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SUMMARY
Recent advances in machine learning (ML) have made it possible to analyze high-dimensional and complex
data—such as free text, images, waveforms, videos, and sound—in an automated manner by successfully
learning complex associations within these data. Cardiovascular medicine is particularly well poised to
take advantage of these ML advances, due to the widespread digitization of medical data and the large num-
ber of diagnostic tests used to evaluate cardiovascular disease. Various ML approaches have successfully
been applied to cardiovascular tests and diseases to automate interpretation, accurately perform measure-
ments, and, in some cases, predict novel diagnoses from less invasive tests, effectively expanding the utility
of more widely accessible diagnostic tests. Here, we present examples of some impactful advances in car-
diovascular medicine using ML across a variety of modalities, with a focus on deep learning applications.
CARDIOVASCULAR MEDICINE IS RIPE FOR MACHINE
LEARNING

Across many industries, there has been significant interest in

machine learning (ML) in recent years, and biomedical science

and medicine are no exception.1,2 Broadly speaking, ML de-

scribes a variety of computational techniques that have

expanded the traditional analytical toolkit beyond linear statisti-

cal models and generally comprise what is often referred to as

‘‘artificial intelligence’’(AI). ML algorithms have made it possible

to analyze higher dimensional data, and they have shown an abil-

ity to learn complex associations within these data without hu-

man-provided instructions. To do this, ML algorithms learn

frommany examples of data that have been labeled for a specific

task, a process referred to as ‘‘training’’ or ‘‘learning.’’ This typi-

cally requires not only a large amount and variety of data but also

diagnostic tests that capture information that are incrementally

closer to the diagnostic ground-truth, to provide labels for the

data. For several important reasons, cardiovascular medicine

is ripe for advancement by ML.

Modern medical practice is awash in data of numerous types.

In cardiovascular medicine, recent decades have seen an

expansion in the variety and quality of diagnostic tests, such

as noninvasive imaging like computed tomography (CT) angiog-

raphy, physiologic testing such a fractional flow reserve or serum

biomarkers. These tests provide physicians with greater

amounts of complementary information upon which to make

diagnostic and therapeutic decisions but present a broad range
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of accessibility, cost, and risk. This hierarchy of diagnostic tests

is larger in cardiovascular medicine than other areas, with some

tests providing rich labels upon which ML algorithms can be

trained to use less costly/invasive tests to predict the results of

more costly or invasive tests.

The widespread digitization of medical data over the past two

decades makes medicine highly ripe for ML. With the move to

electronic health record systems,3 nearly all presently recorded

medical data from imaging to labs are stored and accessed in dig-

ital formats. The ability to accessmostmodernmedical data elec-

tronically unlocks the potential of data-intensive algorithms for

application in biology and medicine. Even so, a substantial

amount of data processing and harmonization may still be

required before these data can be used to train ML algorithms.

Much of the data collected in medical practice may now be digi-

tized but remains unstructured. For data formats that are less

easily computable, such as free-text notes, recent ML-driven ad-

vances in fields such as natural language processing4–6 canmake

it possible to either obtain structure from such unstructured data

or to work with unstructured data formats directly.

The high prevalence of cardiovascular disease overall also

translates to large amounts of cardiovascular-relevant patient

data. Electrocardiograms (ECGs), for example, are frequently ob-

tainedmany timesover thecourseofapatient’s care,oftenbynon-

cardiovascular specialists or clinics, which reflects the relevance

of cardiovascular concerns to medicine more broadly. This pro-

videsgreater amountsofdata to trainMLmodelsandoffersoppor-

tunities for ML to assist in a greater number of clinical workflows.
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Figure 1. Understand the problem and the data to select the most

appropriate analytic technique

Clearly defining the clinical task of interest and understanding the nature of the

available data and training labels is essential to selecting the most appropriate

analytic technique. Created with BioRender.com. Link to BioRender illustra-

tion: https://app.biorender.com/illustrations/62e46a207b029dd42f0dcfb5 .
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Likemany chronic diseases, cardiovascular disease diagnosis

and management depend heavily on trends across data,

providing another opportunity for assistance from ML algo-

rithms. For diagnostic tests such as ECGs or echocardiograms

(echo), understanding a given patient’s prior study is critical to

appropriately interpreting the current study. While physicians

commonly compare a current study against themost recent prior

study or several prior studies to identify changes, humans are

generally less adept at evaluating subtle changes that arise

over longer periods of time. Often it is simply not practical for a

cardiologist to review more than a handful of prior studies prior

to interpreting every current study. ML algorithms are positioned

to assist with this in various ways, such as by providing quantifi-

cation of previously subjectively determined binary diagnoses or

by learning patterns of change in raw data that are associated

with disease outcomes. ML can help to process large amounts

of longitudinal data and discover patterns that may otherwise

go unnoticed. Importantly, however, ML algorithms will not be

the most appropriate analytical option for every clinical task.

There are many tasks for which traditional statistical models or

rule-based algorithms provide the best solution. Depending on

the task of interest and the nature and quantity of the available

input data and ground-truth labels, researchers should select

the most appropriate analytic technique: traditional biostatistical

models, ML algorithms, or a combination (Figure 1).

We will review some fundamentals of ML algorithms, then

discuss some examples of specific applications to cardiovascu-

lar medicine.

FUNDAMENTALS OF ML AND AI

ML refers to a collection of computational techniques that learn

patterns within data to accomplish certain tasks for which they
2 Cell Reports Medicine 3, 100869, December 20, 2022
are trained. The most common approach used to train ML algo-

rithms in most settings, including in medicine, is called super-

vised learning. Training an algorithm with supervised learning in-

volves presenting to the algorithm many examples of input data

that have been labeled (often by a human expert) for the task of

interest. The algorithm makes predictions each time, and learns

patterns within the data by minimizing error when comparing its

predictions against the labeled data. This error is calculated

mathematically using a customizable equation called a loss

function. The parameters of the algorithm are adjusted on each

round to minimize this loss, causing the algorithm to learn pat-

terns in the data. For example, in order to distinguish a normal si-

nus rhythm ECG from an atrial fibrillation ECG, an ML algorithm

would learn from previously categorized raw 12-lead ECGwave-

forms what ECG features differentiate atrial fibrillation from

normal sinus rhythm. These featuresmight be irregular R-R inter-

vals or absence of a P-wave or other similar ECG features, but

the features identified and the relative importance of each

feature (and the interactions between features) are learned by

the algorithm during the training process.

To examine the ability of the algorithm to generalize to unseen

data, the algorithm is continually tested during training on a

separate subset of the data called the development, or valida-

tion, dataset. The algorithm’s parameters are typically adjusted

by investigators based on the development dataset results to

maximize generalization performance and prevent overfitting.

Overfitting describes the situation in which the model learns

the training dataset perfectly, memorizing training dataset-spe-

cific features at the expense of features that can allow the model

to perform well on unseen data. Final algorithm performance is

then reported on a third held-out dataset, the test dataset, that

had no role in the training of the algorithm. In medical applica-

tions, it is also increasingly important to report performance in

one or more additional test datasets from external institutions.

This provides additional evaluation of the robustness of the algo-

rithm, helping to ensure that the algorithm performance is not

dependent on specific characteristics of the training population

or dataset.

Typical tasks of medical ML models include classification

(e.g., to predict ‘‘disease’’ versus ‘‘no disease’’) or regression

(e.g., to predict the continuous value of a diagnostic test)

although many other relevant tasks can be performed such as

drawing a bounding box around an item of interest in an image

(e.g., localizing a pulmonary nodule on an X-ray). Based on the

task, the relevant metrics of performance may vary. Relevant

metrics can include accuracy, specificity, and sensitivity, much

like any other diagnostic test, or the F1 score, which is the har-

monic mean of precision (positive predictive value) and recall

(sensitivity). ML reports will often also include the area under

the receiver operating characteristic curve (AUROC), which is a

metric of discrimination performance across all possible thresh-

olds of its output score.

Traditional ML algorithms, such as support vector machines or

tree-based models, are best suited for structured data resem-

bling numbers on a spreadsheet, also called ‘‘tabular data.’’

For example, these datamight contain a series of lab values, vital

signs, or measurements derived from more complex data mo-

dalities, such as cardiac chamber dimensions from a cardiac

http://BioRender.com
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Figure 2. Example data types for traditional ML versus DNN algorithms

Traditional ML algorithms such as regressionmodels, tree-basedmethods (e.g., random forest or gradient boostedmodels), or support vector machines typically

require tabular input data formats. These tabular data can be extracted from structured data such as electronic health records, or they can be derived frommore

complex data types throughmanual extraction of human-defined features such asmanual measurement of chamber volumes from an echo. DNNs allow for more

high-dimensional and complex input data types.
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MRI. In the case of derived measurements, humans are usually

required to interpret the raw data before they can be input into

the ML model in a process called feature engineering (Figure 2).

In general, these traditional ML algorithms can capture complex

relationships and have shown promise in medical applications.

However, although these algorithms can process higher dimen-

sional input data compared with traditional statistical models,

they are still limited in the types of data that they can reasonably

accept. For high-dimensional data modalities such as images or

videos, these traditional ML algorithms are not able to handle

raw formats and require humans to first derive summary mea-

surements, which are subject to bias in the selection of which

measurements to derive and human error during measurement.

Perhaps the most medically relevant ML advances in recent

years have been driven by algorithm architectures that can

accept raw data modalities such as free text, images, and videos

directly as inputs, led primarily by a category of algorithms called

deep neural networks (DNNs).1 DNNs are highly flexible and cus-

tomizable algorithms composed of many layers of model param-

eters or weights that can be added or removed depending on the

complexity of the input data and the nature of the task of interest.

Augmented by additional data-transforming filters (such as con-

volutional filters), which help further distil the data, the multi-

layered architecture of a DNN is thus able to learn very complex

relationships within the input data to accomplish the target task,

without requiring (or being limited by) pre-specified human-

defined features (Figure 2). This combination of a DNN’s ability

to learn complex features and the ability to accept high-dimen-

sional, even multi-modal, raw input data makes it possible to
accomplish novel tasks and potentially enable data-driven dis-

covery of new physiologic associations. These advances funda-

mentally changed the types of applications in which ML could

provide value to medicine, making it possible to algorithmically

analyze complex, raw medical data without requiring physician

review.

RECENT ADVANCES AND APPLICATIONS OF ML IN
CARDIOVASCULAR MEDICINE

ML algorithms have been applied to data modalities across the

spectrum of the cardiovascular workflow. Various groups have

trained DNNs to support fully automated analysis of ECGs,

echos, radiologic studies, angiograms, and others. In addition

to performing standard medical tasks with a specific type of

data, ML algorithms have demonstrated the ability to perform

novel tasks not previously associated with specific diagnostic

tests, effectively expanding the utility of existing tools (Figure 3).

Here, we will review some recent advances in ML applications in

cardiovascular medicine.

Electrocardiography
The ECG is the most common diagnostic test in cardiology,

providing widely accessible information about cardiac electrical

function and structure. While traditional ML algorithms have long

been applied to derived measurements from the ECG, more

recently DNNs have demonstrated the capability to analyze

raw ECG waveforms to perform a variety of tasks. Automated

ML algorithms have replicated standard ECG diagnoses,
Cell Reports Medicine 3, 100869, December 20, 2022 3



Figure 3. Using ML to extract more diag-

nostic information at lower cost

Ideally, a physician aided by ML algorithms can

obtain more information per test, at a lower cost.

This would increase the sensitivity of less invasive

and more accessible diagnostic tests, possibly

decreasing the need for more specific testing or

time to diagnosis. The diagnostic tests shown are

representative examples of cardiovascular tests

that can provide incrementally more information

for certain diagnoses. The threshold for diagnosis

(red line) will vary based upon clinical disease or

application. ECG, electrocardiogram; RHC, right

heart catheterization.
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performed novel tasks not typically performed by cardiologists

using ECG alone, and assisted in analyzing longitudinal trends

in disease status and response to drug therapy.

Most commercial ECG algorithms apply what are called rule-

based algorithms to analyze an ECG; for example, to detect atrial

fibrillation or to measure the QT interval. These rule-based

models rely on previously defined diagnostic criteria or measure-

ments typically used by human readers and have enabled the

automated ECG diagnosis algorithms that have assisted clini-

cians for decades. ML algorithms provide complementary

strengths to rule-based algorithms since they do not depend

on previously defined criteria, tend to improve performance as

available training dataset sizes increase, and are capable of

learning patterns for themselves from the raw data, some of

which may have been previously unknown to humans.

Hannun et al.7 was among the first to train an end-to-end DNN

using raw ECG waveforms to detect 12 arrhythmia diagnoses.

They demonstrated performance similar to cardiologists for set

of 12 arrhythmia diagnoses, providing proof of concept that

DNNs can be trained to analyze raw ECG data. The average F1

score was similar to or higher than the average F1 score of a

committee of cardiologists. When matching specificity to the

specificity of the cardiologists, the model showed similar or

higher sensitivity for all 12 arrhythmia diagnoses.

Attia et al.8 demonstrated that a clinically relevant novel task

could be performed through ML analysis of an ECG: prediction

of asymptomatic left ventricular (LV) dysfunction. Using paired

ECGs and echoes, they trained a DNN to identify LV ejection

fraction %35% from standard 12-lead ECG data. Others have

similarly used DNN-based approaches to accomplish a variety

of novel tasks using ECGs. Examples include detection of hyper-

trophic cardiomyopathy (HCM),9,10 pulmonary hyptertension,9,11

amyloid,9,12 mitral valve prolapse,9 mitral and aortic regurgita-

tion,13 aortic valve stenosis,13,14 hyperkalemia,15 and mortality

risk estimation.16,17

Recent work by Hughes et al.18 trained a DNN to detect

38 different ECG diagnoses across a range of diagnostic clas-

ses, including arrhythmia, conduction, infarct, and chamber

enlargement. In addition to comparing the DNN against a
4 Cell Reports Medicine 3, 100869, December 20, 2022
committee of electrophysiologists, they

also compared against automated diag-

noses from the commercially available

GE MUSE system. The DNN outper-
formed the rule-based MUSE diagnoses for all classes except

supraventricular tachycardia. Compared with clinical cardiolo-

gist reads, the DNN demonstrated comparable or better perfor-

mance on 34 out of 38 classes. Human readers outperformed the

MUSE system for 30 out of 38 classes. Hughes et al. also applied

a technique, broadly called AI explainability, that helps illuminate

what portions of the ECG waveform the DNN learned as being

the most important for each diagnosis it makes. In addition to

illuminating well-understood ECG regions associated with diag-

noses, such as the delta-wave for Wolff-Parkinson-White syn-

drome, such techniques provide the possibility to discover new

physiologic associations in a data-driven manner using ML.

Such techniques may be even more important when ML algo-

rithms successfully make novel diagnoses based on a given

data modality, providing an opportunity for us to learn from the

algorithms what patterns in the data—and their physiologic un-

derpinnings—are consistently associated with the novel

diagnosis.

More recently, DNN analysis of ECGs has been used to track

longitudinal disease status and response to drug therapy, poten-

tially providing a new paradigm for longitudinal monitoring. In a

cross-institutional/industry collaboration, Tison et al.19 deployed

two DNNs separately trained to detect HCM to clinical trial pa-

tients receiving a new drug for HCM, who also underwent serial

ECG, echo, and lab measurements. Both DNNs’ predictions of

HCM risk not only decreased over time in HCM patients

receiving drug therapy but also tracked decreases in cardiac he-

modynamics (measured by serial echos) and serum lab values,

providing the first demonstration of ECGs not only capturing

this type of information but also tracking changes in these mea-

surements over time.

Other demonstrations further illustrate the use of ML to make

predictions beyond what can typically be done by human ex-

perts using standard ECG data. Tison et al.9 demonstrated that

ECG data alone can predict continuous cardiac structural and

functional metrics as quantified by echoes such as LV mass (in

g/m2), LA volume (in mL/m2), and mitral annulus (e0). While

ECG-based rules exist for clinicians to predict some of these

metrics in a binary yes/no manner from ECGs, the possibility of
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estimating the continuous value of a measure such as LV mass

in gm/m2 from an ECG alone demonstrates the broader range

of possibilities ML can offer. Ulloa Cerna et al. developed an

ML model incorporating an ECG DNN score to predict valvular

disease, reduced EF, and increased interventricular septal thick-

ness.20 Attia et al.21 trained a DNN to identify patients with atrial

fibrillation (Afib) using normal sinus rhythm ECG, and Raghunath

et al. trained a DNN to predict new-onset Afib within 1 year after

the ECG in patients with no prior history of Afib.22 Together,

these results suggest that sinus ECGs contain signals to predict

Afib that are not currently appreciated by human experts. Kwon

et al. developed a DNN to detect anemia from the ECG,23

whereas Bos et al.24 trained a DNN to diagnose concealed

long QT syndrome (LQTS), a genetically defined disorder in

which 40% of patients present with a normal QT at rest. The

DNN was not only able to identify patients with this concealed

LQTS but it was also able to distinguish between the three

main genotypic subgroups using ECG alone.

In all cases, the AI/ML algorithms exhibit some degree of error.

Therefore, prior to clinical deployment of ML algorithms, the next

critical step in evaluation must be a real-world prospective

assessment of the clinical benefit of deploying the algorithm

and what degree of error is acceptable, which is specific to

each disease and clinical context. Properly designed random-

ized controlled clinical trials (RCTs) provide the highest-level of

evidence in this regard, and RCTs examining ML algorithm

deployment will certainly be forthcoming in the near term. One

important example is the EAGLE trial, one of the first RCTs to

evaluate DNN analysis of 12-lead ECGs to predict low ejection

fraction.25 In the EAGLE trial, 120 primary care teams were clus-

ter randomized to access to the DNN’s analysis, and the primary

outcome was new diagnosis of low ejection fraction (%50%)

within 90 days. The intervention arm exhibited increased diag-

nosis of low ejection fraction, suggesting that application of the

DNN algorithm for ECG analysis can increase the earlier diag-

nosis of low EF in a primary care setting.

Echo
Echo is a central diagnostic test in cardiology, providing invalu-

able information about cardiac anatomy and real-time hemody-

namics that are essential for the diagnosis and management of

most cardiac diseases. Although it is noninvasive, does not

use ionizing radiation, and has lower cost, echo does require

greater specialized training to both obtain and interpret

compared with other tests such as the ECG. ML algorithms

can provide value across the echo workflow, from acquisition

to pre-processing, anatomic measurement, and interpretation.

As reviewed below, the bulk of AI applications in echos have

focused on one or more of three main goals: image pre-process-

ing, automating echo measurements, and automating disease

diagnosis.

Echo studies consist of multiple two-dimensional videos of the

heart from various standard views. The first task a cardiologist in

training must learn is to recognize each of the standard echo

views, before progressing to learn how to interpret each view.

In a similar way, since echo views are typically not currently re-

corded in echo video metadata, the first step in automated AI

echo analysis is view classification. Early work showed some
success using traditional ML approaches relying on features

hand-derived from echo images26–29; however, in the past 5

years, DNNs have achieved reliable echo view classification

directly using the raw data. Gao et al.30 was among the first to

apply DNNs in this manner, showing that DNNs could be trained

to analyze raw image frames directly and outperforming hand-

engineered ML approaches. Subsequent work expanded the

number of views that could be identified,31 while Zhang et al.32

additionally averaged a DNN’s predictions across multiple video

frames to achieve high accuracy in classifying 23 distinct views.

Once echo views have been identified, the next step in the clin-

ical echo work flow is performing standard measurements to

quantify size and volume of cardiac structures. This is usually

performedmanually by either the sonographer or the interpreting

cardiologist. AI-based automation may increase accuracy,

reproducibility, and speed of performing these measurements.

Various efforts have developed ML-based approaches to

replicate specific echo measurements, such LV size and vol-

ume,33–35 or leaflet dimensions.36 Zhang et al.32 was the first to

employ a specific DNN architecture called a U-Net to segment

multiple cardiac chambers simultaneously, similar to an echo-

cardiographer tracing cardiac chambers, and then use these to

calculate standard measurements of various chambers such

as volume, mass, ejection fraction and longitudinal strain. In

contrast, Ghorbani et al.37 showed that a DNN could be trained

to directly predict chamber volumes, such as end-systolic LV

volume or end-diastolic LV volume, and even ejection fraction

from raw images without first segmenting the chamber. In sub-

sequent work, Ouyang et al.38 trained a video-based DNN to

perform segmentation of the LV and estimation of ejection frac-

tion, and showed that this could be done across multiple cardiac

cycles captured during the echo video. The more cardiac cycles

examined, the lower the error in the DNN-estimated ejection

fraction. When measurements are performed manually, only

several frames (often from a single cardiac cycle) are chosen

and measured by the sonographer on account of the time

required to perform the manual measurements. While this is

the standard of care, it does raise the possibility that the frames

selected may be not representative or that measurement error

may more greatly influence the final assessment. The work by

Ouyang et al. thus demonstrates an important manner in which

ML can be used to increase reproducibility and decrease mea-

surement error within the clinical workflow, since there is minimal

to no incremental cost in deploying the AI algorithms across a

large number of cardiac cycles or frames. In a similar manner,

strategically trained AI algorithms could decrease variability

and increase reproducibility at various other points in the echo

work flow from echo acquisition, measurement of other echo pa-

rameters, and disease interpretation.

ML algorithms have been trained to detect various cardiovas-

cular diseases from raw echo images and from echo-derived pa-

rameters. Examples include pulmonary arterial hypertension,32

HCM,32,39 cardiac amyloidosis,12,32 coronary artery disease,40,41

LV hypertrophy,42 regional wall motion abnormalities,43 and pe-

diatric congenital heart disease.44 Several studies have shown

the ability to detect heart failure defined by low ejection frac-

tion,32,37,38 as well as heart failure with preserved ejection frac-

tion,45–48 and to differentiate stress cardiomyopathy from acute
Cell Reports Medicine 3, 100869, December 20, 2022 5
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myocardial infarction.49 Ulloa Cerna et al. trained an algorithm

that demonstrated the ability to predict all-cause mortality from

echo videos, a task not typically performed by cardiologists in-

terpreting echos.50 Similarly, Hughes et al. developed a DNN

capable of estimating lab values such as brain natriuretic peptide

(BNP), troponin I, blood urea nitrogen (BUN), and others from the

echo video alone, a task clearly outside the normal range of diag-

nostic ability of the echo.51 Clearly, this is far from the compre-

hensive set of echo diagnoses that would be needed to support

fully automated echo interpretation. These studies, however,

provide a valuable proof of concept that ML algorithms can be

trained across a range of clinically relevant diagnoses. Future

work will be needed to continue to expand the list of diagnoses

for which accurate reproducible algorithms exist.

ML algorithms have also been applied to assist with the acqui-

sition of echo images that is typically performed by a specially

trained echo sonographer. Becoming a proficient echo sonogra-

pher is a years-long process. ML algorithms could assist less

experienced operators to obtain basic echo images. Narang

et al.52 conducted a prospective study with such a DNN-based

system to test how well it could guide untrained operators to

obtain echo images. In this study, the ML system provided guid-

ance to nurses who had not previously performed echo

regarding how to acquire and improve specific echo views in

real time. They demonstrated that the system could guide the

novice sonographers to obtain diagnostic-quality echo images.

This shows how ML algorithms can be deployed to extend the

ability to obtain echos to those without prior experience, poten-

tially expanding the accessibility of this specialized test. Future

integration of DNNs into the clinical work flow in similar ways

may offer clinicians and health systems an opportunity to recon-

sider what can be achieved with standard medical tests and who

can help accomplish it.

Other data types in cardiovascular medicine
Other modalities in cardiovascular medicine also provide fertile

ground for future ML efforts. ML may offer the greatest potential

for data types that have traditionally been more difficult to

analyze in an automated manner, such as diagnostic tests re-

corded in video formats such as coronary angiography, high-

dimensional genetic data, and free-text notes from electronic

health records.

Coronary angiography is the definitive diagnostic test for the

evaluation of coronary artery disease, providing the basis for rec-

ommending both medical and procedural therapy (including

percutaneous coronary intervention [also known as stents],

and coronary bypass surgery). Coronary angiograms are ac-

quired and stored as video data consisting of fluoroscopic

(X-ray) clips obtained during the injection of radiocontrast dye

into the various coronary arteries for visualization of the

coronary artery lumen and potential stenoses. Prior research

has suggested that there is substantial variability and possibility

for operator bias in the process ofmanual interpretation of angio-

grams.53–55 Until recently, the video-based nature of raw angio-

gram data had made it difficult to develop automated analysis

approaches. Recent work from Avram et al.56 and Zhou et al.57

demonstrated that DNNs can be trained to accurately perform

various steps required to analyze coronary angiograms, such
6 Cell Reports Medicine 3, 100869, December 20, 2022
as viewpoint classification or coronary artery localization,

providing the basis for automated angiogram interpretation.

Avram et al.56 deployed multiple DNN’s together in a pipeline

to achieve accurate automated estimation of coronary artery

stenosis severity. Future AI-driven progress with coronary angi-

ography may eventually lead to assisted or automated interpre-

tation, which could help to reduce human error and increase the

reproducibility of measurements, and possibly even expand the

range of diagnoses that are possible to make through angiog-

raphy, similar to what has been achieved with ML analysis of

ECG and echo.

Several deep learning (DL) applications have been developed

for cardiovascular CT applications. Recent ML work has

expanded the information that can be derived from various types

of CT scans; for example, enabling automatic estimation of cor-

onary artery calcium score from CT angiography58 or low-dose

chest CT scans,59 or quantifying epicardial and thoracic adipose

tissue from non-contrast CT scans.60 DL algorithms have accu-

rately estimated coronary artery stenosis61 and fractional flow

reserve62 using coronary CT angiography. These efforts demon-

strate the potential for DL algorithms to broaden the scope

of current clinical tools such as CT and potentially reduce

the need for more invasive procedures such as coronary

angiography.

Cardiac magnetic resonance imaging (CMR) provides high-

resolution images of high diagnostic value, but is relatively

expensive, slow, and labor intensive. Many DL applications in

the CMR domain focus on alleviating these pain points by auto-

mating manual processes and improving efficiency. Schlemper

et al.63 developed a DL-based 3D reconstruction pipeline that

can interpolate slices with long inter-slice distance, increasing

the speed of acquisition and providing fast real-time reconstruc-

tion. Blanser et al.64 present a DL system for automated pre-

scription of imaging planes by using a U-Net to localize

anatomic landmarks. A series of recent contributions have

demonstrated automated segmentation of anatomical struc-

tures in CMR images,65–67 with future similar disease-specific

work sure to follow. The automated cardiac diagnosis challenge

(ACDC) dataset is a publicly available dataset of 150 CMR

studies with manual segmentation labels as well as five diag-

nostic labels. The availability of these dataset has enabled

multiple efforts that have produced DL-based methods for auto-

mated diagnosis of these five diagnostic categories: normal, HF

with infarction, dilated cardiomyopathy, HCM, and abnormal

right ventricle.68–71 This highlights the importance of labeled

public datasets for the rapid development of algorithms.

ML algorithms have been developed for other modalities of

large-scale data relevant for cardiovascular medicine, including

genetic data and free-text data from the electronic health record.

Free-text data present a substantial analytic challenge due to the

complexity of natural language. The analytical field known as

natural language processing (NLP) has developed over decades,

which aims to accurately analyze and process free-text data. In

the past 5–10 years, DNN-related architectures have revolution-

ized the NLP field by providing exponential progress compared

with prior techniques, mirroring advances made in the image

processing and computer vision fields. For example, the DNN

architecture class known as the transformer is widely applied
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in NLP due to its ability to learn very long-range associations

across large bodies of text.4–6 As AI-based text-analysis capabil-

ities continue to advance outside of medicine, there will be sig-

nificant opportunity to extrapolate these advances to better

analyze free-text medical data, such as from the electronic

health record, diagnostic test reports, and possibly patient-re-

ported symptoms and outcomes. Moon et al.72 recently demon-

strated the extraction of sudden cardiac death risk factors from

free-text notes, and Blecker et al. identified heart failure patients

at large scale from the electronic health record.73 As the fieldma-

tures, medical implementations of transformers6 and future such

developments in free-text analysis will undoubtedly be applied to

advance cardiovascular applications.

Analysis of genetic data has long benefitted from the robust

bioinformatics analysis community and library of techniques

that have driven the countless advances in modern genetics.

Cardiovascular genetics has recently exhibited increasing exam-

ples of ML-driven analysis, including for the investigation of cor-

onary artery calcium,74 pulmonary hypertension,75 and multiple

clinically relevant variant detection76,77 from next-generation

sequencing or proteomic data. The greatest potential for AI in

genetic analysis may lie in the analysis of polygenic disorders,

since algorithms such as DNNs have enormous capacity to

examine high-level and very complex interactions within the ge-

netic data, if provided adequate quantities of training data.

THE CRITICAL NEED FOR PROSPECTIVE CLINICAL
EVALUATION OF AI IN CARDIOLOGY

As with any diagnostic tool, development and validation of AI

algorithms are only the first step toward clinical application. The

next critical phaseof evaluation requiresprospectivedeployment

of anAI-based algorithm into a clinical work flowand assessment

that relevant clinical outcomes or work flowmetrics are substan-

tially improved. The goals of such evaluation are similar to those

for a novel medical device. Such prospective clinical evaluation

may be even more critical for ML software algorithms since, at

least initially, they will likely still rely upon interaction with human

clinicians to make a final diagnosis or plan of therapy. Methods

that can help clinicians understand how the algorithm functions

and makes its decisions, such as AI explainability or interpret-

ability techniques, may not only help to build trust among clini-

cians who must integrate an algorithm’s conclusions into their

decision making but also provide context to clinicians as to

when an algorithm may be making unreasonable predictions.

There has been a recent increase in AI-related cardiovascular

clinical trials registered on clinicaltrials.gov, the US government-

sponsored Web site on which clinical trials are required to be re-

ported. At the time of writing, we identified 17 cardiology-related

trials reported on clinicaltrials.gov: three used 12-lead ECGs,

four used single-lead smartwatch ECGs, five used echos, three

used angiograms, one used a proprietary take-home stetho-

scope, and one used free text from the electronic health record.

Seven were reported as being completed; however, only one25

had published results. As discussed above, the EAGLE trial25

demonstrated that a DNN-enabled ECG analysis system for

probability of low ejection fraction increased early detection of

low ejection fraction compared with standard of care in primary
care clinics. Many future clinical trials examining the deployment

of AI algorithms within clinical workflows and designed to

evaluate clinically relevant questions—such as accuracy of

diagnosis, speed to therapy or increased rate of early detec-

tion—will be needed to provide the evidence to support clinical

adoption of AI algorithms. In some cases, it is expected that

ML-based algorithms may either not outperform existing stan-

dard of care or may not provide the clinical outcomes to support

adoption.

Governmental regulatory agencies, such the United States

Food and Drug Administration (FDA), govern the level of scrutiny

required for an ML algorithm to obtain approval for clinical adop-

tion. While clinical trials are not necessarily required for approval

of an algorithm, the level of evidence required varies by govern-

mental agency and generally correlates with the potential risk an

algorithm poses to patients and the existence of previously

approved similar algorithms.78 FDA approval of ML algorithms

has increased in recent years, with 130 ML-based algorithms

approved between 1997 and 2020, most being after 2016.79 Un-

der current FDA rules, once these algorithms are approved, they

must be locked, meaning that the algorithms should not be up-

dated in real time as more data is obtained. While this may

help to ensure algorithm consistency, it shortchanges one of

the inherent benefits of ML algorithms, which is an ability to

improve performance as more training data become available.

Similar approaches can also be applied to allow AI algorithms

to adapt their predictions as populations and data change over

time, also known as input distribution drift.80–83 In 2019, the

FDA acknowledged this limitation and proposed a plan for imple-

menting a control plan that would allow algorithms to be updated

based on a predetermined process.84,85 To date, this plan has

not yet been codified but is a welcome sign that the inherent

strengths of AI algorithms can be appropriately leveraged for

medical applications. The coming years will likely mark a turning

point in the adoption of AI algorithms in medicine, driven by algo-

rithm validation in RCTs, increased algorithm approvals by the

FDA, and improved FDA guidelines for retraining and monitoring

deployed AI algorithms.

LIMITATIONS AND RISKS OF ML IN CARDIOVASCULAR
MEDICINE

The nature ofML systems presents several notable challenges to

implementation in medical practice. These include opacity of al-

gorithm decision making and potential for bias, which are related

to the complexity of the algorithms and biases present in the

training data. There is also potential for degradation of algorithm

performance over time due to data distribution drift. Significant

work is ongoing to address these issues not only in medicine

but in the broader ML field.

A common criticism of ML algorithms in general, and DNNs in

particular, is the relative difficulty of interpreting how the algo-

rithms make their decisions. These algorithms are extremely

complex and derive their predictive power by allowing very

high levels of interaction among the input data, which accord-

ingly makes it nearly impossible to understand how the algo-

rithms make a certain prediction simply by looking at the model

parameters. In comparison, a simple generalized linear model
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(such as linear regression) with a handful of predictors can be in-

terpreted by looking at the magnitude and directionality of the

trained weight associated with each predictor. Interpretability

of algorithms carries particular value in medicine because the

decisions they influence involve human health and the opera-

tional efficiency of health care systems. Therefore, understand-

ing why and how an algorithm makes its prediction can provide

valuable information that physicians can use to either incorpo-

rate the prediction into clinical care and/or learn what features

the algorithm found important in the data, providing data-

driven physiologic insights. In medicine, interpretability can

help increase trust by physicians in the algorithm. AI explainabil-

ity techniques have been developed, such as variable impor-

tance analysis, local interpretable model-agnostic explanations

(LIME),86 or gradient-weighted class activation mapping (Grad-

CAM),87 providing some insight into aspects of the input data

that a given trained algorithm finds important to predict the target

task. However, each of these methods provides only a limited

view into algorithmic decisions, and none provide a comprehen-

sive view. As shown in Ulloa Cerna et al.,50 clinicians can have a

difficult time interpreting the output of these methods on a case-

by-case basis, due in part to the variability between cases and

because some highlighted associations may represent artifact

or noise. TheML field is actively working on developing novel ap-

proaches to improve ML interpretability.

It is important to recognize the potential for bias in any predic-

tive model, and this phenomenon can be enhanced in some

circumstances with ML. In part because ML models can so

powerfully learn from the data on which they are trained, they

are also positioned to learn biases present in these datasets.88

Biases may be present in the proxies used to define the target

task or labels used to train the model.89 They may also arise if

certain patient demographics are poorly represented in the

training data,90 or when training data are restricted to a limited

geographic area.91 The use of external validation datasets, and

observing degradation of model performance therein, may help

to illuminate presence of some biases, although this would

only be true if the same biases do not also exist in the external

validation dataset. Ideally algorithms should be trained and

tested in demographically diverse target populations similar to

the target population of interest.92 Efforts should be made to

identify potential sources of bias at every step of the research

process from problem formulation to clinical validation.

Real-world clinical implementation of DL algorithms will require

addressing data distribution shifts. Data distribution shift, or distri-

bution drift, refers to changes that occur in either the input data,

the output labels, or the relationship between them. For example,

amodel is trained to detect HCM. If HCMguidelines undergo revi-

sion and the criteria for HCM diagnosis change, then this previ-

ously trained algorithm may perform worse to detect HCM as

defined by the new guidelines. Other examples can be more sub-

tle. For example, if patient populations presenting to a given

healthcare institution change, this may affect the disease preva-

lence in the population or other associated characteristics, which

may degrade algorithm performance. Companies outside ofmed-

icine relying on ML models in production often retrain these

models either at fixed intervals or have established monitoring

systems to detect performance degradation to trigger model re-
8 Cell Reports Medicine 3, 100869, December 20, 2022
training. Updated FDA guidancewill help to informhowhealthcare

institutions should perform this kind of retrainingwhilemaintaining

sufficient safety, oversight, and compliance.

Conclusions
The field of modern AI, which can be defined as beginning with

the development of DNNs in the past decade, has driven sub-

stantial progress in medical algorithms thus far. But in almost

every respect this progress represents only the tip of the iceberg

of the depth of impact ML could ultimately have on medicine.

Much of the important work discussed above represents the

early proof of concept showing how ML algorithms can be de-

ployed in various ways related to cardiovascular disease. In

many cases, similar ML approaches can be replicated for count-

less other diseases using similar algorithm architectures and

data types. For every reported study in the literature there are

likely dozens of related diseases, medical tasks, or applications

for which similar ML algorithms can be trained. In many cases,

access to sufficient multi-institutional labeled training data is

the limiting factor in expanding the number of medical applica-

tions for AI approaches, highlighting an important area of future

development for medical AI. Additional methodologic innovation

in ML may expand the types of medical tasks that can be per-

formed. The bulk of the effort, time, and capital that will be

required to truly drive the clinical adoption of ML algorithms in

medicine will almost certainly lie in the long-tailed process of iter-

ative algorithm refinement and process improvements, including

developing the infrastructure and methods that enable algo-

rithms to be improved in real time based on human expert feed-

back, patient outcomes or increases in labeled training data.

Therefore, the work still required by the broader medical com-

munity to achieve widespread clinical adoption of ML is also

just at the tip of the iceberg.

The enormous potential of data-driven ML in medicine lies in

the ability to employ algorithms that can help clinicians provide

better care and enable physiologic discovery from large amounts

of medical and biologic data. Although most modern medical

data are accessible in digitized formats, they remain largely si-

loed within individual healthcare systems, walled off by adminis-

trative barriers that limit the large-scale data sharing that would

likely drive the greatest ML-based medical advances. For all of

the advances in AI technology over the past 10 years, perhaps

the greatest medical AI innovations remain ahead of us: a com-

bination of administrative and technical privacy-preserving ap-

proaches to allow ML algorithms to derive insights from diverse

cross-institutional data, tomore completely realize the fullest po-

tential of AI in medicine.
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