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Abstract: In this paper, we propose a multi-scale feature extraction with novel attention-based
convolutional learning using the U-SegNet architecture to achieve segmentation of brain tissue from a
magnetic resonance image (MRI). Although convolutional neural networks (CNNs) show enormous
growth in medical image segmentation, there are some drawbacks with the conventional CNN
models. In particular, the conventional use of encoder-decoder approaches leads to the extraction of
similar low-level features multiple times, causing redundant use of information. Moreover, due to
inefficient modeling of long-range dependencies, each semantic class is likely to be associated with
non-accurate discriminative feature representations, resulting in low accuracy of segmentation. The
proposed global attention module refines the feature extraction and improves the representational
power of the convolutional neural network. Moreover, the attention-based multi-scale fusion strategy
can integrate local features with their corresponding global dependencies. The integration of fire
modules in both the encoder and decoder paths can significantly reduce the computational complexity
owing to fewer model parameters. The proposed method was evaluated on publicly accessible
datasets for brain tissue segmentation. The experimental results show that our proposed model
achieves segmentation accuracies of 94.81% for cerebrospinal fluid (CSF), 95.54% for gray matter
(GM), and 96.33% for white matter (WM) with a noticeably reduced number of learnable parameters.
Our study shows better segmentation performance, improving the prediction accuracy by 2.5%
in terms of dice similarity index while achieving a 4.5 times reduction in the number of learnable
parameters compared to previously developed U-SegNet based segmentation approaches. This
demonstrates that the proposed approach can achieve reliable and precise automatic segmentation of
brain MRI images.

Keywords: CNN; tissue segmentation; multi global attention; brain MRI

1. Introduction

The segmentation of medical images plays a vital role in the study and treatment of
many diseases. In particular, magnetic resonance imaging (MRI) is typically favored for
structural analysis as it generates images with high soft-tissue contrast and higher spatial
resolution and does not entail any health hazards. Brain MRI scans are quantitatively
examined to diagnose various brain disorders such as epilepsy, schizophrenia, Alzheimer’s
disease, and other degenerative disorders [1]. MRI is also essential to identify and lo-
calize abnormal tissues and healthy structures for diagnosis and postoperative analysis.
Recently, convolutional neural networks (CNNs) have achieved exceptional performance
in the field of computer vision, gaining widespread popularity owing to their ability to
extract robust, non-linear feature representations. Deep network models have delivered
exceptional performance in a broad spectrum of applications, including brain or cardiac
imaging [2]. The typical architectures for brain MRI segmentation are fully convolutional
neural networks (FCNNSs) [3] or encoder-decoder-based networks [4,5]. These architectures
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typically include a contracting path, which represents an input image in terms of high-
level feature maps, and an expanding path, where the feature maps are up-sampled in
single or multiple up-sampling levels, to reconstruct a pixel-wise segmentation map [3-5].
Although they have powerful representation capabilities, these approaches tend to use
redundant data flow, i.e., the networks extract identical low-level features multiple times
at various network layers. In addition, the discriminative ability to represent features for
pixel-wise labeling would be insufficient for challenging applications such as in medical
image segmentation. To overcome these challenges and improve network accuracy, various
schemes such as attention mechanisms, dilated convolutions, and multi-scale strategies
have recently been proposed.

The attention mechanism allows the system to concentrate on the most salient features
without additional monitoring. This limits the use of multiple identical feature maps and
highlights the prominent features that are beneficial for a given task. It has been reported
that attention modules benefit segmentation methods by creating an enhanced network
for pixel-wise labeling [6-9]. Chen et al. [6] introduced an attention-based approach to
influence multi-scale features acquired at different scales for the segmentation of natural
images and showed increased segmentation performance over conventional methods for
predicting multi-scale features. Despite the integration of attention modules in natural
image segmentation, their application to medical images is restricted to simple attention
models [10,11]. In addition to accuracy, many embedded applications consider the model
size, energy consumption, and inference time to be significant in real-time use. A small
CNN network enables on-chip model storage, resulting in less energy consumption during
the recovery of parameters from dynamic random access memory during model training.
Smaller CNNs also reduce the energy requirements for computation [12]. On the other
hand, the off-chip memory contributes to the delay of hundreds of cycles of computation
and dissipates more than 100 times as much energy as arithmetic operations. The reduction
in memory and energy consumption allows the deployment of CNN models on less
resource-intensive devices while retaining network precision.

To achieve higher segmentation accuracy with lower computation complexity, we
propose deeper attention mechanisms, which are combined with multi-scale feature fusion
that can enhance the performance of CNNs for the segmentation of brain MRI images. In
particular, we propose a novel global attention module (GAM) at both the encoder and
decoder sides with a multi-scale guided input. The multi-scale data extracted using 1 x 1
and 3 x 3 convolutional kernels jointly encode the complementary low-level informa-
tion and high-level semantics from the extracted input patches. The feature maps from
a previous network layer are provided together as input for the GAM on the encoder
side with this multi-scale information. This proposed multi-scale strategy, along with the
attention module, helps the encoder extract different semantic information. The GAM
at the decoder helps capture discriminative information and focuses on relevant features
while performing up-sampling operations. As a result, each network-layer contains two in-
dependent attention modules, which focus on extracting enhanced feature representations
and generating an accurate segmentation network. The convolution blocks at the encoder
and decoder layers are replaced with fire modules [13] that reduce the total number of
model parameters.

Our main contributions are summarized as follows:

Contributions:

e  We propose a modified U-SegNet architecture integrated with a novel global attention
module. Attention is applied at both contracting and expansive paths, creating a
multi-attention network. The key element in GAM is global average pooling, which
provides the global context of high-level features as assistance to low-level features to
obtain class-category localization.

e  We propose a multi-scale input feature fusion strategy to extract the context informa-
tion of high-level features at different scales, thus incorporating neighbor-scale feature
information more precisely.
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e  The fire modules are used to replace the convolution layer to significantly reduce the
number of model parameters, which results in a reduction in the model size and com-
putation complexity; this consequently leads to a more efficient segmentation model.

The remainder of this paper proceeds as follows. Section 2 presents related work.
Section 3 explains the proposed method and its architecture in detail. The experimental
conditions, comparison studies, and comprehensive analyses are presented in Section 4.
Finally, Section 5 concludes the paper.

2. Related Works

Extensive research has been conducted on medical image segmentation in the past
ref. [13-15], with CNNs growing rapidly in this area, driving exceptional performances
in many diverse applications. Conventional CNN architectures, including FCNN [3] or
U-net [4], serve as sources of inspiration for existing medical image segmentation methods.
The conventional FCNN-based classification network replaces the fully connected layers
with convolutional layers to predict the output dense pixels. The input image is recovered
to its original resolution by up-sampling the predictions in a single step. In addition, skip
connections [3] are used in the network using intermediate function maps to boost the
prediction capabilities. On the other hand, the U-net architecture consists of encoding and
decoding paths with a sequence of convolutional layers with pooling and up-sampling. The
features from the encoder are concatenated with the decoder layers using skip connections.
Several extended U-net and FCNN models have been developed to resolve the problems
associated with pixel-wise segmentation across different applications [16-19]. In [17],
a patch-wise 3D U-net was proposed for brain tissue segmentation with encoding and
decoding layers with randomly sampled and overlapped 3D patches (8 x 24 x 24) used
for training. Unlike the U-net, a convolution operation is introduced as a transition layer
between the encoder and decoder layers to give more weight to the higher-level features
learned through deeper layers in the network. Pawel et al. [18] proposed a 3D-CNN
for brain tumor segmentation, where the model was trained on 3D random patches, and
features extracted by 2D-CNNss were given as an extra input to a 3D-CNN. The combination
of both 3D and 2D features captures rich feature representations from a long-range 2D
context in three orthogonal directions. An ensemble of 3D U-nets designed with different
hyperparameters uses non-uniformly extracted patches as inputs to obtain brain tumor
segmentation [18]. Badrinarayanan et al. [20] introduced the SegNet model, which uses
pooling indices from the encoder to the up-sampling layers. Hence, it requires very few
parameters and is faster to train. Looking into the complementary strengths in both.

SegNet and U-net models, a new hybrid model is explored, namely U-SegNet [21].
The U-SegNet incorporates the unique architectural features from both U-net and Seg-
Net models and uses SegNet as the base architecture with a skip connection introduced
between the encoder and decoder, providing multi-scale information for better perfor-
mance. Owing to the pooling indices passed at the decoder side, the U-SegNet model
has faster convergence. Recent efforts to promote the discriminative capability of feature
representations include a multi-scale fusion strategy [22]. Zhou et al. [23] redesigned the
skip connections in U-net++ [23] by enabling flexible feature fusion in decoders, thus
resulting in an improvement over the restrictive skip connections in U-net [4] that require
fusion of only same-scale feature maps. A small drawback in U-net++ is that the number
of parameters increases owing to the employment of dense connections [24,25]. Deep
supervision is also employed to balance the decline in segmentation accuracy caused by
pruning [26]. Zhao et al. [27] proposed a pyramid network that utilizes global learning at
various scales by grouping feature maps produced by multiple dilated convolution blocks.
The collection of contextual multi-scale information can also be obtained by performing
pooling operations [28]. Cheng et al. [29] proposed a context encoder network (CE-net)
that adopts a pre-trained ResNet block in the feature encoder. CE-net involves a newly
proposed dense atrous convolution block and residual multi-kernel pooling is integrated
into the ResNet-modified U-net structure to capture more high-level features and preserve
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more spatial information. Although these approaches assist in capturing targets at different
measures, contextual dependencies for all image regions are uniform and non-adaptive.
Hence, these approaches neglect the contrast between local and contextual representations
for different categories. Moreover, these multi-context representations were manually
composed and lacked the flexibility to form multi-context representations. This causes
long-range object associations in the entire image to be leveraged in these strategies, which
is of focal interest in many medical image segmentation problems.

The attention mechanisms highlight key local regions in the feature maps and discard
unrelated data carried by the generated feature maps. The attention modules act as cru-
cial components of a network that wants to gather global information. The inclusion of
the attention blocks demonstrated very successful outcomes in various vision problems,
such as image classification [30], image captioning [31], or image question-answering [32].
Recently, many researchers have shown interest in self-attention, as they offer a greater
opportunity to model long-range dependencies while retaining computational and statis-
tical performance [33-36]. Zhao et al. introduced a point-wise spatial attention network,
where each position on the feature map is connected to all the other feature maps through
a self-adaptively learned attention mask [37]. Dong et al. [38] proposed attention gates
(AGs) and used them for the segmentation of the pancreas. The AGs highlight the salient
features while suppressing the irrelevant region from the raw input pixel. AGs utilize
intermediate features more effectively, thus minimizing the use of cascaded models [39].
Wang et al. [40] used a simple focus module with three convolutional layers to combine
local and global-dependent features. A similar focus module with two convolutional layers
integrated with a U-net architecture was proposed in [41]. For better extraction of relevant
features, focus gate modules are integrated with the skip connection in the decoding path
of the U-net in [39]. Schlemper et al. [41] proposed attention modules where the local deep
attention features are fused with the global context at multiple resolutions for prostate
segmentation on ultrasound images. The multi-scale self-guided attention-based approach
can integrate local features with their respective global dependencies, as well as highlight
interdependent channel maps in an adaptive manner to achieve accurate segmentation of
medical images [42].

Most of the deep learning-related studies have considered increasing network accu-
racy as their main objective. However, the computational burden of a significant number
of parameters and deep architecture becomes a crucial issue. Recent studies have shown
that most deep neural networks are over-parametrized, resulting in deep learning network
redundancy, which leads to inefficient use of memory and computing resources. In these
large parameter spaces, various compression techniques, such as shrinking, factorizing, or
compressing pre-trained networks, are applied to minimize redundancy and obtain smaller
models [43—46]. In [44], singular value decomposition (SVD) was used for a pre-trained
CNN architecture to achieve lower-order parameter estimates for model compression.
Network pruning methods [43,45] have been widely studied to achieve compressed CNN
models. The parameters of the pre-trained model below a certain threshold are replaced
with zeros in the network pruning method to produce sparse matrices. Most of the previ-
ous works [45,46] introduced network-pruning-based methods to decrease the network
complexity and reduce the overfitting of the model. Network quantization is proposed
to decrease the data dynamic range from 32 to 8 or 16 bits, which further compresses the
pruned network by reducing the number of bits required to represent each weight [47].
To efficiently operate on compressed deep learning models, Son et al. [48] proposed an
efficient inference engine (EIE), a specialized accelerator that accomplishes customized
sparse matrix-vector multiplication and performs weight sharing without efficiency loss.
To reduce the CNN parameters and computational work, various methods based on fac-
torizing the convolution kernel have been introduced [49]. The depth-wise separable
convolutions used in SqueezeNet [13,50] are a form of factorizing convolution that sep-
arates convolution across channels rather than convolution within channels. As in the
MobileNetV1 architecture, the profoundly separable convolution networks realized with
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quantization require a special attention module [51]. The special hardware for CNNs has
been considered by many methods aimed at minimizing computation time [50].

3. Proposed Method

It is known that the SegNet [20] and U-net [4] are the most widely used deep learning
models for image segmentation [21,25]. In SegNet, pooling indices in the up-sampling
process are utilized to compensate for the missing spatial information and lead to faster
convergence of the model [20]. U-net uses skip connections from the encoder to the decoder
and shows a better segmentation performance [4]. However, multi-stage cascaded CNN
approaches are more suitable because the performance of a single SegNet and U-net-based
segmentation method is not sufficiently accurate when there are variations in the structure
and intensity of the target tissues [25]. However, multiple cascaded networks can produce
a significantly large number of model parameters, thus leading to the redundant use
of computational resources. To overcome this problem, U-SegNet [21] uses both skip
connections and pooling indices to combine feature maps from the encoder to the decoder
and localize these feature up-sampling, respectively. As a result, pooling indices make the
U-SegNet converge faster and the skip connection improves the segmentation accuracy.

Although U-SegNet shows better segmentation performance, the segmented outputs
are still blurry, and the network is insensitive to the fine details of the image [24]. To achieve
a better segmentation of brain tissues when training on a limited set, the network needs
to extract more discriminative features [38]. However, U-SegNet is slightly insufficient
to capture better features because numerous pooling operations in the U-SegNet model
produce low-resolution feature maps. Due to the inherent complexity, a large number of
layers, and the massive amounts of data required, deep learning models are very slow to
train and require a lot of computational power, which makes them very time- and resource-
intensive. The model which can provide improved segmentation results while training on
limited or less data is considered to be a highly potential network [52]. Meanwhile, due
to data scarcity, the need to develop a model which could be trained efficiently on less
data is very crucial [53]. Motivated by this problem, we propose a novel global attention
mechanism using a U-SegNet architecture, where the proposed architecture is designed
with a multi-scale guided multi-global attention module. The multi-scale input features at
each encoding layer encode both the global and local contexts. Moreover, the proposed
novel global attention at the encoder and decoder can filter irrelevant information and focus
on the most relevant details needed for the MRI segmentation task. Besides, the model is
prone to lose local details when complete image information is employed as an input to
train the network. We also propose the use of a patch-wise splitting of each input slice to
resolve this problem, which is used to train the model and provide better segmentation
accuracy. Finally, we adopt fire modules that comprise a squeeze layer consisting of only
1 x 1 convolution filters followed by an expansion layer with a combination of 1 x 1
and 3 x 3 filters, which reduces the number of learnable parameters and computational
requirements, and results in a smaller efficient model.

Figure 1 shows the overall framework of the proposed method. First, the MRI datasets
with the corresponding ground truth are prepared. For each MRI scan with the dimension
of height x width x slices (H x W x S), we pad zeros to the H x W of each slice and
resize to a dimension of 256 x 256. Then, 48 slices are extracted starting from the 10-th
slice with an interval of 3 slices [54]. Furthermore, each slice is divided into four uniform
non-overlapping patches and these patches are given as input to the proposed model for
training. Figure 2 shows the end-to-end encoder-decoder architecture of the proposed
method. As shown in Figure 2, the features extracted using 1 x 1 and 3 x 3 filters are fused
to form a multi-scale input representation. These multi-scale data with the feature maps
from a previous network layer are provided as input to the GAM at the encoder side. The
GAM at the decoder can capture discriminative information and concentrate on relevant
features while performing up-sampling operations. Thus, each network-layer contains
two separate attention modules which concentrate on extracting enhanced representations
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of features and generate an accurate segmentation network. In addition, the convolution
blocks at the encoder and decoder layers are replaced with fire modules which reduce
the number of model parameters and create a smaller network. The architecture of the
proposed method is discussed in detail as follows: (i) encoder path, (ii) decoder path, and
(iii) global attention module (GAM), (iv) fire module, (v) uniform patch-wise input, and
(vi) classification layer.

Dataset Training Set

"l!!‘“!!L.““"H.I!--ﬂ!
BO0 0B S mng on
[ |

MRI Dataset with n slices (F* ¥y

{ Testing Set ™ Training input

= Test input Proposed Predict
" - ! - . J Squeeze U-SegNet

n—=1 n

Predicted segmentation

.

Figure 1. Overall framework of the proposed algorithm.
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Figure 2. Overview of our multi-scale squeeze U-SegNet with multi global attention for brain MRI
segmentation. Solid blue boxes represent the convolution block with dimensions as kernel width x
height X filters followed by ReLU activations.

3.1. Encoder Path

Figure 2 shows the architecture of the proposed method with the encoder and de-
coder paths. The fire module replaces the convolution operation in the proposed method,
significantly reducing the number of learnable parameters and computational complex-
ity. The fire module was originally used for SqueezeNet [13] to reduce the complexity of
AlexNet [50]. In this study, we incorporate it with our proposed multi-scale U-SegNet
architecture for segmentation. Let us consider x; as the input sample, where I represents
the index of the network layer. The convolution output for the squeeze block is computed
as (1).

Osqueeze(l) = f(xl * w11><1 + bl) 1)

where 04g,¢02(1) 1s the squeeze layer output of the fire module and wll *1 is the kernel weight,

where the subscript [1 x 1] represents the size of the convolution kernel associated with
the respective layer and b; is used as a bias term. * represents the convolution operation.
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The convolution output is fed to the standard Rectified Linear Unit (ReLU) activation
function f (-).

The squeeze output is fed into the expanding module. The expanding module consists
of two parallel convolutions with kernel sizes of 3 x 3 and 1 x 1. Furthermore, the output
from these parallel convolutions is concatenated to form the fire module output, and is
expressed as (2).

Ocxpand(l)= Concat [f (Osqueeze(l) * w11><1 + bl) , f(osquggze(l) * w13><3 + bl>} 2)

where 0, p404(1) is the fire module output of the I-th network layer, and Concat() is a
concatenate function. As shown in Figure 2, the encoder path consists of a sequence of
fire modules whose output is applied to the GAM as input. The GAM also receives input
ms;, obtained from multi-scale input feature fusion. In the multi-scale layer, the input x; is
down-sampled using max-pooling with a stride of 2 x 2, as in (3).

m; = Maxpool (x;_1, 2) (©)]

The max-pooled input is followed by a convolution of 1 x 1 and 3 x 3 filters separately.
These convolved outputs are concatenated to form multi-scale feature maps, as shown in
(4). The multi-scale information and the fire module output and are fed as input to the
GAM at each encoding layer, as in (5).

ms; = Concat[f(ml, w}“), f(m,, w?wﬂ, 4)

GAM; = GAM(mSZ/ Oexpand(l))’ ©

The output from GAM is given to the max-pooling layer to reduce the dimensionality
and focus on the fine details of the feature map, as expressed in (6). Pooling indices
are stored at each encoder layer so that the decoder uses the information to up-sample
the feature maps. The output at each encoder layer is referred to as the encoding unit
(down-sampling unit) and is obtained using (6).

encoder(l) = Maxpool(GAM,, 2), (6)

3.2. Decoder Path

Similar to the encoding path, the decoder path in the proposed method uses transposed
fire modules to reduce the number of model parameters. The main component of the
decoder path is the up-sampling unit. Each up-sampling unit consists of a transposed fire
module. The transposed fire module consists of a 1 x 1 transposed convolution. The output
from the 1 x 1 transposed convolution is fed into two 3 x 3 and 1 x 1 kernel-sized parallel
transposed convolutions that are concatenated to form the output transpose fire module,
as in the down-sampling unit. The decoder is integrated with attention gates, which can
highlight the salient features. The feature maps extracted from the I-th (high-level) and
(I —1)-th (low-level) encoding layers are used as the input signal and gating signal to
the attention module, respectively. Thus, the feature map obtained from encoding layers
containing contextual information is computed using the GAM to eliminate unrelated
responses. The GAM output is concatenated with the feature map of the corresponding
up-sampling layer, as expressed in (7). Hence, the attention-based skip connections in
the proposed architecture help in extracting the most informative data from the encoder,
utilized by the decoder to make more accurate predictions. These skip connections use both
high-and low-resolution feature information and focus on the most relevant information
while performing up-pooling operations.

decoder (1) = Concat[GAM(x;, x;_1), Unpool (xl_l,Poolidx(l,l))] 7)
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The output from each decoder layer can be obtained using (7), where Pool;z, ;1) is
the pooling index passed from the encoder layer to the decoder layer to recover spatial
information of the feature maps while performing un-pooling operations at the decoder.

3.3. Global Attention Module (GAM)

A distinctive brain signal processing system for human vision is the visual attention
process. This is a tool for a human to pick relevant information instantly from a large
amount of information using sources of limited attention. In deep learning, the attention
process is similar to that of human visual attention. Its main objective is to determine
the most relevant data from a vast amount of knowledge to accomplish its goal (tissue
segmentation). By suppressing function activations that are not important to the task,
the attention mechanism improves the network performance. To do this, we propose a
novel global attention module with self-attention in an efficient manner. As a guide from
low-level features to assess class localization, the GAM on each encoder and decoder layer
enables global context details.

Figure 3 shows the proposed architecture of GAM, which is integrated with our
proposed brain segmentation architecture. The x; is the output feature map from the I-th
encoding layer (low-level features). The x; 1 collected from a coarser scale serves as a
vector of the gating signal and is applied to select the target area for each pixel. The «; is
the tensor coefficient that preserves activation by suppressing irrelevant feature responses
associated with the target task. The operation of GAM is the element-wise addition of the
feature map with the tensor coefficient from the /-th encoding layer and the output of GAM
is obtained using (8).

Xjout= X1 +X 8

Low-level
Features

(xXp)

Global average
pooling

High-level R
Features

Xp41)

1x1 Conv

i

Figure 3. Schematic of the proposed global attention module (GAM) integrated into the proposed
brain segmentation architecture.

In the case of multiple semantic groups, learning multidimensional coefficients of
attention is suggested. As guidance for low-level features to incorporate local features into
the global context, global average pooling provides global context information. The global
information produced from the high-level feature is fed to a 1 x 1 convolution with the
ReLU activation function. To obtain weighted low-level characteristics, it is multiplied by 1
x 1 convoluted low-level features. To obtain the tensor coefficient of attention, we used
multiplicative attention. To extract pixel localization specific to the class of the high-level
feature index, the tensor coefficient is up-sampled and added with low-level features. The
tensor coefficient of attention is obtained as follows:

o= upsample{ (GAP[x;] x Wy +b), (xj514 x Wy +b)}, 9

where Wy and W, are the weight values associated with the input and gating signals,
respectively, b is the bias term, and GAP is a function of the global average pooling. The
feature maps obtained from the attention module x;,,;, which contains contextual informa-
tion, were concatenated with the feature map of the corresponding decoding layer forming
skip connections. These skip connections use both high- and low-resolution features; they
focus on the most relevant information while performing up-sampling operations.
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3.4. Fire Module

The fire module was initially introduced in SqueezeNet [13] to identify CNN architec-
tures with fewer parameters while maintaining competitive accuracy. The fire module in
SqueezeNet is composed of a squeeze convolution layer with only 1 x 1 filters, feeding
into an expand layer with both 1 x 1 and 3 x 3 convolution filters. The number of 1 x 1
filters in the squeeze layer is set to be less than the total number of 3 X 3and 1 x 1 filters in
the expand layer, so the squeeze layer helps in limiting the number of input channels to
the 3 x 3 filters in the expand layers. Owing to the benefits of the fire module in reducing
the learnable parameters, we used the same design of the fire module and integrated it into
our proposed encoder and decoder architecture. Figure 4 shows a schematic representation
of the fire module applied to the proposed architecture. Figure 4a,c show the encoder and
decoder sides of U-net [4] using a normal convolution layer, with each convolution block
containing F;, filters, and takes a feature map of height x width x channels (H x W x C)
as input. Figure 4b,d shows the architecture of the fire modules at the encoder and decoder
paths in the proposed method. Likewise, the fire module of SqueezeNet, the fire module in
the proposed method consists of two parts: (i) the squeeze layer and (ii) the expand layer.
As shown in Figure 4b, the squeeze module consists of one convolution layer with a kernel
size of 1 x 1 and an output channel equal to F;,, /4, where F;,, is the number of convolution
filters in the conventional U-net [4]. The squeeze output is fed into the expanding module.
The expanding module consists of two parallel convolutions with kernel sizes of 3 x 3
and 1 x 1, each convolution with F;, /2 output channels. Furthermore, the output from
these parallel convolutions is concatenated to form a fire module output, where Fy,; = Fjj,.
Hence, as mentioned in [13], the proposed method maintains the number of filters in the
squeeze layer, which is less than the total number of filters in the expand layers, which
results in a significant reduction in the total number of network parameters.

Input Input
(HxWxCxF) (HxWxCxF)
Input . v Input +
b Squeeze
(HxWxCxF) e Conv 1x1 (HXWXCXF) "fwr Conv 1x1
l Fin/4 filters i F /4 filters
—
Lon e | Conv 1x1 | L i T(l::;l:;p;:gd Tc'. '3x3J l(' ny 3x3‘:
- .onv ony
Ll Rl Finf2 Mers F;, filters Fin/2 filters | | Fi/2 filters
Ouip“t :;f-t:nd Concatenate Expand Concatenate
- layer
(HxWxCxF ;) l (ngl)l(tcl))l:;‘ ) l
Output out Qutput
(HXW’XCXFD,“) (HXW’XCXFOIU)
(a) (b) (0) (d)

Figure 4. Schematic of fire module. (a,c) show the convolution for the encoder and decoder side in U-net [4] respectively;
(b,d) show our corresponding squeeze U-SegNet at encoder and decoder side using squeeze and expand layers to reduce
the number of parameters.

3.5. Uniform Patch-Wise Input

The brain MRI scan of each subject constitutes the dimensions H x W x S. Some of the
starting and ending slices of the brain MRI scan do not provide much useful information,
as analyzed in the previous research [54], and the consecutive slices would share almost the
same information. Hence, to exclude these non-informative slices and reduce the multiple
training of consecutive slices, we selected 48 slices with a gap of 3 slices, which ensured
the presence of slices with more as well as less information for model training. Each of
the extracted slices was resized to 256 x 256. The partitioning of a slice with individual
patches improves localization because the trained network can better concentrate on local
details in a patch. Therefore, each slice was divided into four uniform patches using our
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proposed method. Therefore, the dimensions of each partitioned patch were 128 x 128
in the proposed method. These patches are fed into the training of the model and the
predicted segmentation results are obtained for the test data.

3.6. Classification Layer

The final decoder layer consists of a 1 x 1 convolutional layer with softmax activation
to predict a reconstructed segmentation map. The output contains four predicted classes:
gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and background. The
proposed model accepts the input image and produces the corresponding learned repre-
sentation. Based on this feature representation, the input image is classified into any of the
four output classes. The cross-entropy loss is used to measure the proposed model losses,
as in (11). The softmax layer learns representations from the decoder and interprets them
in the output class. The probability score i/’ is assigned to the output class. If we define the
number of output classes as ¢, we obtain as (10) as follows:

. expdecoder(l)

vy = a
c ecoder(1);
j=1 exp ]

(10)

and the cross-entropy loss function is used to calculate the network cost function as in (11):

Ly,y') =Y vilog(y) (11)

where for each class of i, the ground truth and predicted distribution score are y and

y', respectively.

4. Experimental Results

The proposed method was evaluated using two sets of brain MRI images. The first
sample included 416 T1 weighted brain MRI scans from the Open Access Series of Imaging
Studies (OASIS) database [55], where information from both non-demented and demented
subjects was obtained from Washington University. A T1-weighted (T1W) image is a basic
pulse sequence in magnetic resonance (MR) imaging and depicts differences in signal
based upon intrinsic T1 relaxation time of various tissues. Clinically, T1-weighted images
generally are better for depicting normal anatomy and are mainly used for the anatomical
details and pathological abnormalities of the intracranial lesions [56]. Of the 416 subjects
in total, 150 were chosen for our experiments. The first 120 subjects were used for model
training out of the selected data and the remaining 30 subjects were used as test datasets.
For our studies, the axial, sagittal, and coronal planes of the MRI slices were used for
training and testing the proposed network. In the OASIS dataset, the size of each input
axial scan was 208 x 176 x 176 which corresponds to height x width x slices respectively
and each scan consisted of 176 slices. It was observed that the distinguishable tissue regions
were mostly found near the middle slices of the volume [54]. Often, the same information
is exchanged for consecutive slices. Therefore, to remove these non-informative slices and
decrease the repetitive training of consecutive slices, a sample of 48 slices, starting from the
10-th slice with an interval of three slices, were selected for the evaluation procedure. By
inserting 24 pixels of zeros at the top and bottom of the image and 40 pixels of zeros on the
left and right of the image, the extracted slices were resized to the dimensions of 256 x 256
x 48. Similarly, the sagittal and coronal planes of MRI slices were also resized to 256 x 256
dimensions. Each input scan, therefore, consisted of 48 slices with dimensions of 256 x 256.
During the training phase, slices of each MRI scan and their corresponding ground-truth
segmentation maps were split into uniform patches. An input slice had dimensions of
256 x 256 and each slice was split into four patches. Therefore, in the proposed model, the
dimensions of each partitioned patch were 128 x 128. These patches were given as input to
the training model and the predicted segmentation results were obtained for the test data.

The second dataset contains MRI from the Internet Brain Segmentation Repository
(IBSR) [57] dataset. The IBSR dataset includes 18 T1-weighted MRIs of 14 healthy men
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and 4 healthy women between 7 and 71 years of age. The MRIs in the IBSR are provided
after pre-processing, such as skull stripping, normalization, and bias field correction. The
training dataset included 12 subjects with manually annotated and confirmed ground truth
labels for the remaining six subjects for testing the model. The original axial scans (256 x
128 x 256) were padded to the top and bottom of the image with 64 pixels of zeros to resize
to a dimension of 256 x 256 x 256 to use the patches effectively in our proposed model.
Similarly, the original coronal (256 x 256 x 128) and sagittal (128 x 256 x 256) scans were
also resized to dimensions of 256 x 256 x 256 for the experiments. Table 1 summarizes the
OASIS and IBSR datasets used in the experiments.

Table 1. Summary of OASIS and IBSR datasets used in our experiments.

No. of Subjects Experiment Data
Dataset .. .
Male Female Total Training Set Testing Set
OASIS 160 256 416 120 30
IBSR 14 4 18 12 6

The training and testing were performed on an NVIDIA GeForce RTX 3090 GPU
to build the proposed network and use stochastic gradient descent to optimize the loss
function. For training, we set the learning rate to 0.001, a high momentum rate of 0.99, and
the number of epochs to 10. The Keras framework for implementation of the proposed
work was used.

Figures 5 and 6 show the segmentation results for the axial, coronal, and sagittal
planes of the OASIS and IBSR datasets, respectively. The figures show that the proposed
approach achieves well-segmented performances for GM, WM, and CSF of the brain MRI
on both datasets. The axial plane shows the most informative details in the central slices of
the MRI compared to the other planes. Thus, the segmentation results for the axial planes
show the segmentation performance most effectively. In addition, the highlighted boxes in
Figures 5 and 6 show that the quality of sagittal and coronal images is highly promising
without any difference in every detail. From the results of Figures 5 and 6, it can be inferred
that the proposed method can extract complicated pattern features from all three planes.

We evaluated the performance of the proposed method using quantitative metrics.
Table 2 lists the DSC values [58] and ]I [59], which are popular methods for comparing
the ground truth and segmented results. DSC is defined as twice the number of elements
common to both sets divided by the sum of the number of elements in each set, where | X|
and |Y| are the cardinalities of the ground truth set and predicted segmentation set (i.e.,
the number of elements in each set). JI is expressed in terms of the DSC, as listed in Table 2.
Both DSC and JI metrics determine the match between the predicted segmentation map
and the corresponding ground-truth segmentation map.

Table 2. The formulation of evaluation metrics.

Dice similarity coefficient (DSC) D(X,Y)=2 \‘;(\‘Q‘lyl

Jaccard Index (JI) JI(X,Y) = 295(;(?

Hausdorff distance (HD) HD — s { Tg)ﬁg Telg D{X,Y}, }

max min D{X, Y}
yeY xeX

Mean squared error (MSE) MSE = % Zszl Z]-Czl (X — Y)z
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(a) (b) () (d) (e) ()

Figure 5. Segmentation results for the axial, coronal, and sagittal planes of the brain MRI image (top to bottom) on the OASIS
dataset using the proposed method. (a) Original input images, (b) ground truth segmentation map, (c) their predicted
segmentation map obtained by using the proposed method, (d) predicted GM (binary map), (e) predicted CSF (binary map),
(f) predicted WM (binary map).

& B BB
|6 | 6B 655
L]

(@) (©) (d) (e) (f)

Figure 6. Segmentation results for the axial, coronal, and sagittal planes of the brain MRI image (top to bottom) on the

IBSR dataset using the proposed method. (a) Original input images, (b) ground truth segmentation map, (c) their predicted
segmentation map obtained by using the proposed method, (d) predicted GM (binary map), (e) predicted CSF (binary map),
(f) predicted WM (binary map).

We also assessed the segmentation performance in terms of the mean square error
(MSE), which is the average square difference between the original and predicted Y values.
The Hausdorff distance (HD) [60] was used to determine the dissimilarity between two
sets in a metric space. The two sets of small Hausdorff distances are almost identical. HD
and MSE are computed as listed in Table 2, where D is the Euclidean distance between two
pixels, and R and C are the image height and width, respectively. To compare the segmenta-
tion results of various network architectures, we experimented on SegNet, U-net, U-SegNet,
U-net++, and CE-net models under the same experimental conditions. Figures 7 and 8
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show comparisons of the segmentation results. As shown in Figures 7 and 8, the proposed
method shows superior results in terms of the quality of the segmentation map compared to
those of other conventional methods. Although the skip connections in the U-net improve
feature representations by combining low-level and high-level information, they suffer
from a large semantic gap between low- and high-resolution feature maps, resulting in
high misclassification rates of brain tissues. Furthermore, for medical images with low
contrast, blurred boundaries between different tissues, the segmentation accuracies of
U-net and SegNet are significantly degraded. Because the network layers in U-net++ are
connected through a series of nested, dense skip pathways, leading to redundant learning
of features, they did not show good performance. In particular, it can be observed that
there are misclassification results in the feature maps generated by SegNet, U-net, and
U-net++ in the red boxes of Figures 7c and 8c. Although U-SegNet with pooling indices
and skip connections yields better segmentation results, it fails to capture fine details,
as shown in Figure 8c. From the highlighted red boxes in Figure 8, it can be observed
that U-SegNet fails to identify differences between WM and GM tissues, and most of the
GM tissues are incorrectly predicted as WM. The CE-net extracts multi-scale information
through a context encoder block for the segmentation of medical images. However, the
context encoder block is employed only at the bottleneck layer of the model, and thus
this multi-scale information could be irrelevant by the time it reaches the final decoder
layer for classification. To overcome these limitations, we extract multi-scale information
at each network layer followed by the GAM to enhance the segmentation performance
by directing attention to related areas. This improved segmentation can be observed in
the results obtained using the proposed method. Similar results were observed for the
segmentations obtained from the IBSR images, as shown in Figure 8. It can be observed
that the proposed network obtains finer details than the other architectures. These results
indicate that our proposed approach can strongly recover finer segmentation details while
bypassing distractions between tissue boundary regions.

The quantitative analysis of the proposed method is performed in comparison with
SegNet [20], U-net [4], U-SegNet [21], U-net++ [23], and CE-net [29]. Table 3 lists the
comparative results in terms of the average and standard deviation of DSC, JI, and HD
metrics, respectively As listed in Table 3, the proposed network achieves significant im-
provements of 10%, 3%, 2%, 2%, and 1% (in terms of DSC) over SegNet [20], U-net [4],
U-SegNet [21], U-net++ [23], and CE-net [29], respectively, and obtained a lower MSE
value of 0.003 on average. In addition, the maximum standard deviations for DSC, ]I,
and HD are 0.098, 0.096, and 0.088, respectively, which are close to the mean values; this
indicates that the pixel predicted values are fitted well to the ground truth values without
much data variation. For each encoder map, SegNet [20] stores only the max-pooling
indices, i.e., the maximum feature value positions in each pooling window are stored and
used for up-sampling. This improves boundary delineation with 3.5 million parameters
with approximately 1.4 h of training time, requiring fewer resources among the existing
methods in our proposed method. SegNet tends to miss several fine details because when
performing up-sampling from low-resolution feature maps, it loses adjacent information.
On the other hand, U-net uses skip connections as the core of the architecture, which
blends deep, coarse information with shallow, fine semantic information. A drawback
of U-net is its significant memory requirement because lower-level features in the up-
sampling process must be stored for further concatenation. Because U-net uses low-level
feature maps for up-sampling, translation invariance is often compromised. Moreover,
U-SegNet [21] tends to be insensitive to fine details, and it is evident from the difficulty
in identifying boundaries between adjacent tissues, such as WM and GM. The design of
atrous convolution followed by multi-kernel max-pooling in the CE-net helps to capture
multi-scale information and avoids the acquisition of redundant information. However,
the multi-scale feature extraction capability of the CE-net is limited to the bottleneck layer,
leading to poor feature presentation at the final decoder layer. The segmentation maps
generated by these existing models have a relatively low resolution because of the pooling
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layers in the encoder stage. Hence, to preserve the high spatial resolution, the pooling
layers must be removed. However, because convolution is a rather local operation, SegNet,
U-net, U-SegNet, U-net++, and CE-net models would not be able to learn holistic features
in the images without pooling layers.

SegNet [20]

U-net [4]

U-SegNet [21]

U-net++ [23]

CE-net [29]

Proposed

Method

(@) (b) (0) (d) (e) ()

Figure 7. Segmentation results for GM, CSEF, and WM from brain MRI image using the existing methods and the proposed
method on OASIS dataset: (a) original input image; (b) ground-truth segmentation map; (c) their segmentation results
obtained SegNet, U-net, U-SegNet, U-net++,CE-net, and the proposed method (top to bottom); (d) CSF maps obtained by
SegNet, U-net, U-SegNet, U-net++,CE-net, and the proposed method (top to bottom); () GM maps obtained by SegNet,
U-net, U-SegNet, U-net++,CE-net, and the proposed method (top to bottom); (f) WM maps obtained by SegNet, U-net,
U-SegNet, U-net++,CE-net, and the proposed method (top to bottom).
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SegNet [20]

U-net [4]

U-SegNet [21]

U-net++ [23]

CE-net [29]

Proposed

Method

(@ (b) (© (d) (e) ®)

Figure 8. Segmentation results for GM, CSF, and WM from brain MRI image using the existing methods and the proposed
method on IBSR dataset: (a) original input image; (b) ground-truth segmentation map; (c) their segmentation results
obtained SegNet, U-net, U-SegNet, U-net++,CE-net, and the proposed method (top to bottom); (d) CSF maps obtained by
SegNet, U-net, U-SegNet, U-net++,CE-net, and the proposed method (top to bottom); () GM maps obtained by SegNet,
U-net, U-SegNet, U-net++,CE-net, and the proposed method (top to bottom); (f) WM maps obtained by SegNet, U-net,
U-SegNet, U-net++,CE-net, and the proposed method (top to bottom).

Our proposed method presents a multi-scale feature fusion scheme combined with
GAM as a potential solution to the problems discussed above and produces improved
segmentation accuracy. The max-pooled output was filtered with 1 x 1,3 x 3 kernels. Then,
they are concatenated together and can extract the global context without losing the resolu-
tion of the segmentation map. In this way, global information can be exchanged between
layers without reducing the resolution, leading to lowered blurring in the segmentation
maps. In addition, the GAM at the encoder enables the presentation of global context infor-
mation as a guide for low-level features to extract the original resolutions for segmentation.
The GAM at the decoder shows that the combination of global features and local features
is essential to discriminate brain tissues and is consistent with the results from previous
studies. Furthermore, uniform input patches allow the network to concentrate better on
local information. As a result of the selective integration of spatial information through
uniform patches, feature maps followed by multi-scale guided multiple GAMs help in
capturing context information and can efficiently encode complementary information to
segment the brain MRI accurately.
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Table 3. Comparisons between the segmentation accuracy for the proposed method and conventional methods on OASIS and IBSR datasets.

OASIS
Axial Plane
Method WM GM CSF
DSC JI HD DSC JI HD DSC JI HD
SegNet [20] 0.89 £ 0.087 0.83 £ 0.096 4.74 + 0.077 0.86 + 0.069 0.80 & 0.089 4.69 £+ 0.053 0.85 £ 0.048 0.80 £ 0.068 4.12 4+ 0.079
U-net [4] 0.93 4 0.059 0.89 £ 0.068 4.16 + 0.064 0.92 £ 0.048 0.87 4 0.038 4.24 4+ 0.046 0.901 £ 0.076 0.85 £ 0.055 3.82 4+ 0.039
U-SegNet [21] 0.94 4 0.048 0.90 £ 0.055 3.91 4+ 0.057 0.93 £ 0.056 0.88 4= 0.058 4.11 +0.033 0.92 £ 0.024 0.86 &= 0.093 3.64 £ 0.047
U-net++ [23] 0.95 £ 0.075 0.91 £ 0.042 3.78 4= 0.048 0.94 + 0.035 0.89 + 0.072 3.84 4+ 0.025 0.93 £ 0.039 0.87 4= 0.046 3.56 &= 0.036
CE-net [29] 0.95 4+ 0.039 0.91 £+ 0.074 3.65 £+ 0.050 0.94 £ 0.042 0.90 £ 0.041 3.57 + 0.044 0.93 £ 0.043 0.88 & 0.037 3.21 £+ 0.061
Proposed 0.97 £ 0.025 0.92 £ 0.062 3.13 +0.037 0.95 4 0.029 0.91 4 0.033 3.16 + 0.030 0.94 + 0.022 0.90 £ 0.043 2.44 4 0.038
Coronal Plane
SegNet [20] 0.87 4 0.098 0.83 £ 0.038 5.21 +0.023 0.85 £ 0.044 0.80 & 0.068 5.49 4+ 0.053 0.83 £ 0.079 0.79 £ 0.056 5.87 £ 0.084
U-net [4] 0.94 4 0.065 0.89 £ 0.049 4.88 + 0.042 0.93 £ 0.057 0.88 £ 0.056 4.95 4 0.042 0.92 £ 0.063 0.86 + 0.029 5.34 + 0.073
U-SegNet [21] 0.95 4 0.049 0.90 £ 0.029 4.23 + 0.039 0.94 4+ 0.081 0.88 &= 0.043 4.48 4 0.088 0.92 £ 0.054 0.87 4 0.047 4.97 4+ 0.039
U-net++ [23] 0.94 4+ 0.076 0.89 + 0.073 4.05 + 0.047 0.93 £ 0.042 0.87 £ 0.037 429 4+ 0.044 0.93 £ 0.048 0.88 £ 0.036 4.72 4+ 0.043
CE-net [29] 0.95 £ 0.031 0.90 £ 0.026 3.98 + 0.076 0.94 + 0.038 0.89 4 0.040 417 +0.071 0.93 £ 0.039 0.89 4 0.029 4.17 + 0.050
Proposed 0.96 £ 0.043 0.91 £ 0.041 3.52 +0.024 0.96 £ 0.020 0.91 £+ 0.031 3.76 4+ 0.029 0.94 £ 0.015 0.90 £ 0.016 3.95 4+ 0.033
Sagittal Plane
SegNet [20] 0.88 &= 0.096 0.84 £ 0.054 5.53 + 0.027 0.85 £ 0.083 0.81 4 0.055 5.26 4+ 0.033 0.84 £ 0.040 0.80 = 0.077 5.69 £ 0.088
U-net [4] 0.94 £ 0.068 0.89 £ 0.070 5.11 4+ 0.030 0.92 £+ 0.074 0.89 4 0.030 5.11 +0.026 0.93 £ 0.058 0.88 + 0.053 5.21 + 0.079
U-SegNet [21] 0.95 £+ 0.077 0.91 £ 0.049 4.72 + 0.042 0.93 £ 0.066 0.89 4 0.043 4.67 4+ 0.042 0.93 £+ 0.037 0.89 + 0.060 4.75 £+ 0.063
U-net++ [23] 0.95 4 0.060 0.90 £ 0.036 4.46 + 0.031 0.94 £ 0.038 0.88 4 0.029 4.32 +0.019 0.94 £ 0.063 0.89 4 0.041 4.56 + 0.041
CE-net [29] 0.95 4 0.043 0.91 £ 0.064 4.13 + 0.020 0.94 4 0.025 0.89 £ 0.035 4.25 +0.034 0.94 4+ 0.051 0.90 £ 0.062 4.28 4+ 0.055
Proposed 0.96 £ 0.027 0.92 4 0.044 3.58 +0.023 0.95 4+ 0.011 0.91 £ 0.040 3.98 4+ 0.023 0.95 £ 0.031 0.91 £+ 0.018 3.43 4+ 0.031
Axial Plane

SegNet [20] 0.72 +0.036 0.65 £ 0.042 6.51 £+ 0.65 0.75 4 0.049 0.67 £ 0.058 6.53 +0.91 0.68 £ 0.099 0.59 £ 0.095 6.96 &+ 0.46
U-net [4] 0.89 £ 0.022 0.81 £ 0.034 5.14 +0.51 0.91 £+ 0.017 0.85 4 0.023 487 +0.51 0.84 £ 0.065 0.75 4+ 0.079 5.24 4+ 0.31
U-SegNet [21] 0.90 £ 0.043 0.82 £ 0.051 4.76 + 0.39 0.92 £ 0.053 0.86 &= 0.028 4.45 4+ 0.65 0.84 £ 0.029 0.75 £+ 0.048 4.84 +0.18
U-net++ [23] 0.88 & 0.085 0.80 £ 0.096 5.37 & 0.36 0.89 £ 0.037 0.83 4 0.049 5.17 + 0.29 0.83 £ 0.058 0.74 4 0.082 5.34 4 0.64
CE-net [29] 0.89 4 0.055 0.81 £ 0.073 498 4+ 0.84 0.90 £ 0.068 0.84 + 0.083 495+ 0.38 0.82 £+ 0.037 0.74 4+ 0.031 4.74 +0.93
Proposed 0.91 £ 0.085 0.83 £ 0.064 4.45 4+ 0.57 0.93 £+ 0.076 0.87 £+ 0.016 4234092 0.85 £ 0.097 0.77 +0.023 426 +0.79
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Table 3. Cont.

IBSR
Coronal Plane

SegNet [20] 0.70 £ 0.061 0.62 £ 0.051 6.32 £+ 0.82 0.73 = 0.037 0.65 £ 0.062 6.21 £+ 0.84 0.66 + 0.054 0.57 + 0.086 6.84 + 0.75
U-net [4] 0.88 + 0.035 0.79 + 0.034 5.45 + 0.67 0.90 + 0.014 0.83 &+ 0.056 5.17 + 0.38 0.83 £ 0.012 0.76 £ 0.043 5.54 4+ 0.47
U-SegNet [21] 0.89 + 0.076 0.80 + 0.046 461 4+0.21 0.91 4+ 0.035 0.84 4 0.043 456 +0.19 0.84 £ 0.085 0.76 + 0.093 4.83 +£0.25
U-net++ [23] 0.88 + 0.021 0.79 + 0.073 5.21 +0.39 0.91 + 0.093 0.85 + 0.074 5.24 + 0.24 0.82 + 0.034 0.73 + 0.067 5.73 +0.39
CE-net [29] 0.89 + 0.034 0.80 & 0.851 4.89 +£0.21 0.90 + 0.049 0.85 + 0.068 5.98 +0.93 0.83 + 0.056 0.74 £ 0.042 5.21 +0.20
Proposed 0.90 £ 0.039 0.85 £ 0.088 4244043 0.92 4+ 0.019 0.86 &= 0.035 431 + 0.67 0.84 + 0.078 0.76 + 0.097 455 +0.12

Sagittal Plane

SegNet [20] 0.71 £ 0.043 0.63 £ 0.039 6.49 £ 0.61 0.74 +0.073 0.66 £ 0.059 6.36 = 0.76 0.65 £ 0.083 0.54 +0.092 6.99 + 0.41
U-net [4] 0.86 +0.029 0.78 £ 0.062 575+ 0.37 0.89 + 0.036 0.81 &+ 0.041 5.77 £0.21 0.80 & 0.071 0.73 +0.019 5.83 +£0.15
U-SegNet [21] 0.87 & 0.016 0.80 £ 0.048 4.89 £0.14 0.90 £ 0.069 0.82 £ 0.046 5.42 £ 0.06 0.81 £ 0.096 0.74 £ 0.073 4.98 £+ 0.09
U-net++ [23] 0.85 £ 0.083 0.79 £+ 0.039 4.57 +0.54 0.88 + 0.077 0.79 £+ 0.081 496 + 0.22 0.79 £ 0.049 0.72 + 0.069 5.60 + 0.44
CE-net [29] 0.86 &= 0.054 0.80 £ 0.025 5.34 £ 0.66 0.89 £ 0.051 0.80 £ 0.037 5.86 £ 0.55 0.79 £0.033 0.73 +0.022 5.25 +0.37
Proposed 0.88 £ 0.035 0.81 £0.073 4.63 £ 0.36 0.91 £ 0.028 0.83 £ 0.083 530 £0.18 0.82 £ 0.053 0.75 £ 0.011 412 + 0.66
Mean Square Error (MSE)
SegNet [20] U-net [4] U-SegNet [21] U-net++ [23] CE-net [29] Proposed method
OASIS 0.021 0.006 0.005 0.004 0.004 0.003

IBSR 0.013 0.008 0.007 0.005 0.005 0.004
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As mentioned above, we propose the use of a fire module for fewer learnable parame-
ters while maintaining equivalent accuracy. Figure 9 shows the details of the number of
learnable parameters and computation time consumed by the proposed method in compar-
ison with conventional methods. Smaller models can be built by arranging a sequence of
fire modules that consist of a squeeze layer that has only 1 x 1 convolution filters. This
serves as an expansion layer that has a combination of 1 x 1 and 3 x 3 filters. The number
of filters in the squeeze layer was defined to be less than the numberof 1 x 1and 3 x 3
filters in the expand layer. The 1 x 1 filters in the squeeze layer down-sample the input
channels and decrease the parameters before they are given as an input to the expand layer.
The expansion layer consists of both 3 x 3 and 1 x 1 filters. The 1 x 1 filters in the expand
layer combine channels and perform cross-channel pooling, but cannot recognize spatial
structures. The 3 x 3 convolution filter in the expand layer identifies the spatial represen-
tation. The model becomes more descriptive by integrating these two distinct size filters
while running on lower parameters. Hence, fire modules reduce the computational load by
reducing the parameter maps and building a smaller CNN network that can preserve a
higher degree of accuracy. The total parameters in our proposed method are one million
parameters, which are 3, 5, 4.5, 3, and 28 times smaller than SegNet, U-net, U-SegNet,
U-net++, and CE-net networks, respectively. The training time for the proposed method
for the OASIS dataset was 50% of that of the U-net++ and CE-net methods. Compared to
traditional approaches, a reduction in memory requirements would result in a substantial
decrease in energy and processing requirements.

29,415,492

3,505,028 4832324 4,610,948

3,265,316
m B B
] 0304

SegNet U-net U-SegNet U-net++ CE-net Proposed
method

mmmm Number of Parameters —®— Time in hours

Figure 9. Detailed data on the number of learnable parameters and computation time for the
proposed and conventional methods for the OASIS dataset.

Ablation Study

We conducted an ablation study on the three simplified versions of the proposed
modules to investigate the influence of each selection on the segmentation performance as
follows: (i) Squeeze U-SegNet, (ii) Squeeze U-SegNet with multi-scale input, (iii) Squeeze
U-SegNet with multi-global attention and (iv) multi-scale Squeeze U-SegNet with multi-
global attention (proposed method). The Squeeze U-SegNet was obtained by replacing
each convolution block by fire module in the conventional U-SegNet. The second network
proposes that the encoder of the Squeeze U-SegNet includes a multi-scale input layer.
This is achieved by max-pooling the input and performing parallel convolution with
1 x 1, 3 x 3 kernels, and concatenating these multi-scale features. These fused multi-scale
features are concatenated with the corresponding fire module output and fed as input
for further max-pooling operations. This process is repeated for all encoding layers. The
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multi-scale feature module extracts neighbor scale information of global features more
precisely while filtering out irrelevant information. The impact of the attention mechanism
is explored in the third network, where GAMs are integrated at both the encoder and
decoder, forming a multi-attention network. Finally, the multi-scale squeeze U-SegNet
with multi-global attention referred to as the proposed method incorporates semantic
guidance by combining all the proposed modules. Table 4 lists the results of the individual
contributions of different components to segmentation performance. The fire module-based
model shows a large decrease in the requirement of learnable parameters with reduced
computation time for model training while maintaining network accuracy. We observe that,
compared to the baseline squeeze U-SegNet, the performance of the models integrated
with the multi-scale feature fusion input scheme and with the multi-attention modules is
improved by 1.5% and 2%, respectively. Although the multi-scale feature fusion shows a
slight increase in the DSC, its contribution combined with GAM provides more network
efficiency. Furthermore, the combination of both multi-scale and multiple global attention
strategies boosts the performance and yields the best values in the three metrics: 96%
(DSC), 91% (JI), 3.1(HD), and with the lowest MSE of 0.003. These results represent an
improvement of 2% in DSC compared to the baseline U-SegNet [20], showing the efficiency
of the proposed multi-scale guided multi-GAM compared to individual components.

Table 4. Detailed data on the number of learnable parameters and computation time for the proposed method and its three

simplified versions.

GM WM CSF -
Model Computation Time (10 #Learnableparameters
DSC ]I HD DSC JI HD DSC JI HD MSE Epochs)
Squeeze U-SegNet 9205 88.06 352 9337 9042 28 9165 88.06 20  0.006 1h 768,788
Squeeze U-SegNetwith o3 14 8947 481 9478 9190 41 9332 9025 3.0  0.005 1.04h 860,180
multi-scale input
Squeeze U-SegNet with o) 37 8955 510 9512 9140 42 9424 8922 33 0004 1.15h 942,164
multi global attention
Proposed method 9554 91.09 321 9656 9205 3.1 9486 9029 3.0  0.003 1.12h 1,030,420

We also investigated the effects of patch size in terms of training time and segmentation
performance. The experiments were performed on the OASIS dataset for three distinct
patch sizes (128 x 128, 64 x 64, and 32 x 32). Table 5 lists the output of the segmentation
in terms of the DSC with respect to different patch sizes. It can be observed that smaller
patches result in better performance. This is because smaller patches create more training
data for the network to train. Moreover, local regions can be restored more accurately.
Furthermore, when the patch size is 128 x 128, it takes 1.1 h to train the model, whereas
the training time doubles for 32 x 32 patches with almost identical accuracy. We, therefore,
concluded that a patch size of 128 x 128 provides a fair tradeoff between the DSC score
and the computational time needed to train the model, based on the results in Table 5.

Table 5. Segmentation accuracy (%) and training time (hours) for the proposed method with different
sizes of input patches.

DSC JI Training Time (h)
Model WM GM CSF WM GM CSF
Patch size: 128 x 128 9656 9554 9573 9205 91.09 90.23 11
Patch size: 64 x 64 9674 9613 9549 9249 9158  90.54 6.7
Patchsize: 32 x 32 9691 9685 9573 9188 9176 90.71 12.4

5. Conclusions and Future Works

This paper proposes multi-scale feature extraction with novel global attention-based
learning based on the U-SegNet architecture for brain MRI segmentation. The multi-scale
data provide rich spatial information and improve the robustness of feature extraction. The
global attention module provides the global context as guidance for low-level features to
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select category localization details. Squeeze and expand layers lead to the generation of
one million parameters, which are 3, 5, 4.5, 3, and 28 times smaller than SegNet, U-net,
U-SegNet, U-net++, and CE-net networks, respectively. Our proposed network obtains
the best DSC value of 96%. The training time for the proposed method for the OASIS
dataset is 50% of that of the U-net++ and CE-net methods. Our validation proves that
the network operating on patch-wise input, integrated with multi-scale global attention
and fire modules, will yield an efficient brain MRI segmentation model. The proposed
model can be easily extended to complex network architectures owing to flexibility and
adaptability with faster computation. Hence, a three-dimensional (3D) segmentation model
can be devised using the extended model of the proposed architecture as future works.
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