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Aim: Low levels of immune-related micronutrients have been identified in β-thalassemia samples. More-
over, the excess amount of iron, contributing to oxidative stress in the pathogenesis of the disease, al-
ters the immune system in β-thalassemia, which is important during the COVID-19 pandemic. Materials &
Methods: Searches of PUBMED and EMBASE were conducted to identify the level and supplementation
of micronutrients in β-thalassemia, published from 2001–May 2020. Results: The review found six observa-
tional and five interventional studies supporting the importance of supplementing vitamins and minerals
among patients with β-thalassemia. Conclusion: Supplementation of immune-related vitamins and min-
erals might bring benefits to the immune system, especially in reducing oxidative stress in β-thalassemia.

Lay abstract: Nutrition is important for the human body, including the immune system. During COVID-19,
maintaining immunity is crucial to prevent transmission, because vaccines remain under development and
definitive therapy is under clinical trial. In β-thalassemia, for which immune-related vitamins and minerals
are inadequate, supplementation is important, not only to boost the immune system during this outbreak
but also to maintain other body functions.
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The COVID-19 outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has
disseminated globally [1]. The symptoms vary from mild to severe, with severe phenotypes more prevalent in certain
populations with comorbid diseases and associated with lower immune cells [2] and higher cytokine levels [3,4]. The
immune system involvement in this emerging disease has been reviewed intensively [4,5]. Because vaccines remain
under development and definitive therapy is under clinical trial, nonpharmaceutical interventions such as hand
hygiene, social distancing and maintaining immunity are ways to protect from this infection [6]. Even though the
two epicenters of COVID-19 are in China and Italy [7], which have a high prevalence of thalassemia, confirming
the association between these two conditions has not been well established.

Thalassemia is the most common genetic disease with defects in α-globin or β-globin genes resulting in a
reduced hemoglobin production. In its most severe form, patients with thalassemia require routine red blood
cell transfusions immediately after birth to survive; thereby, causing economic, mental and social burden for
patients and their countries [8]. This review focuses on β-thalassemia, which is one type of thalassemia caused by
mutations in the β-globin gene leading to defective of β-globin chain synthesis. Deficiencies of micronutrients
have been observed in transfusion-dependent β-thalassemia, including in immune-related vitamins and minerals,
such as vitamin C, vitamin E, vitamin D, zinc and selenium [9,10]. The deficiencies might be caused by inadequate
food intake, mount losses, or increasing endogenous needs for key micronutrients [10]. The low level of those
micronutrients and the oxidative stress-induced by iron overload might contribute to the alteration of the immune
system in β-thalassemia [8,11,12]. Therefore, this study attempted to identify the level of immune-related vitamins
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Figure 1. Flow diagram of articles identified and evaluated.

and minerals among patients with β-thalassemia and the necessity of the supplementations to improve immunity,
which may be important during the COVID-19 pandemic.

Methods
This review was designed and conducted based on the recommendations of PRISMA guidelines [13]. An electronic
search of medical literature using the keyword (thalassemi*:ab,ti AND ‘vitamin c’:ab,ti) OR (thalassemi*:ab,ti
AND ‘ascorbic acid’:ab,ti) OR (thalassemi*:ab,ti AND ‘vitamin e’:ab,ti) OR (thalassemi*:ab,ti AND ‘toco-
phero*’:ab,ti) OR (thalassemi*:ab,ti AND ‘vitamin d’:ab,ti) OR (thalassemi*:ab,ti AND ‘cholecalciferol’:ab,ti)
OR (thalassemi*:ab,ti AND zinc:ab,ti) OR (thalassemi*:ab,ti AND selen*:ab,ti) AND (nutri*:ab,ti OR supple-
men*:ab,ti) published from 2001 to May 2020 was performed on PUBMED and EMBASE. All the originals
studies were retrieved and reviewed by two independent reviewers, and any dispute was discussed with the third
reviewer. Observation or intervention studies reporting level of micronutrients among patients with β-thalassemia
patients were included in this study. Other studies not meeting the criteria were excluded.

Results
We identified 172 published reports of interventional and observational studies on immune-related vitamins and
minerals among patients with β-thalassemia. After an initial review of the titles and abstracts, 59 studies were
selected for detailed assessment, yielding six eligible observational studies and five interventional studies (Figure 1).
All the patients in the observational studies were β-thalassemia major, while in the interventional studies, from 202
patients, five had HbE/β-thalassemia, 15 patients had β-thalassemia intermedia and the rest involved β-thalassemia
major.
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Table 1. Immune-related vitamin and mineral level among patients with �-thalassemia.
Vitamin/mineral Thal subject (mean + SD) Control (mean + SD) Age (years) Chelation Ref.

Vitamin C (mg/dl)
NR: 0.6–2

0.256 ± 0.09 (n = 108) 1.04 ± 0.4 (n = 60) 2–17 Deferiprone, deferoxamine or both [9]

Vitamin E/�-Tocopherol (mg/dl)
NR: 0.55–1.7

0.498 ± 0.6 (n = 108) 10.6 ± 4.5 (n = 60) 2–17 Deferiprone, deferoxamine or both [9]

0.2 ± 0.34 (n = 43) 1.1 ± 0.82 (n = 42) 1–15 No chelation data available [14]

25-OHD (ng/ml)
NR: �30

24.1(16.5–64.4)† (n = 40) 28.1(25.3–33.4)†

(n = 17)
2–16 Deferiprone, deferasirox or

combination with Deferoxamine
[15]

Zinc (μg/dl)
NR: 70–125

17.8 ± 13 (n = 108) 103.6 ± 10.8 (n = 60) 2–17 Deferiprone, deferoxamine or both [9]

44.7 ± 24.2 (n = 40) 63.3 ± 30.3 (n = 30) �2 Deferasirox [16]

109.8 + 68.15 (n = 30) 96.77 + 52.72 (n = 30) 1–10.6 Deferasirox and deferoxamine [18]

Selenium (μg/l)
NR: 70–150

31.5 ± 19.1 (n = 108) 65.9 ± 6.3 (n = 60) 2–17 Deferiprone, deferoxamine or both [9]

1.4 + 0.2 (n = 20) 1.8 + 0.1 (n = 10) 19–32 Deferiprone or deferoxamine [17]

Controls are healthy subject.
†Median (range).
NR: Normal range.

Table 2. Supplementation of immune-related vitamin and mineral level among patients with �-thalassemia.
Vitamin/mineral Supplement Before (mean + SD) After

(mean + SD)
Age (years) Outcomes Ref.

Vitamin C (mg/dl) 100 mg vitamin C/day,
1 years

3.80 + 1.67 (n = 90) 6.40 + 1.14 ≤18 Vitamin C potentiates the efficacy of
DFO to reduce iron overload

[19]

Vitamin
E/�-Tocopherol
(mg/dl)

350 mg/day vitamin E,
1 month

0.59 + 0.41 (n = 5)† 5.19 + 1.37 28.5 + 6.2 Vitamin E prevent erythrocyte
membrane damage

[22]

400 mg/day vitamin E 0.3 + 0.2 (n = 30) 0.9 + 0.5 �18 Mean GPX activity, but not SOD,
decreased

[20]

2 × 300 mg/day of
vitamin E, 9 months

0.27 + 0.05§ (n = 15)‡ 0.79 + 0.13§ 10–51 Vitamin E improves the
antioxidant/oxidant balance in plasma,
LDL particles and red blood cells, and
counteracts lipid peroxidation processes

[21]

Zinc (μg/dl) 30 mg/day zinc sulfate,
9 months

68.9 + 25.5 (n = 32) 93 ± 29.8 8–18 Potential antioxidant and
anti-inflammatory effects of zinc
supplements in reducing anti-HSP27
titers

[23]

Zinc sulfate
220 mg/day
(Zinc 50 mg)

84.6 + 14.8 (n = 30) 163.7 + 14.5 �18 Mean GPX activity, but not SOD,
decreased

[20]

†HbE/�-thalassemia.
‡�-thalassemia intermedia.
§Converted from μMolar.
GPX: Glutathione peroxidase; LDL: Low-density lipoprotein; SOD: Superoxide dismutase.

Status of immune-related vitamin and mineral among patients with β-thalassemia
The six observational and five interventional studies, regardless of the aims of the studies, on micronutrients
in β-thalassemic patients were included in this review, with 609 β-thalassemia major, 9 HbE/β-thalassemia, 15
β-thalassemia intermedia, with or without iron chelation consumption, and 248 healthy controls. The age range
was from 1 to 51 years old. The immune-related micronutrient levels are summarized in Table 1, while the effects
of vitamin and mineral supplementation are summarized in Table 2.

The immune-related vitamins and minerals, including vitamin C [9], vitamin E [9,14], vitamin D [15], zinc [9,16] and
selenium [9,17], were identified to be reduced among patients with β-thalassemia when compared with healthy
controls. Only one study by El Missiry et al. reported normal levels of zinc among 30 patients, which was
comparable with healthy control [18]. Interestingly, the mean level of 25-OHD3 in β-thalassemia and healthy
controls was lower than the sufficient reference value [15]. A similar finding was observed regarding selenium [9,17]

and in zinc [16] indicating that these reduced vitamins and minerals might not only be affected by the disease status
or severity.

All the patients in the observation studies consumed iron chelation agents, including deferiprone, deferasirox,
deferoxamine or combination to remove the excess iron. Unfortunately, due to the characteristics of the respon-
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dents and the study design, only five interventional studies on vitamin C [19], vitamin E [20–22] and zinc [20,23]

supplementation were included in this study. The details of each vitamin and mineral will be discussed in each
section.

Vitamin C
During this pandemic, vitamin C is routinely given to patients. In many countries, a high dose of vitamin
C is administered intravenously to reduce the cytokine storm among patients with Acute Respiratory Distress
Syndrome. Its antioxidant capacity and antiviral properties were claimed to give a good outcome among patients
with COVID-19 [24] even though clinical trials of 24 gm/day of vitamin C treatment for 7 days remain under
investigation [25]. In vivo study demonstrated that supplementing vitamin C for 3 weeks before H3N2 infection,
but not on the day of infection, supports viral elimination; suggesting the importance of maintaining vitamin C
level for immunity against the virus [26]. Among 84 patients with sepsis and Acute Respiratory Distress Syndrome,
4 × 50 mg/kg vitamin C for 4 days did not significantly reduce the organ failure, inflammation (C-reactive
protein) and vascular injury (thrombomodulin), when compared with patients receiving placebo; however, overall,
vitamin C supplementation reduced the mortality rate [27]. Nevertheless, the contrary result might be caused by the
stage of sepsis in the study, the vitamin C dose and eliminating the deceased patients from the calculation [28]. In
β-thalassemia, limited information is available regarding ability of vitamin C to disrupt the integrity of low-density
lipoprotein, scavenge-free radicals, inhibit lipid peroxidation and restore other antioxidants such as α-tocopherol [29].
In vitro studies demonstrated that supplementing vitamin C and selenium can restore the cell target lysis activity
of natural killer (NK) cells from non-splenectomized patients with β-thalassemia [30].

Iron is the main culprit of oxidative stress in β-thalassemia. A Fenton reaction, a reaction between iron and
hydrogen peroxide, produces reactive oxygen species (ROS) and leads to tissue and organ damage contributing to
the disease pathology [31]. A reduced total antioxidant capacity among patients with thalassemia was seen in a study
from 165 transfusion-dependent patients with β-thalassemia [32]. In addition, decreased activity of antioxidant
enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase might contribute to the
increasing level of oxidation [20]. Therefore, an antioxidant agent, such as vitamin C or vitamin E is necessary to
reduce oxidative damage.

One related study also observed reduced vitamin C levels among transfusion-dependent patients with β-
thalassemia when compared with healthy control [9]. Moreover, the status of oxidative stress induced by iron
overload correlated with poor growth among children with β-thalassemia, suggesting the necessity of antioxidant
supplementation [14]. Interestingly, in the absence of an iron chelator, vitamin C can increase iron absorption
by reducing Fe3+ to Fe2+, contributes to hydroxyl radical formation and further increases oxidation. Therefore,
with its prooxidant activity, vitamin C supplementation in iron-rich conditions is still debatable [33]. Despite its
prooxidant activity, vitamin C increases the efficiency of chelation agents by promoting Fe2+ and increases the iron
release from reticuloendothelial system. Therefore, in the presence of chelation agents, free iron is accessible and
increases the excretion of minerals [33,34].

A clinical study investigating the effect of vitamin C on iron chelator agents was conducted among 180
transfusion-dependent patients with β-thalassemia. Patients were divided in six groups, each receiving iron chelation
deferoxamine, deferiprone and deferasirox with or without vitamin C 100 mg daily. Follow up was performed for
1 year to assess transfusion interval, hemoglobin level, iron profile and iron deposition in various organs. The
results showed reduced serum ferritin, liver iron concentration and transferrin index, as well as an increase in
hemoglobin level and cardiac MRI T2* in the vitamin C supplemented group. Interestingly, vitamin C combined
with deferoxamine increased hemoglobin level, reduced serum ferritin and transferrin saturation compared with
those receiving deferiprone or deferasirox with vitamin C [19]. Therefore, supplementing vitamin C might potentiate
the efficacy of deferoxamine better than deferiprone and deferasirox to bind the iron and effectively reduce the iron
overload, contributing to alteration of the immune system.

In summary, considering the anti and prooxidant properties of vitamin C, its supplementation in transfusion-
dependent β-thalassemia should only be considered while consuming deferoxamine with a dose of 2 to
3 mg/kg/day [35]. This dose is far higher than the recommended dietary allowance (RDA) of 90 mg/day for
adult males and 75 mg/day for adult females to reach the antioxidant effects [36]. However, cautions should be
taken when consuming a high dose of vitamin C as its metabolite, oxalic acid, may crystallize to calcium oxalate,
which can lead to oxalate nephropathy [37].
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Vitamin E
The level of another antioxidant vitamin, vitamin E or tocopherols, also decreased in β-thalassemia major [9,14]. A
study in 30 patients with β-thalassemia major found reduced vitamin E level and this level increased after 400 mg/day
vitamin E supplementation, opposite that of the mean of glutathione peroxidase (GPX) activity [20]. Moreover, an
oral treatment of 600 mg/day of vitamin E reduced the fragility of red blood cells among 5 patients with HbE/β-
thalassemia. Unfortunately, no changes in hemoglobin levels could be observed after the supplementation [22]. The
role of vitamin E supplementation in preventing erythrocyte membrane damage and increasing antioxidant activity
was also observed among 15 patients with intermediate β-thalassemia receiving 350 mg/day of vitamin E [21]. The
RDA for both adult males and females is 15 mg/day of vitamin E (α-tocopherol) [36].

Nevertheless, the antioxidant activity of vitamin E has been studied extensively. To prevent lipid peroxidation,
this vitamin works by donating a hydrogen atom to the free radicals and produces oxidized tocopherol radicals.
Further, with the help of vitamin C, oxidized tocopherol radicals are converted back into tocopherols [29]. Moreover,
one proteomics study suggested that vitamin E might alter C3 complement expression leading to stabilizing the
RBC membrane in circulation [38]. Unfortunately, a study conducted in NK cells of patients with thalassemic
found that vitamin E failed to restore the cytolytic capacity of the cells [39]. However, a recent study showed that
vitamin E supplementation significantly increased the risk of prostate cancer among healthy males. The risk was
increased by 17% at 7 years of median follow-up [40]. In vivo study indicated that vitamin E upregulated CYPs,
including CYP1A1 and CYP1B1 which highly expressed in prostate cancer, increased ROS production and led to
the mutation of prostate cells [41]. Therefore, males with prostate hyperplasia, elevated prostate-specific antigen or
history of prostate cancer should be cautious when consuming high dose of vitamin E [42].

In the clinical setting, supplementing high dose antioxidant vitamins remains a very common practice. To
understand whether this supplementation has a beneficial or detrimental effect among patients with β-thalassemia,
further studies involving more patients with thalassemic are needed to explore the effect of vitamin C and vitamin
E supplementation in the pathogenesis of β-thalassemia. However, to obtain the antiviral properties and maintain
the immune system, patients with β-thalassemia must consume these antioxidant vitamins at the correct time and
suitable dose to minimize unwanted effect.

Vitamin D
Vitamin D is a fat-soluble sterol derivative important for bone health and plays a crucial role in calcium and
phosphate homeostasis, glucose, mineral regulation and cardiovascular, neurocognitive and immune functions.
The idea that vitamin D3 serves a role in immunity has been established because of abundant VDR expression
on innate and adaptive immune cells which has been elaborated in other reviews [43–45]. The antiviral property of
vitamin D has been reported in rhinovirus [46,47], hepatitis C virus [48] and influenza virus [49,50]. However, the
benefit of vitamin D supplementation in respiratory infection remains debatable [51,52]. In COVID-19 infection,
a positive correlation was found between the low level of vitamin D and the number of COVID-19 mortality
cases [53]. However, its benefit remains questionable [54] and the confirmation is currently under investigation in
some clinical trials [55–57].

Serum level of 25 hydroxycholecalciferol (25-OHD) is used to determine the vitamin D status of the patient [58,59],
and is categorized as sufficient when serum level of 25-OHD was >30 ng/ml (>75 nmol/l), insufficient when
serum level of 25-OHD was 20–30 ng/ml (50–75 nmol/l) and moderate deficiency when the value was <20 ng/ml
(<50 nmol/l) [60]. A study in Egypt involved 40 patients with β-thalassemia and 17 healthy controls showed the
mean serum level of 25-OHD of all respondents was below >30 ng/ml. Nine of 40 patients (22.5%) presented
vitamin D deficiency [15]. The risk for developing vitamin D deficiency among patients with thalassemia includes
liver iron deposition, darker skin, inadequate dietary and supplement intake, less sun exposure or less physical
activity due to the disease burden [61]. Iron deposition in the liver might disrupt the hydroxylation of vitamin D in
25-OHD before the next hydroxylation in the kidneys in 1,25 OH2D3. Moreover, its deposition in the skin might
affect vitamin D level due to disrupting vitamin D synthesis [62].

Even though altered immune function has been reported in β-thalassemia [63], such as neutrophils and lympho-
cytes activation, its correlation with vitamin D level has not been elucidated. The fact that transfusion-dependent
thalassemia was more prone to bacterial infection supports the alteration of immune function in this genetic
disease [64]. The correlation of vitamin D deficiency in β-thalassemia has been known to alter the cardiovascular
system [62,65], endocrines [66] and the bone [15,67]. A study involving all types of thalassemia, including β-thalassemia,
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supplementation of 50,000 IU of ergocalciferol (vitamin D2) could increase the 25-OHD level; however, the effect
of this supplementation on the immune system was not investigated [61].

Based on the evidence, the recommendations for vitamin D supplementation among patients with thalassemia
treated for 8 weeks are 50,000 IU of vitamin D2 weekly or 2000 IU of vitamin D3 for the patients with serum
level of 25-OHD <20 ng/ml (<50 nmol/l). For maintenance, oral intake of 800 to 1000 units vitamin D daily or
50,000 IU monthly or a mega-dose of vitamin D (10,000 IU/kg, maximum 600,000 IU) every 6 months (either
orally or intramuscularly), especially for those not receiving adequate sun exposure, are recommended. Patients
with serum level of 25-OHD >20 ng/ml (>50 nmol/l) can be given orally 800 to 1000 IU of vitamin D3 daily
or 50,000 IU of vitamin D2 orally monthly or a mega-dose of vitamin D (10,000 IU/kg, maximum 600,000 IU)
orally or IM every six months as maintenance therapy [68]. This recommendation is higher than the RDA for 1 to
70 years for men and women which is 600 IU/day or 800 IU/day for those who older than 70 years [69]. Even
though the aim of this recommendation is to maintain bone health, but keeping an adequate vitamin D level might
bring benefits to fight against bacterial and viral infection among patients with β-thalassemia by its modulation of
the immune system.

Zinc
Zinc is a structural element of many proteins, including zinc finger proteins, enzymes and a trace element which
is important in synthesizing cholesterol reducing fat and supporting the immune and antioxidant systems [70]. It
plays an essential role in bone homeostasis and bone growth as well as in maintaining healthy connective tissues [71].
This mineral is essential for growth hormone maintenance, nucleic acid synthesis, macronutrient metabolism,
cell division and IGF regulation in the body [72]. Therefore, zinc deficiency might affect children’s growth and
development. Zinc is also associated with red blood cell survival and maintaining the integrity of the immune
system; thus, a low concentration of zinc may lead to RBC membrane fragility [73] and affect immune functions
such as impairing innate [74,75] and adaptive immunity [76]. Some countries have reported that zinc deficiency led
to growth retardation, hypogonadism and increased mortality and morbidity from infection-related diarrhea and
pneumonia because of immunocompromised conditions [77,78]. Moreover, antiviral properties of zinc also have
been established such as its role in reducing the incidence [79] and duration [80] of the common cold and preventing
H1N1 virus infection [81]. Even though the effects of zinc in COVID-19 remain under investigation [82,83], many
advantages exist in maintaining sufficient levels of this micronutrient including in β-thalassemia.

Zinc serum level in β-thalassemia varies between normal [18] to low [9,16,23]. This variation might be caused
by patients’ background before the study. Zinc deficiency among patients with thalassemia may be related to
an inadequate intake of food containing zinc, kidney dysfunction or abnormality in urinary absorption of zinc,
disturbance in zinc metabolism, a higher level of zinc excretion in urine and sweat and increasing oxidative stress
due to hemolysis or iron chelators [84–86]. Moreover, zinc and iron are absorbed in the same intestinal mucosal cells
and use transferrin as a transporter. When the iron:zinc ratio is more than 2:1, transferrin is less likely available for
zinc, which disturbs zinc absorption. On top of that, increasing iron absorption from the intestinal mucosal cells
of patients with thalassemia has been reported. The elevated level of iron absorption might contribute to inhibiting
zinc absorption [85]. The iron chelation agents, especially deferiprone, binds the divalent zinc cations and increases
zinc excretion [87]. Therefore, a 4-h interval between deferiprone and zinc supplementation is needed to prevent
zinc deficiency [88].

The preferred amount of zinc supplementation in thalassemia is 45 mg daily, much higher than RDA 11 mg for
adult males and 8 mg for females [89], as the antioxidant effect of 50 mg zinc supplementation successfully decreased
GPX and might contribute to reducing the damage caused by free globin precipitation and iron overload [20].
However, a similar result also has been observed in the lower concentration of zinc sulfate supplementation (30 mg
zinc sulfate for 9 months). Even though increasing zinc level only reached one half of that in the related study, the
antioxidant effect of zinc still can be observed by the downregulating anti-HSP27 titers [23]. Albeit a clinical trial
regarding the effect of zinc on cellular immunity of thalassemia major has been performed in 2017, the result has
yet to be reported [90].

Selenium
Selenium works by incorporating the protein as a selenoprotein and carries large functions including antioxidants,
antivirus and anti-inflammatory [91]. Similar to zinc, selenium deficiency also affects innate and adaptive immunity
and has been reviewed extensively since decades ago [92,93]. Supplementation of selenium is known to restore those
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Figure 2. Pathophysiology of β-thalassemia and point of action of vitamins and minerals in β-thalassemia.
Reduction of β-globin resulted in free α-globin for which its precipitation causes damage to cell membranes leading
to hemolysis and ineffective erythropoiesis. These two conditions reduce the hemoglobin level leading to anemia.
Due to routine blood transfusion and increasing iron absorption from the digestive tract, the iron level is increased
and the Fenton reaction, producing reactive oxygen species occurs and alters the immune system such as impairing
the proliferation, differentiation, maturation and gene expression of innate and adaptive immune cells. The defect of
the immune system reduces the ability to eliminate SARS-CoV-2 and leads to further pathology of COVID-19. Vitamin
C, vitamin E, vitamin D, zinc and selenium supplementations might bring advantages for immunity in β-thalassemia by
reducing reactive oxygen species and improving proliferation, differentiation, maturation and gene expression of
innate and adaptive immune cells. Thus, strong immunity eliminates SARS-CoV-2 effectively.
NK: Natural killer; ROS: Reactive oxygen species.

immune cells in function and number. This micronutrient is also found to play roles in viral infection protection due
to altering monocytes/macrophages cytokines production and CD4+ T cells proliferation [94,95]. The association
between selenium and COVID-19 has been reported solely based on the cure rate and regional selenium status [96].
Even though the hypothesis of selenium might prove beneficial in preventing SARS-CoV-2, further investigation
is necessary before its clinical application [97].

Due to iron chelator consumption, micronutrients such as selenium might be excreted from patients with β-
thalassemia major and result in reduce concentration in the blood [9,17]. Unfortunately, limited studies are available
on the effect of selenium in β-thalassemia, including in the immune system. Nevertheless, because selenium is a
known antioxidant, any reduction of this trace element in β-thalassemia might reduce the activity of the antioxidant
enzymes and leading to increased oxidative stress [98].

Because selenium is a micronutrient needed in a small amount, a thin boundary exists between the beneficial and
detrimental effects of this mineral [91]. For example, a sufficient level of selenium correlates with a better immune
system, reproduction, cardiovascular system and bone health. However, a high level of this micronutrient correlates
with type 2 diabetes [99]. Therefore, finding the optimum dose of selenium supplementation is important, including
in β-thalassemia which presents a lower selenium level. The average requirement of 45 μg/l selenium in plasma
can be obtained by supplementing selenium 55 μg/day among people aged 19–50 years, 40 μg/day among people
aged 9–18 years and 30 μg/day among people aged 4–8 years, with the upper limit of selenium intake set at
400 μg/day [36]. Consequently, the supplement dose for patients with β-thalassemia should be adjusted based on
the patients’ selenium level and the clinical symptoms.

Discussion & future perspective
A study between β-thalassemia and SARS-CoV-2 infection or COVID-19 has yet to be well established. A study
in Italy identified 11 patients with β-thalassemia and underlying COVID-19 disease, where no increasing severity
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was observed [100]. Moreover, using a regression model to find a correlation between COVID-19 confirmed and
mortality cases to thalassemia incidence in three different Italian regions, the study showed a negative correlation
between COVID-19 and β-thalassemia incidence [101]. Regardless of the small number of respondents and short
time of observation, this phenomenon might be caused by self-awareness due to self-isolation [102]; however, it would
be interesting to further investigate in vitro and in vivo conditions to understand the link between β-thalassemia
and COVID-19 which might bring new insight regarding the disease pathology.

Altered immunity in β-thalassemia has been reported, including a higher number in leukocytes, neutrophils and
lymphocytes, lower neutrophils maturation and function due to downregulated PU.1 expression [103], impaired NK
cells activity [30], phagocytic activity of monocytes and macrophages [104,105], increased numbers of CD8+ T cells
and reduced CD4+ T cells among patients [106]. Despite an increasing number of immune cells, the premature aging
of the lymphocytes or immunosenescence impaired the proliferative capacity and increased the expression of Fas
receptor. This phenomenon might be caused by iron overload-induced oxidative stress leading to the genotoxicity
of the immune cells [11].

Moreover, several micronutrients that decreased in thalassemia are hypothesized to be beneficial in preventing
outcomes of COVID-19 (Figure 2). Because no established guidelines are available regarding the susceptibility or
the immunity of patients with β-thalassemia to SARS-CoV-2 infection, prevention is crucial. Therefore, vitamin
and mineral supplementation that might provide benefits for patients with β-thalassemia warrants investigation,
especially in transfusion-dependent cases not only to combat the SARS-CoV-2 but also for homeostasis of other
functions. However, some limitations of the current studies should be acknowledged including the lack of related
research studies, the number of patients and research methods.

Conclusion
Low levels of immune-related vitamins and minerals in β-thalassemia can be improved with supplementation.
The supplementation and adequate level of micronutrients may be beneficial to the immune system, especially
in reducing oxidation as a result of disease pathogenesis and iron overload from the therapy. With vaccines and
effective drugs under development, maintaining immunity is important for transfusion-dependent patients with
β-thalassemia during the COVID-19 pandemic.

Executive summary

• An inadequate level of immune-related vitamins and minerals in β-thalassemia was explored, including vitamin C,
vitamin E, vitamin D, zinc and selenium supplementation.

• Vitamins and minerals supplementation is important to increase the level of micronutrients.
• The antioxidant function of micronutrients helps to reduce the oxidation as a result of disease pathogenesis and

iron overload from the therapy.
• The recommended dose of the vitamins and minerals supplementation usually higher than recommended dietary

allowance; therefore, patients with β-thalassemia must consume this supplementation at the correct time and
suitable dose to minimize the unwanted effects.

• The interval between providing iron chelator agents and supplements should be considered to maximize the
beneficial and reduce the negative effects of both agents.

• Maintaining immunity is important for transfusion-dependent patients with β-thalassemia during the COVID-19
pandemic which can be achieved with supplementation of immune-related vitamins and minerals.
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