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The COVID-19 pandemic has sparked an urgent need to 

uncover the underlying biology of this devastating disease. 

Though RNA viruses mutate more rapidly than DNA viruses, 

there are a relatively small number of single nucleotide 

polymorphisms (SNPs) that differentiate the main SARS-CoV-
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2 clades that have spread throughout the world. In this study, 

we investigated over 7,000 SARS-CoV-2 datasets to unveil 

both intrahost and interhost diversity. Our intrahost and 

interhost diversity analyses yielded three major observations. 

First, the mutational profile of SARS-CoV-2 highlights iSNV 

and SNP similarity, albeit with high variability in C>T 

changes. Second, iSNV and SNP patterns in SARS-CoV-2 are 

more similar to MERS-CoV than SARS-CoV-1. Third, a 

significant fraction of small indels fuel the genetic diversity of 

SARS-CoV-2. Altogether, our findings provide insight into 

SARS-CoV-2 genomic diversity, inform the design of detection 

tests, and highlight the potential of iSNVs for tracking the 

transmission of SARS-CoV-2. 

Introduction 

Coronavirus (CoV) genomes are the largest among single strand RNA (ssRNA) 

viruses, ranging from 26 to 32 Kbp. While ssRNA viruses typically display very high 

mutation rates, coronaviruses encode an RNA polymerase with 3’-to-5’ proofreading 

activity that allows them to replicate their genome with high-fidelity, lowering their 

mutation rate (1–4). Additionally, SARS-CoV-2 contains a common 69-bp 5’ leader 

sequence fused to the body sequence from the 3’ end of the genome (5). Then, leader-

to-body fusion occurs during negative-strand synthesis at short motifs called 

transcription-regulating sequences (TRS), which are conserved 7 bp sequences that 

are adjacent to the ORFs.                                           

On March 11, 2020, the WHO determined that an outbreak of a novel 

coronavirus SARS-CoV-2 that began in Wuhan, China in December 2019 had reached 
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pandemic status. Initial consensus-level genomic data from the Global Initiative on 

Sharing All Influenza Data (GISAID) (6) indicated that the SARS-CoV-2 mutational 

rate (7) was similar to other CoVs (8). In order to properly assess the genomic 

diversity of any RNA virus, and specifically SARS-CoV-2, it is necessary to also 

consider the intrahost polymorphisms (9–12), including often overlooked structural 

variation. Recent studies have claimed that host-dependent RNA editing might be a 

key factor for understanding the mutational landscape of SARS-CoV-2 within hosts 

(13, 14). However, these studies were based on a limited number of samples (<20). In 

order to explore both the intrahost and interhost mutational landscape of SARS-CoV-

2, we leveraged a dataset consisting of 6,928 consensus genomes from GISAID, 11 

sequencing samples from the Baylor College of Medicine, and 140 sequencing 

samples from the Weill Cornell College of Medicine. 

Understanding the intrahost genomic diversity of SARS-CoV-2 is also 

important for different applications. Most SARS-CoV-2 detection tests  rely on 

oligonucleotide probes and primers that must be sensitive to SARS-CoV-2. In this 

setting, sensitivity determines how well it can capture the diversity of all SARS-CoV-

2 variants. Lack of sensitivity leads to an increase in false positive qRT-PCR results, 

as few as two mismatches can result in increases in CT values and degradation in 

accuracy of viral load estimates (15, 16). Moreover, recent studies on Ebolavirus and 

flu viruses (12, 17) highlight the importance of intrahost variation for studying viral 

population dynamics and transmission scenarios. In summary, in this study, we 

investigate the intrahost diversity of SARS-CoV-2 by conducting a broad evaluation 

of (i) intrahost single nucleotide variants (iSNV), (ii) consensus-level single 
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nucleotide polymorphisms (SNPs), and (iii) structural variants, across assembled 

genomes, amplicon, and metatranscriptomic datasets totaling over 7,000 samples.  

Results 
 

We analyzed three SARS-CoV-2 genomic datasets: GISAID public consensus 

sequences, sequencing reads for 11 samples collected by the Baylor College of 

Medicine in Houston, and sequencing reads for 140 samples collected by Weill 

Cornell University in New York City (NYC). We evaluated structural variants across 

the 151 samples in both NYC and Houston; the inferred SVs are shown in Figure 1A.  

We also evaluated single nucleotide variants in GISAID representing single nucleotide 

polymorphisms (SNPs), while the variants analyzed in the Houston and NYC datasets 

include both SNPs and intrahost single nucleotide variants (iSNVs). The inferred 

phylogenetic tree of GISAID genomes with clade-defining (18) SNPs is shown in 

Figure 1B. We note that these previously reported clade-defining SNPs distinguish the 

geographic origin of SARS-CoV-2 genomes, with clades G and S predominantly 

covering North American genomes and clade V covering a portion of Asian and 

European genomes. We also observe that some of the clade-defining SNPs occur 

intermittently outside of the main phylogenetic clades. We will now dive deep into 

three main results: (i) intrahost structural variant (SV) landscape, (ii) intrahost single 

nucleotide variant (iSNV) landscape, and (iii) exploratory analyses of shared SNPs 

and iSNVs within and across patients in NYC. 

Intrahost Structural Variant (SV) Landscape 
 

We identified 3,311 structural variants (SVs) across 170 sequencing samples, 

with the majority being inversions (1,504) and tandem duplications (1,157), followed 

by deletions (625) and a few insertions (25) (Figure 1A). Overall, since we are 

identifying SVs based on RNA-Seq data, the majority of these SVs are likely to be 
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highlighting variability in the SARS-CoV-2 transcriptome (16), which is influenced 

by fusion, deletions, frame-shifts, and recombination. We observed a significant 

overlap (Kolmogorov–Smirnov test: p-value=4.95−5, D=0.25) for the 98 start and 63 

end breakpoints with the annotated transcription regulating sequences (TRS) (dark red 

Figure 1A). Subsequently, we focus on smaller SVs (<1kbp) that more likely indicate 

true underlying SV rather than transcription signals. We identified 247 deletions and 

23 insertions across all 170 SARS-CoV-2 genomes. The imbalance of insertions and 

deletions is likely due to the low ability to detect insertions using short reads (19). 

Figure 1A shows the allele frequency (AF) of these SVs across all samples.  We 

observed 8 deletions shared among 34 or more samples (AF: >20%): a 14bp at 509bp 

(NSP1) (AF: 30.59%), a 9bp at 685bp (NSP1) (AF: 23.53%), a 24bp at 4532 (NSP3) 

(AF:25.29%) a 39bp at 21740bp (spike protein) (AF: 37.65%), a 22bp at 23558bp 

(spike protein) (AF: 31.76%), a 15bp at 24014bp (spike protein) (AF: 21.18%), a 41bp 

at 26779bp (M protein) (AF: 34.12%) and a 14bp at 29067 (N protein) (AF: 20%) . 

Next, we investigated where these SVs are mainly located with respect to the 

annotated regions. We identified an enrichment of SVs in NSP11 and NSP12 when 

taking the size of the annotated regions into account (Supplementary Figure 1). In 

addition, it is interesting to see that a higher number of SVs are also clustering in E 

protein (5 del), NSP7 (5 del and 1 ins), NSP9 (7 del and 1 ins), ORF6 (6 del) and 

ORF7b (3 del). 

We  further compared our SV call set with previously reported single deletions 

reported  by various groups. Davidson et al (20) reported a 24bp deletion in the 

subgenomic mRNA encoding the spike (S) glycoprotein that played a role in 

removing a proposed furin cleavage site from the S glycoprotein. We were able to 

identify this deletion (position: 25234bp), but only in 3 of our samples. However, in 

total we discovered six deletions shared among samples within the Spike protein. 

Three of them showed above with AF> 20% and the remaining at: 21984bp (9bp, 

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 2, 2020. . https://doi.org/10.1101/2020.07.02.184481doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184481
http://creativecommons.org/licenses/by-nd/4.0/


6 

AF:19.41%), 22824bp (78bp, AF: 11.76%) and at 24125bp (15bp, AF: 8.24%). We 

further identified five deletions, one (at 28245bp) was present in 10 samples (AF: 6%) 

in ORF8,  a potentially important gene for  viral adaptation to humans (21). 

Intrahost Single Nucleotide Variant (iSNV) Landscape 
 

We considered intrahost single nucleotide variants (iSNVs) to be those with an AF 

between 2% and 50% in a sample. Above 50%, all single nucleotide variants were 

considered to be consensus-level single nucleotide polymorphisms (SNPs) as it is a 

common threshold for consensus-calling in genome assembly (22, 23). Figure 2A 

shows the iSNV AF distribution, with the peak occurring in the 2% to 5% range of the 

distribution. The predominant iSNVs observed are T>C and C>T (Figure 2B). We 

also note that A>G, G>A, and G>T iSNVs are common. When the distribution of 

iSNVs is mapped onto the SARS-CoV-2 genome, we observe that C>T is the 

dominant SNP in 10 out of 16 genes (Figure 2D). NSP6 and NSP10 stand out as 

having larger fractions of T>C iSNVs, and NSP7 has a large fraction of A>C iSNVs 

(Figure 2D). Additionally NSP6 and ORF3a have a high fraction of G>T SNPs, and 

ORF8 and M genes have a high fraction of T>C SNPs. We also identified several 

interesting patterns of SNP and iSNV mutational patterns within the ORFs of SARS-

CoV-2. Of note, SARS-CoV-2 encodes three tandem macrodomains within non-

structural protein 3 (NSP3). NPS3 is essential for SARS-CoV-2 replication and 

represents a promising target for the development of antiviral drugs (24). The NSP3 

protein is also one of the most diverged regions of SARS-CoV-2 compared to SARS-

CoV-1 and MERS-CoV.  

We note that the mutational spectra for SNPs matches the one observed for iSNVs, 

namely A>G, G>A, T>C and G>T are most common (Figure 2B). However, one 

striking difference is the relatively lower percentage of C>T changes in iSNVs from 

the NYC dataset (20%) compared to 40% C>T iSNVs for Houston samples and over 
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50% C>T in Houston and NYC SNPs. The fraction of GISAID C>T SNPs is nearly to 

the fraction of Houston C>T  iSNVs, clearly distinguishing GISAID SNPs and 

Houston iSNVs from Houston and NYC SNPs. We also note that the mutational 

spectra of SNPs across the genes of SARS-CoV-2 closely match the iSNV mutational 

spectra (Figure 2D). The mutational spectrum of NYC SNPs is significantly different 

from both NYC iSNVs mutational spectrum (Kolmogorov-Smirnov (KS) test: p-value 

∼ 10−100) and GISAID SNPs mutational spectrum (KS test: p-value ∼ 10−40). When 

compared to SARS and MERS, SARS-CoV-2 has a larger proportion of G>T iSNVs 

(Figure 2C). The other four major iSNV types (C>T, T>C, A>G, and G>A) are well 

represented in all three viruses. We also note that SARS data does not have any A>T 

nor A>C iSNVs.  

To further investigate patterns of difference and similarity between SNPs and 

iSNVs, we analyzed the functional impact of the observed variants. First, in GISAID 

SNPs we observe 1191 (36.45%) synonymous, 2021 (61.86%) missense, and 40 

(1.22%) stop gained variants. In NYC iSNVs we observed 782 (31.68%) synonymous, 

1549 (62.76%) missense, and 73 (2.96%) stop gained variants. Finally, in Houston 

iSNVs we observed 43 (31.16%) synonymous, 86 (62.31%) missense, and 5 (3.62%) 

stop gained variants. Altogether, about two thirds of all observed variants are missense 

and about a third are synonymous, with good agreement of these values for both SNPs 

and iSNVs. We also investigated the overlap between iSNV and consensus-level 

SNPs (Figure 3B). We note that there are 15 mutations that have been found in 

GISAID data, NYC data, and Houston data independently. We also observed that 230 

SNVs occur both as an iSNV in at least one sample and as SNPs in the GISAID data. 

Finally, there are 2 iSNVs that also occur as SNPs (Figure 3B). The mutational 

spectrum of variants that occur as both SNPs and iSNVs is similar to the general one 

outlined above with ∼65% of the changes being C>T, followed by ∼15% of G>T, 
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and ∼12% of T>C. 

Prior studies have found iSNVs early in virus outbreaks that later establish as 

SNPs (25, 26). Thus, we looked into whether clade-defining SNPs identified in a 

previous study (18) co-occur with iSNVs identified in NYC and Houston datasets. We 

found that a G and S clade-defining SNPs co-occur with an iSNV position 13542 in 

the NSP12 gene. There are two synonymous iSNVs at this position, the more common 

one is a T>G change (seen in both NYC and Houston), and a less common one is a 

T>A change occurring only in the NYC data. This indicates the emergence of an 

iSNV strongly correlated with the North American clade of the SARS-CoV-2.  

Next, we estimated the genetic complexity (Sn) (27) and genetic diversity (�) of 

SARS-CoV-2, SARS-CoV-1 and MERS (Figure 4A,B). For both diversity and 

complexity all three viruses show distinct distributions of (KS test: p-value < 10−8) 

with a higher variance in SARS-CoV-2. We also compared the ratios of non-

synonymous and synonymous diversities (�N/�S) for iSNVs in SARS-CoV-2, SARS-

CoV-1 and MERS data (Figure 4C). The genome-wide �N/�S values suggest that 

SARS-CoV-2 (median �N/�S: 0.554) and SARS-CoV-1 (median �N/�S: 0.179) might 

be predominantly under purifying selection, while MERS (median �N/�S: 1.270) 

seems to be overall under positive selection (KS test: p-value < 10−7). We also 

observed a significant difference in the distribution of �N/�S ratios between iSNVs and 

SNPs in the NYC data (KS test, p-value 6.29 × 10−12). The SARS-CoV-2 �N/�S 

values are significantly lower for iSNVs (median �N/�S: 0.273) than for SNPs (median 

�N/�S: 0.446, Figure 4D). The �N/�S ratios are consistent across ORFs/NSPs of SARS-

CoV-2 (Supplementary Figure 2). 
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Finally, we analyzed the potential impact of iSNVs and SNPs on the probes and 

primers used for detection of SARS-CoV-2 (15, 28). To evaluate this, we downloaded 

the set of probes and primers sequences available at the WHO website, as well as the 

Arctic primers. Among these, 263 out of 272 sequences contained at least one SNP or 

iSNV (Figure 5, Table S2). On average, each probe/primer sequence contained 2.529 

iSNV and/or 2.477 SNPs . These results suggest the potential for a drop in the 

sensitivity of the affected probes and primers. We also note that since the iSNV and 

SNP mutational profiles mimic each other for specific mutations, the potential impact 

of iSNVs on primer and probe binding should not be overlooked given the possibility 

of iSNVs establishing as SNPs (26). 

 
Exploratory Transmission Analysis of Shared SNPs and iSNVs 

within and across patients 

Shared viral genomic variants can be indicative of transmission events and routes 

(29), and iSNVs are a critically important tool for discerning direct transmission and 

for bottleneck calculations (30). To assess our ability to identify shared iSNVs and 

SNPs across samples, we first compared all NYC paired samples from the same 

patient taken within 24 hours (Figure 6A,B).  In Figure 6A, we see eight shared SNPs, 

one shared iSNV, and two shared iSNVs that occur as a SNP in patient 340 sample 

C03 and as iSNVs in patient 340 sample B03. As expected, we find multiple shared 

SNVs, and two of the three iSNVs in patient 340 sample B03 occur as SNPs in patient 

340 sample C03. In Figure 6B, we see seven shared SNPs  and four shared iSNVs. All 

of the iSNVs occur in both patient 639 sample D02 and patient 639 sample G01. 

These results highlight our ability to identify iSNVs and the feasibility of using iSNVs 

for identifying paired samples and potential transmission pairs. 

We next calculated the number of shared iSNVs among all possible pairs of NYC 

samples (Figure 6C). For each pair we consider both possible assignments of donor 
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and recipient, narrowing down the donor alleles to only include those with AF 

between 0.02 and 0.5, and considering a site to be shared if the recipient also has that 

same variant present as either a iSNV or SNP. We show these results on the raw data 

from the iSNV calls, as well as on the same data but after applying masking to sites 

near the ends of the genome. For the raw data before masking,  most pairs have 0 to 3 

shared variants, with about 150 pairs having 4 or more shared SNVs (Figure 6c). After 

masking sites near the genome ends, these numbers drop substantially by reducing 

likely noise from the variant calls, and we see most pairs sharing 0 to 2 variants. When 

examining each possible pair, one immediately noticeable trend is that site 29871 

yields strong signals for shared SNVs between samples with large and similar AFs. 

We also observe that the number of samples with a variant at that site is unusually 

high (Figure 6d). In Figure 6 panels E and F, we see two examples of pairs of samples 

that not only share multiple iSNVs but also at a similar AF. In these pairs, we find 

many instances of large estimated bottleneck sizes. The lower estimate of 3 for the 

pair in Figure 6E is likely due to the variant present at a high AF in the donor at site 

7735 that was absent in the recipient.  

Discussion 
 

In this study, we have analyzed over 7,000 SARS-CoV-2 genomes in addition 

to RNA-seq datasets from 151 COVID-19 positive patients in depth to describe the 

intrahost variation in SARS-CoV-2. Our analyses yielded four major observations. 

First, the iSNV mutational spectra closely match the SNP mutational spectra inferred 

from the consensus genomes. In particular, the SARS-CoV-2 genome is enriched with 

C>T changes overall, both for iSNVs and SNPs. Genes NSP6 and NSP10 are 

particularly enriched for T>C mutations, while NSP7 has an enrichment of A>C 

SNVs. Second, the mutational profile of SARS-CoV-2 largely matches that of other 

Coronaviruses, but with some key differences. SARS-CoV-2 has a significantly larger 
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proportion of G>T changes in both iSNVs and SNPs, when compared to SARS-CoV-

1 and MERS. Additionally, we did not see A>T SNVs in SARS-CoV-1, as previously 

reported (31). Third, while the SV spectra is likely reflecting the transcriptome 

landscape of SARS-CoV-2, we detected a significant fraction of small indels that fuel 

the genetic diversity of SARS-CoV-2. Fourth, the mutational spectra of the SNPs and 

iSNVs indicate that there is a complex interplay between endogenous SARS-CoV-2 

mutational processes and host-dependent RNA editing. This observation is in line with 

several recent studies that propose APOBEC and ADAR deaminase activity as a likely 

driver of the C>T changes in the SARS-CoV-2 genomes (14). Of note, this recent 

study also reported that the number of observed transversions are compatible with 

mutation rates found in other Coronaviruses (8, 14). 

We also reported high sequence conservation within the NSP3 region, a region 

that is one of the most diverged from SARS-CoV-1 and MERS-CoV. A number of 

convergent findings suggest de-mono-ADP-ribosylation of STAT1 by the SARS-

CoV-2 NSP3 as a putative cause of the cytokine storm observed in the most severe 

cases of COVID-19 (32). The lower mutational complexity of NSP3 agrees with its 

functional implications in viral replication, and thus the need to conserve its protein 

structure/function (31, 33). Thus,  NSP3 may be a good target for drug development 

since it is well conserved and is essential for viral replication. Follow up studies will 

be required to solidify functional implications of these observations. 

We also investigated the potential impact of iSNVs and SNPs on probes and 

primers commonly used in RT-PCR based detection and amplicon sequencing of 

SARS-CoV-2. Most probes we analyzed contain both SNPs and iSNVs. While many 

platforms can tolerate a few single nucleotide mismatches without the loss of target 

hybridization, the overall diversity exhibited by SARS-CoV-2 presents potential 

challenges for probe and primer development. Since we observed a close connection 

between the SNPs and iSNVs, for future probe and primer designs it could be useful 
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to track the iSNVs to potentially predict and avoid variable regions of the genome. 

With the integration of these data into design processes at early stages, greater 

sensitivity could be achieved for hybridization primers and probes even as the virus 

evolves. 

We analyzed paired samples taken from the same COVID-19 positive patient 

within 24 hours of one another to analyze AFs of SNP and iSNVs. We found that the 

SNP and iSNV profiles and AFs were concordant, indicating the potential of using 

shared SNPs and iSNVs and their respective AFs for tracking intrahost SARS-CoV-2 

population dynamics. We also scanned all of the NYC COVID-19 positive samples 

for putative transmission pairs; we highlighted two examples of potential direct or 

indirect pairs given shared iSNVs at strikingly similar, high AFs.  Out of all samples, 

we found that the majority of pairs show no signal for an inferred large bottleneck. 

This is to be expected given that the majority of pairs in a large batch of sequenced 

SARS-CoV-2 samples are not expected to have been direct or indirect transmissions. 

Of note, the recent report of De Maio et al. (34), many sites were examined that 

showed extensive homoplasy. While these analyses cannot confirm sample pairs as 

having been involved in direct transmissions without additional confirmatory 

metadata, this exploratory analysis suggests the possible presence of such 

transmission pairs (29).  

Despite the potential for tremendous insight, the study of intrahost variation in 

viruses can be confounded by multiple factors. First, the estimated AFs are impacted 

by variable coverage and transcription patterns. Second, low viral load (Ct values 

above 32) in samples can have an impact on downstream sequencing and analysis (35, 

36) (Supplementary Figure 3). Third, previous studies such as De Maio et al. (34) 

highlight SARS-CoV-2 sites marked as prone to high homoplasy and need to be taken 

into consideration for transmission analyses. Lastly, lack of additional metadata 

imposes a barrier to an in depth study of transmission events. These factors should be 
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addressed in the future studies of iSNVs in SARS-CoV-2. 

In summary, our analysis of intrahost variation across 151 samples from COVID-

19 positive patients revealed a complex landscape of within-host diversity that will 

likely shed additional light on the elusive mechanisms driving the rapid dissemination 

of SARS-CoV-2. Metatranscriptomic analysis is a powerful tool for interrogating the 

genomic and transcriptomic landscape of RNA viruses, as it provides a simultaneous 

peek into viral, bacterial, and host gene expression. Future studies able to integrate all 

three of these perspectives may hold the key to novel therapies and treatments of this 

devastating pandemic. 

Materials and methods 

Datasets 
 

We downloaded 6,928 SARS-CoV-2 consensus genomes from the GISAID 

database, available on April, 18th, 2020. We only selected high quality, complete 

(>29 Kbp) genomes. We used read data from 11 patient samples collected by Baylor 

College of Medicine in Houston, Texas. We have also used read data from 140 patient 

samples collected by Weill Cornell College of Medicine in New York City, New 

York. Both datasets consist of Illumina NovaSeq 6000 paired-end reads. Host and 

bacterial genetic material has been removed from the datasets, and we performed all 

analyses on the viral read data. 

For the other coronaviruses data we used 42 samples of SARS-CoV-1 and 53 

samples of MERS viral read data (37) sequenced by University of Maryland School of 

Medicine in Baltimore, Maryland. 

In total, we analyzed 7,079 SARS-CoV-2, 42 SARS-CoV-1, and 53 MERS samples. 

 
Read QC and mapping 

 
We processed the Illumina paired-end reads using Trimmomatic ver. 0.39 (38) 
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to remove adapter sequences and trim low quality base pairs. We used a universal set 

of Illumina adapters as a reference for the adapter removal. We set the maximum 

mismatch count to 2, palindrome clip threshold to 30 and simple clip threshold to 10. 

We also trimmed leading and trailing low quality (quality value below 3) and 

ambiguous (N) base pairs. Finally, we applied sliding window trimming cutting the 

read if the quality score of 4 contiguous bases made the average score drop below 15. 

After trimming in the final read set we included the reads above the length of 36 with 

both reads from a pair passing quality control. 

We aligned the trimmed reads to the reference genome using Burrows-Wheeler 

Alignment tool (BWA) ver. 0.7.17 (39, 40). We have used paired-end mode for 

mapping reads to the SARS-CoV-2 reference genome (NC_045512). 

We used SAMtools ver. 1.9 to convert the output of BWA from SAM to BAM 

format, and to sort and generate indices for the BAM files (41). 

SNV calling and annotation 
 
We used LoFreq ver. 2.1.4 to perform variant calling on the trimmed and mapped 

reads (42). We have filtered the variants with the default LoFreq parameters: 

minimum coverage was set to 10, phred quality-score set to Q20 (99%), and strand-

bias FDR correction p-value is greater than 0.001. We have also filtered out the 

variants occurring below 0.02 AF threshold for the subsequent analyses, and required 

all iSNVs to be supported by 10X minimum coverage. We annotated the SNVs found 

in each of the datasets with snpEff ver. 4.3 (43).  We used SNPGenie (44) with the 

default set of parameters to estimate the genetic diversity and non-synonymous to 

synonymous diversity ratios in SARS-CoV-2, SARS-CoV-1 and MERS data. 

 

SV calling 
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Structural Variations were identified using Manta (version 1.6.0) (45). 

Subsequently the SV calls were merged using SURVIVOR (v1.0.7) (46) using a 100 

bp maximum distance between the breakpoints and requiring that the SV types are in 

agreement in order to merge two SV across the samples. We annotated the SV using a 

simple 1bp overlap method using bedtools (v2.27.1) (47) intersect using the 

annotations. The same method was used to establish if the start or stop breakpoints of 

an SV are overlapping with the TRS sites. To test the significance  of the overlap we 

used a permutation test where we randomized the TRS sites (using bedtools random) 

to generate random TRS with length of 5bp, 1000 times and calculated per TRS the 

number of start/stop breakpoints of the SV catalog. Subsequently we used this 

together with the observed overlap using a Kolmogorov–Smirnov (ks.test) with an 

alternative set to ”two.sided” in R (v 3.2.2). 

To generate SV and SNV densities we computed the number of variations per type 

within a 100bp window. For each variant we counted 1/AF where AF is the frequency 

of that variant across the samples. This was done based on a custom script available 

on request. The plot was generated using Circos (v 0.69-8) (48). 

 
Phylogenetic tree construction 

 
We used Parsnp (ver. 1.2) (49) to align the GISAID genomes. We set the maximal 

cluster D value to 30,000, and the rest of the parameters were set to the default values. 

We used RAxML (50) to infer a phylogenetic tree from the GISAID alignment. We 

ran RAxML with default parameters using GTRCAT approximation model for tree 

scoring. We used the best-scoring maximum likelihood tree output from RAxML. 

 
Variation in alignment of GISAID assemblies 

 
A multiple sequence alignment of the 6,928 SARS-CoV-2 assemblies was 

generated with mafft v7.458 (51) with the -auto option. Variation per column in the 
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alignment was generated with bit v1.8.02 (52) which utilizes the scikit-bio (52, 53) 

implementation for calculating Shannon uncertainty. 

 
Probe and primer mapping 

 
Primer and probe sequences were derived from the WHO website (54) and 

hCoV-2019/nCoV-2019 Version 3 Amplicon Set (55). We mapped probes and 

primers against the SARS-CoV-2 reference genome (NC_045512) with bowtie2 (56). 

Analysis of the primer and probe mapping regions was performed with a custom 

Python script and visualizations were done with R-3.6.1. 

 

Transmission Analyses 
 

To compute the number of shared iSNVs in each genomic pair, we utilized the 

variant calling results. We conducted pairwise genome comparisons and counted the 

number of shared variants within individual pairs. For each pair, we consider both 

combinations of one sample as a putative donor and one sample as a putative 

recipient. Shared iSNVs were then defined as iSNVs that share the same variant 

nucleotide between the two samples, and where the variant frequencies in the assigned 

donor sequences are from 0.02 to 0.5. We examined variants with frequencies ≥ 0.02 

as the cutoff for conservative estimates to avoid including variants caused by 

sequencing errors. For the 140 samples from New York, given that we consider each 

pair twice, there are 19,460 pairs. Note, since we are looking for putative transmission 

events, we can only consider samples within the same geographic region, so we 

limited our analyses to the 140 samples that all came from New York. We masked the 

iSNVs that occur between positions 1-55 and 29804-29903 in the genome. 

Additionally, we masked 25 nucleotide positions between 56-29804 that are highly 

homoplasic. These positions are more prone to sequencing and mapping errors (34), 

and therefore were not used in the transmission analyses.  
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We applied the BB bottleneck software to approximate SARS-CoV-2 bottleneck 

sizes, that is, the founding viral population size in the recipient host (57). Since the 

variant frequencies in recipient samples partially rely on stochastic replication 

processes in the early infection, we take all iSNVs (with any AFs) into account (from 

0.0 to 1.0) within a shared variant for putative recipients. Furthermore iSNVs from 

either  donors or  recipients are  supported by at least 10 reads to be included in the 

bottleneck size analysis . We use the AFs of shared iSNVs between putative donor and 

recipient pairs as input for the BB bottleneck APPROX mode (57). If the recipient 

does not have the iSNV with the same base at the same site as the donor or simply 

does not have any variant called at position i while mapping to the reference sequence, 

we assign the recipient a 0.0 AF at that position. Finally, we consider the case where 

the iSNV base is the same as the reference sequence base. In this case, for instance, 

when a variant is called at a site with 0.7 AF and no other variants are present, we take 

the reference base as an iSNV with 0.3 AF if there are  no other reads present with an 

alternate allele and there are at least 10 reads mapping to the reference base. 
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Variant calling files, raw data  and supplementary figures and files are available at 

https://rice.box.com/v/SARS-COV-2-SNV-data. Assembled genomes for SARS-CoV-

2 used in the analysis are available at GISAID. SARS-CoV-1 and MERS read data 

were obtained from the study PRJNA233943. Scripts used for data analysis are 

available at https://gitlab.com/treangenlab/covirt_scripts. Scripts used for probe and 

primer analysis and visualization are available at: https://github.com/COV-

IRT/microbial/tree/master/manuscript_reference
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Figure 1: Overview of general diversity of SARS-CoV-2. A. From outer to inner 
layers: Annotation of SARS-CoV-2 genome (green), transcription-regulating 
sequences (TRS) (orange), PCR primer designs (dark red), intrahost variant density 
including iSNVs (blue), deletions start sites (red), duplication start sites (yellow), 
inversion start sites (green) and insertions (dark green) along the entire genome. For 
SNPs + iSNVs + SVs we plotted the density scaled by their allele frequency across the 
population over 100bp windows. B. Directly outside of the tree branches is the 
continuous annotation ring for the continents corresponding to each GISAID sample. 
The set of smaller non-continuous rings, surrounding the continent annotation ring, 
are the clade-specific SNPs as described in (18). The G clade SNPs are colored as 
different shades of green, the S clade ones are colored different shades of blue, and the 
V clade ones are different shades of red. C. This figure shows the variability of 
positions in SARS-CoV-2 overlaid with the protein coding regions in the genome.  

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 2, 2020. . https://doi.org/10.1101/2020.07.02.184481doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184481
http://creativecommons.org/licenses/by-nd/4.0/


26 

 
 

 

 
 
Figure 2: Mutational frequencies of iSNV and SNPs. A. Distribution of iSNV AF. 
We note that the distribution of AF is strictly less than 50% as iSNVs are below 
consensus-level by definition. B. Mutational spectrum of SARS-CoV-2. C. Mutational 
spectra of SARS-CoV-1, SARS-CoV-2, and MERS. D. Mutational spectrum of SARS-
CoV-2 by ORF/NSP. 
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Figure 3: Shared SNPs and SNVs across datasets. A. Illustration differentiating what 
we define as an intrahost SNV (iSNV) and an interhost consensus-level SNP. B. This 
UpSet plot captures the shared single nucleotide variants between iSNVs and 
consensus-level SNPs. The horizontal bars on the left show the total number of variants 
in the given category. Vertical bars indicate the size of the intersection between 
highlighted (with black circles) sets. Every variant contributes to exactly one 
intersection size to avoid double counting. 
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Figure 4: Complexity and diversity in Coronaviruses. A. Intrahost complexity of 
Coronavirus samples. This plot shows the mean Sn complexity of samples for SARS-
CoV-2, SARS-CoV-1 and MERS. B. Diversity of Coronavirus samples. This plot 
shows the mean � diversity of samples. C. Synonymous vs non-synonymous diversity 
ratios. D. Syn. vs non-syn. diversity ratios for iSNVs and SNPs in NYC data.  
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Figure 5: iSNV and SNP presence on widely-used primers and probes. This figure 
shows the locations on WHO probes and primers that contain iSNVs (left) and SNPs 
(right). Columns correspond to base pair positions within the probe, and the sequences 
are 3’ aligned. Rows corresponding to the oligonucleotide sequences and highlighted 
squares indicate that the position is affected by a SNV in one or more samples.  
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Figure 6: In-depth analysis of shared iSNVs. A. Paired samples from patient 
COVSUBJ 0340 in NYC. B. Paired samples from patient COVSUBJ 0639 in NYC. 
C. The distribution of the number of genomic pairs and their shared iSNVs. D. The 
number of samples with iSNVs at given nucleotide positions. Red color represents 
positions that are highly homplasic and masked in the bottleneck analysis. E, F. Allele 
frequencies and presence of shared iSNVs between two unpaired samples. Blue color 
represents donor and red color represents recipient. The bar width is proportional to 
the number of reads supporting the variants. The minimum bar width represents 10 
reads. Bottleneck size was estimated to be 3 for E and 154 for F. 
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