-
modal neuroimaging biomarkers in TBI will go a long way
to providing more accurate diagnosis, stratification of disease
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severity of TBI as well as providing important indicators of
treatment response and outcome.
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