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Autism spectrum disorder (ASD) is a complex disorder with a heterogeneous etiology. Fragile X syndrome (FXS) is recognized as
the most common single gene mutation associated with ASD. FXS patients show some autistic behaviors and may be difficult to
distinguish at a young age from autistic children. However, there have been no published reports on the prevalence of FXS in ASD
patients in Thailand. In this study, we present a pilot study to analyze the CGG repeat sizes of the FMRI gene in Thai autistic
patients. We screened 202 unrelated Thai patients (168 males and 34 females) with nonsyndromic ASD and 212 normal
controls using standard FXS molecular diagnosis techniques. The distributions of FMRI CGG repeat sizes in the ASD and
normal control groups were similar, with the two most common alleles having 29 and 30 CGG repeats, followed by an allele
with 36 CGG repeats. No FMRI full mutations or premutations were found in either ASD individuals or the normal controls.
Interestingly, three ASD male patients with high normal CGG and intermediate CGG repeats (44, 46, and 53 CGG repeats)
were identified, indicating that the prevalence of FMRI intermediate alleles in Thai ASD patients was approximately 1% while
these alleles were absent in the normal male controls. Our study indicates that CGG repeat expansions of the FMRI gene may
not be a common genetic cause of nonsyndromic ASD in Thai patients. However, further studies for mutations other than the
CGG expansion in the FMRI gene are required to get a better information on FXS prevalence in Thai ASD patients.

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodeve-
lopmental disorder characterized by deficits in social inter-
actions and social communications, as well as restricted
interests and stereotyped and repetitive behaviors. In recent
years, an increase in the apparent prevalence of autism has
been reported worldwide. The prevalence of ASD was esti-
mated to be 1 in 54 children in a recent study, with a 4:1
ratio of affected males to females [1]. The diagnosis of
ASD is primarily based on medical assessment, behavioral
evaluations, and the application of the autism criteria enu-
merated in the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5). The causes of ASD remain largely
unknown, but an earlier study in twins reported a consis-
tently high genetic contribution to ASD [2]. It is generally

thought that ASD is likely explained by a multifactorial eti-
ology which includes various inherited factors, genetic muta-
tions, and environmental factors. About 10-20% of ASD
cases have been identified as having a genetic disorder
caused by chromosomal aberrations and single gene muta-
tions, including fragile X syndrome, tuberous sclerosis, and
Rett syndrome. More than 100 ASD-risk genes carrying
mutations have been identified in ASD [3-8]; therefore,
genetic testing is indicated in the medical workup for indi-
viduals with ASD, which may include G-banded karyotyp-
ing, fragile X testing, chromosomal microarray, and/or
whole exome sequencing [5, 9].

Fragile X syndrome (FXS) is the most frequent mono-
genic cause of intellectual disability (ID) and ASD. FXS is
caused by expansion of CGG repeats in the 5’ untranslated
region of the fragile X mental retardation 1 gene (FMRI),
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which is located on chromosome Xq27.3. It has been
established that the normal CGG repeat number is below
45 and alleles in this repeat range are transmitted stably
from generation to generation. The AGG intersperse the
CGG repeat every 9 or 10 CGG repeats, reducing repeat
instability [11, 12]. CGG repeats between 55 and 200 are
considered FMR1 premutation alleles, which are associated
with maternal expansions of the number of CGGs in the
next generation. More than 200 repeats result in a full
mutation which gives rise to FXS. The majority of males
who carry the full mutation FXS have mild to moderate
ID, while about half of females with the full mutation have
only normal or borderline intellectual function because of
cellular mosaicism resulting from X-chromosome inactiva-
tion. As with most aspects of the FXS phenotype, behav-
ioral phenotypes in FXS are quite variable and include
attention deficits, hyperactivity, hyperarousal, aggression
and self-injury, social anxiety, and autism [13, 14]. Some
studies have reported that some behavioral symptoms of
patients with FXS are similar to autistic patients and it is
sometimes difficult to distinguish them from each other,
especially in young children [15-18]. FXS is the most com-
monly known inherited single-gene cause of ASD, account-
ing for approximately 1-6% of all autistic cases [5, 9, 17,
19]. Over the past decade, many studies have evaluated the
FXS-ASD link. In individuals with the full FXS mutations,
up to 60% of males meet the diagnostic criteria for ASD
and approximately 30-50% of males with FXS meet the full
DSM-1V criteria for autism [17, 20-25]. Additionally, more
than 90% of males with FXS display some autistic character-
istics [14, 16, 17]. The percentage of autism is lower (3-20%)
in females with FXS [17, 21, 26, 27]. In recent years, changes
in the diagnostic criteria for ASD from DSM-IV to DSM-5
have resulted in slightly changed incidence rates. Approxi-
mately 50% of males and 30% of females with FXS who met
the full criteria for an ASD diagnosis using the DSM-IV also
meet the DSM-5 criteria [28]. Although autistic features
show high prevalences in FXS, the fact is that sometimes a
patient will have no signs of the syndrome, therefore, all
children affected by ASD, especially boys, should be tested
for FMRI mutations. Molecular screening for CGG repeat
expansions of the FMRI gene is now recommended for all
individuals diagnosed with ASD due to the high levels of
comorbidity between ASD and FXS and the variable expres-
siveness of FXS [9, 29-32]. Studies of FMRI CGG repeats
using DNA testing have found widely varying levels of
abnormalities in the FMRI gene [33-52], while some studies
have found no abnormal FMRI genes in patients with
autism [53-56].

The widely varying findings of FXS frequency raise the
question as to whether CGG repeat expansions of the
FMRI gene may not be a common cause in patients with
ASD. Moreover, the rate of FMRI full mutations identified
among ASD cohorts is generally lower than that identified
in ID cohorts [43, 55, 57]. In Thailand, one study of FXS fre-
quencies in patients with ID and DD of unknown etiology
found that the frequency of a full mutation was 6.8% (16/
237) [58]; however, to date, there have been no studies on
FXS mutations in Thai ASD patients. Therefore, the aim of
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this study was to analyze the CGG repeat sizes of the
FMRI gene in Thai patients with nonsyndromic ASD.

2. Materials and Methods

2.1. Study Cohort. A total of 202 patients with ASD (168
males and 34 females) were recruited from a cohort of 203
Thai children with nonsyndromic ASD, excluding one male
patient with ring chromosome 13, reported in a previous
study [59]. All patients had normal karyotypes. The mean
ages in the male and female patients were 4.33 and 4.19
years, respectively. These patients met the diagnostic criteria
for autistic disorder or pervasive developmental disorders-
not otherwise specified (PDD-NOS) according to the
DSM-IV using a clinical checklist [60]. Two hundred and
twelve normal male controls were selected from a previous
study [61] to compare CGG repeat distributions with ASD
cases.

The study protocol was approved by the three Institu-
tional Ethics Committees (EC 48/364-006, ID 05-49-24,
and No.061/2548).

2.2. FXS DNA Analysis. All patients were screened for FXS
using standard molecular methods according to the Ameri-
can College of Medical Genetics and Genomics (ACMG)
Standards and Guidelines for fragile X testing [10, 30].
The lengths of the CGG repeats were determined through
fluorescent PCR fragment analysis. The PCR reactions were
performed in 10yl mixtures comprised of 25ng DNA, 1X
PCR buffer, 1 mM MgCl,, 200 uM dNTPs (dGTP replaced
with 7-deaza dGTP), 2.2M betaine, 0.2uM each of the
primers FRAXA-PSU-F (5'-6FAM-CAGCGTTGATCACG
TGACGTGGTTTCAGTG-3") and FRAXA-PSU-R (5'-GA
TGGGGCCTGCCCTAGAGCCAAGTA-3"), and 0.5 units
of Hot Start Taq DNA Polymerase (Immolase, Bioline).
The PCR reactions were carried out beginning with an initial
hot start at 95°C for 10 min, followed by 35 cycles of denatur-
ation at 95°C for 1 min, annealing at 66°C for 1 min, exten-
sion at 72°C for 1 minute, and a final extension of 72°C for
10min. The PCR product was then mixed with 10 ul HiDi
formamide and 0.2yl LIZ500, then denatured at 95°C for
2min and 4°C for 5min. The PCR mixture was loaded on
an ABI3130 Genetic Analyzer and analyzed using GeneMap-
per v3.2 software. To predict instability or expansion of
FMR1 CGG repeat alleles, AGG interruptions were deter-
mined using FMRI triplet repeat-primed PCR (TP-PCR)
[62] in individuals carrying intermediate or premutation
alleles and their mothers. The TP-PCR assay was used not
only to identify AGG interruptions, but also resolves the dif-
ficulty of detecting mosaic males when using conventional/
fluorescent PCR because up to ~10% of mosaicism can be
detected by the TP-PCR method [63, 64]. Methylation-
specific PCR was also performed in the study males to deter-
mine their methylation status based on the method used in a
previous study [65].

2.3. Statistical Analysis. In the analysis, the samples were
divided into 7 groups according to the identified common
and uncommon FMRI CGG repeats: 17-28, 29, 30, 31-35,
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TaBLE 1: Comparison of CGG repeat groups between study ASD
male cases and male controls.

CGG repeats ASD males Male controls
Number  Percentage Number  Percentage

17-28 11 6.55 22 10.38
29 84 50.00 111 52.36
30 41 24.40 42 19.81
31-35 10 5.95 15 7.08

36 15 8.93 15 7.08
37-40 4 2.38 6 2.83
41-54 3" 1.79 | 0.47
Total 168 100 212 100

*44, 46, and 53 CGG repeats; **41 CGG repeats. Chi — square = 4.787, df
=6, P=0.5714 (no statistically significant differences).

36, 37-40, and 41-54 (high normal and intermediate alleles).
Chi-square test was used to test for differences in allele dis-
tributions between the ASD and normal control groups.
Fisher’s exact test was used to compare the high and inter-
mediate alleles (41-54 CGG repeats) between the ASD and
control groups.

3. Results

Molecular screening of FXS in the study patients with ASD
revealed CGG repeats in the normal (<45 CGG repeats) or
intermediate (45-54 CGG repeats) range in all ASD males
(Table 1) and females (Supplementary Table 1). The allele
distributions in the ASD male patients ranged from 18 to
53 CGG repeats (20 alleles) compared to 17-41 CGG
repeats (24 alleles) in the male controls. Although the allele
numbers in the male cases were smaller than in the male
controls, the heterozygosity of alleles in the ASD male
cases (0.6799) was slightly greater than that in the male
controls (0.6787). Regarding the distribution of the CGG
repeats, 29 and 30 repeats were the most common
numbers of repeats, accounting for 50.00% and 24.40% of
our ASD cases, respectively, with 36 repeats making up a
further 8.93% of male ASD cases. Similarly, in the normal
control group, the two most common alleles were 29
(52.36%) and 30 CGG repeats (19.81%), followed by 36
CGG repeats (7.08%) (Table 1 and Figure 1).

The allele distributions, based on the 7 groups of identi-
fied CGG repeats, between the ASD male cases and the male
controls, were not statistically significantly different
(chi —square =4.787, df =6, P =0.5714, Table 1). All nor-
mal controls had FMRI CGG repeats in the normal range
of less than or equal to 41 repeats. Interestingly, 3 male
ASD patients showed high normal or intermediate CGG
allele repeats of 44, 46, and 53 CGG repeats, transmitted
from their mothers (Supplementary Figure 1), while these
alleles were absent in the male controls. Methylation-specific
PCR testing of these 3 male ASD patients with high normal
or intermediate allele showed a normal pattern indicating
the FMRI promoter unmethylated allele (Supplementary
Figure 2). These 3 ASD patients and their mothers had at
least one AGG interruption (Supplementary Figure 3). The

presence of AGG interruptions in the CGG repeats of the
FMRI gene reduces repeat instability during transmission
from parent to child and decreases the risk of CGG
expansion during maternal transmission. In our study,
mothers who carried high normal or intermediate CGG
alleles did not show the increase of CGG repeat expansions
in their children. When we compared the high normal and
intermediate CGG repeats (range: 41-54 repeats) in the male
ASD cases with the male controls using Fisher’s exact test,
we still did not find a statistically significant difference
(P =0.3255). The frequency of intermediate alleles (defined
as 45-54 repeats) in our ASD patients was approximately 1%
(2/202). No premutations or full mutations were identified
in either the ASD or normal control groups in the study.

4. Discussion

ASD is a group of complex neurodevelopment disorders
with multiple etiologies. Among the genetic causes, muta-
tions in the FMRI gene, which cause FXS, are the leading
known genetic cause of autism. Diagnosis of individuals with
ASD and FXS is difficult due to overlapping symptoms.
Given the possibility of an ASD-FXS link, it is now recom-
mended that all individuals with ASD should be referred
for genetic evaluation and testing for FXS when the etiology
of their autism is not known [5, 9]. FXS is caused by an
expanded number of CGG repeats (>200 repeats) in the 5’
UTR of the FMRI gene leading to a deficiency or absence
of FMRP, an RNA-binding protein that regulates the trans-
lation of a number of other genes that are important for syn-
aptic development and plasticity. Many of these genes,
including neuroligins, neurorexin 1, PTEN, PSD95, MAPK1,
JAKMIP, SHANK3, and CYFIPI, are linked to autism when
they are mutated [7, 8, 15, 66], which may explain the high
comorbidity that exists between FXS and ASD. The rates
of comorbid diagnosis of FXS and ASD greatly differ across
the literature. The frequency of autism among males with
FXS varies widely, from 18.5% in the first estimate by Brown
et al. [67] and ranging from 5% to 60% in subsequent studies
depending on the diagnostic criteria and methodologies used
for DNA testing. However, FXS is rarely found in autism
individuals who have had full clinical evaluation [17, 20-25].

The present study was aimed at screening for CGG
repeat expansion in the FMRI gene among a group of Thai
patients with nonsyndromic ASD. No premutation or full
mutation alleles were found in this cohort, which is compa-
rable to other studies done in Indonesia, Japan, Australia,
and the USA [53-56, 68]. Several studies published in the
last decade have reported FXS full mutations in approxi-
mately 0-6% of ASD patients [33-56] (Table 2). The rates
of FMRI expansion among ASD patients vary widely across
studies, depending on different factors including ethnic
background, small sample sizes in various studies, possibility
of referral bias, diagnostic criteria for autism, and method of
FXS diagnosis. The discrepancies regarding the prevalence of
FXS among individuals with autism may reflect the limited
reliability of the cytogenetic tests used in the past compared
with the more sensitive molecular tests currently used.
Regarding the prevalence of FXS, there is the possibility that
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Figure 1: Distribution of FMRI1 CGG alleles in the study of ASD patients (n = 202; 168 males and 34 females) and normal Thai controls
(n =212 males). The most common alleles in the Thai population are 29 and 30 CGG repeats, followed by 36 repeats.

founder effects could result in some populations having
higher prevalences of FXS. Although FXS affects all ethnic
groups, the prevalence may vary between populations. A
previous study reported that the incidence of FXS in coun-
tries with significant Asian populations was significantly
lower than that in Western countries [69].

In our study, two ASD patients with intermediate alleles
were detected, yielding an intermediate allele frequency of
~1% (2/202), which was consistent with reports in ASD
patients in other populations in Italy [43] and the USA
countries [47, 51, 52]. In comparing CGG repeats with a
normal Thai control group, 3 ASD patients showed high
normal or intermediate CGG repeat alleles, with 44, 46,
and 53 CGG repeats, while these alleles were absent in the
normal male controls. All three patients had delayed speech
development, mild ID, and hyperactivity. The FMRI inter-
mediate alleles may show some instability and may expand
into the premutation range when transmitted by the mother
[70, 71]. Previous studies have reported that 7.7% of parents
with FMRI alleles in the 40-49 repeat range and 25% of par-
ents with FMRI alleles in the 50-60 repeat range were more
likely to pass a changed number of FMRI CGG repeats to
their children [72]. An intermediate allele expanding to a full
mutation over two generations was reported in a family
where a 44 or 52 CGG maternal grandfather transmitted a
full mutation to his grandson [73, 74]. The impact of alleles
on intermediate CGG number is not well understood, and
there are various definitions of “intermediate allele.” The
American College of Medical Genetics and Genomics
(ACMGQG) practice guidelines (2005) defined CGG repeats
from 41-60 as the intermediate or gray zone [75], but the
recent ACMG standards and guidelines for FXS testing

changed the definition of intermediate or gray zone to 45-
54 [10]. However, some population studies have used 41-
54 repeats [53, 76, 77]. These discrepancies in the definition
of the intermediate alleles have become more important
because several studies have now reported phenotypes asso-
ciated with the FMRI gray zone or intermediate allele. A
previous study found elevated mRNA levels in intermediate
alleles and premutation alleles with a lower threshold of nor-
mal CGG repeats (5-40 CGG) [78]. Based on this finding,
intermediate alleles may be similar to premutation alleles
which are known to be associated with some neurodevelop-
mental conditions and late-onset tremor ataxia (FXTAS)
[79-87]. Consistent with earlier reports, we found some
increase of intermediate alleles in ASD subjects compared
with the controls, although the differences were nonsignifi-
cant. Some studies have reported significantly increased fre-
quencies of intermediate alleles in individuals with autism,
ID, and learning difficulties compared with normal controls
[56, 88-91]; however, other studies had different findings
[51, 53, 92-95]. A high frequency of intermediate alleles
has also been associated with an increased risk for some
behavioral phenotypes, including autistic behavior, develop-
mental delay, and learning disabilities [84-87, 91], although
such associations are uncertain as they have been based on
only a few small studies. Intermediate alleles have also been
identified in females with premature ovarian failure, females
with Parkinsonism, and individuals with symptoms of the
late-onset neurodegenerative disorder, FXTAS [79-83, 86,
87]. Despite the small sample size of the current study, our
results support the hypothesis that intermediate alleles of
the FMRI gene might be associated with autism [56, 84,
85, 91], but further studies are required with larger numbers
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TaBLE 2: Review of the literature on fragile X syndrome screening in ASD patients. Only studies that performed molecular techniques for
fragile X testing are included.

Country/ . Instrument(s) used Method(s) for . .
region Study subjects for ASD diagnosis  FXS testing Main findings References
Asian countries
. 73 ID, DD, ADHD, o
China ASD (28 ASD) NA SB Premutation: 1.4% (1/73) Chan and Wong [33]
. . Intermediate, premutation, full
China 143 ASD patients DSM-III-R PCR mutation: 0% (0/143) Poon et al. [95]
China 177 ASD patients NA PCR Premutation, full mutation: Wang et al. [34]
p 4.5% (8/177) getal
. DSM-1V PCR with CE Intermediate, premutation, full
Japan 109 ASD patients ICD-10 B mutation: 0% (0/109) Otsuka et al. [53]
144 patients . Full mutation: 0.7% (1/144)
Indonesia (i) 32 ASD NA PCR stllsth CE (i) ASD: 0% (0/32) Winarni et al. [54]
(i) 112 ID (ii) ID: 0.9% (1/112)
Cytogenetics
Indonesia 65 ASD patients DSM-IV-TR PCR Full mutation: 6.15% (4/65) Winarni et al. [35]
CARS B
DSM-IV Premutation: 7.6% (5/66)
Korea 66 ASD patients CARS SB Full mutation and mosaic mutation: Kang et al. [36]
1.5% (1/66)
l?il) g?tizrsl]t)s Cytogenetics
Korea . NA PCR Full mutation: 1% (1/101) Kwon et al. [37]
(ii) 63 ID B
(iii) 7 LD
850 patients PCR with CE (i) Intermediate: 0.1% (1/850)
(i) 135 ASD MCA (i) Premutation: 0.8% (7/850)
. (ii) 112 ADHD (FastFraX™  (iii) Full mutation: 1.3% (11/850)
Sri Lanka (iii) 603 physical and NA FMRI kit) (4 ASD, 3 ADHD, Chandrasekara et al. [38]
behavioral MS-PCR 4 physical and behavioral
disorders SB disorders)
202 ASD patients PCR with CE (i) Intermediate: 1% (2/202)
Thailand (168 males, 34 DSM-1V MS-PCR (ii) Premutation, full mutation: 0% This study
females) SB (0/202)
Non-Asian countries (Australia, European, South American, North American)
. (i) Intermediate*: 3.4% (43/1,248)
Austraha. 1,248 ID, ADHD, NA PCR (ii) Premutation, full mutation: 0% Mitchell et al. [56]
(Tasmania) ASD SB
(0/1,248)
. 16 ASD patients™” PCR 10
Australia (fragile X testing) DSM-IV-TR B Full mutation: 1.2% (2/167) Mordaunt et al. [39]
(i) Intermediate: 4.8% (4/83)
Brazil 83 ASD patients NA PCR with CE  (ii) Premutation: 4.8% (4/83) Ferreira et al. [40]
(iii) Full mutation: 0% (0/83)
(i) Premutation: 0.4% (10/2,486)
2,486 1D, DD, .. R .
Canada AS]S)G** NA NA (ii) Full mutation and mosaic Borch et al. [41]
mutation: 1.2% (30/2,486)
DSM
312 ASD patients™* ADOS o ag .
France (fragile X testing) CARS NA Full mutation: 1.3% (4/312) Munnich et al. [42]

ADI-R
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TaBLE 2: Continued.

Country/ Instrument(s) used Method(s) for

region Study subjects for ASD diagnosis XS testing Main findings References
Intermediate: 0.5% (13/2,850)
Premutation: 2.9% (83/2,850)
2,850 patients PCR with CE (i) ID, DD: 2.8% (77/2,750)
(i) 2,750 ID, DD, TP-PCR (i) ASD: 0% (0/82)
Italy hyperactivity NA AmplideX™  (iii) POIL: 33.3% (6/18) Esposito et al. [43]
(ii) 82 ASD FMRI1 kit Full mutation: 2.9% (82/2,850)
(iii) 18 POI SB (i) ID, DD: 2.9% (81/2,750)
(i) ASD: 1.2% (1/82)
(iii) POIL: 0% (0/18)
59 ASD patients DSM-1V Cytogenetics a0 .
Israel (fragile X testing) CARS B Full mutation: 3.4% (2/59) Kosinovsky et al. [44]
PCR with CE
(Asuragen
Spain 206 ASD patients DSM-V AmplideX  Full mutation: 1% (2/206) Arteche-Lopez et al. [45]
kit PCR/CE
EMRI)
142 ASD patients DSM-1V I, .
Sweden (fragile X testing) ABC NA Full mutation: 0.7% (1/142) Eriksson et al. [46]
. (i) Intermediate: 2.2% (7/316)
Cytogenetics .. N
USA 316 ASD patients NA PCR (if) Premutation: 0.3% (1/316) Reddy [47]
B (iii) Full mutation and mosaic
mutation: 1.9% (6/316)
. e (i) Premutation: 0.2% (2/861)
USA ?f6r :la ?151?( I: :Stgr?t; DSM-IV-TR NA (ii) Full mutation and mosaic Shen et al. [48]
& & mutation: 0.2% (2/861)
183 ASD patients** Premutation: 1.1% (2/183)
UsA (fragile X testing) DSM-IV NA Full mutation: 0.5% (1/183) Roesser [49]
ADOS
L ABC
USA 174 ASD patients CARS NA Full mutation: 0.6% (1/174) McGrew et al. [50]
(fragile X testing)
GARS
DSM-1V
(i) Intermediate: 1.3% (8/599)
599 patients (7 autism/ASD, 1 DD)
i . . NP
USA (i) 453 autism/ASD ADI-R PCR with CE  (ii) Premutation: 0.3% (2/599) Tassone et al. [51]
(ii) 146 DD ADOS TP-PCR (2 DD)
(iii) Full mutation: 0.7% (4/599)
(2 autism, 2 DD)
75 ASD patients PCR with CE C o S
USA (fragile X testing) NA TP-PCR Full mutation: 0% (0/75) Weinstein et al. [55]
PCR with CE (i) Intermediate: 0.7% (2/299)
(Asuragen (ii) Premutation: 1% (3/299)
USA 299 ASD patients DSM-V AmplideX e . Harris et al. [52]
. (iii) Full mutation and mosaic
kit PCR/CE mutation: 1.3% (4/299)
FMRI) S

*41-60 repeats; **retrospective chart review. ASD: autism spectrum disorder; ABC: Autistic Behavior Checklist; ADOS: Autism Diagnostic Observation
Schedule; ADI-R: Autism Diagnostic Interview-Revised; ADHD: attention deficit hyperactivity disorder; CE: capillary electrophoresis; DD: developmental
delay; DSM: Diagnostic and Statistical Manual of Mental Disorders; GARS: Gilliam Autism Rating Scale; ID: intellectual disability; MCA: melting curve
analysis; NA: not available; POI: Primary ovarian insufficiency; SB: southern blot analysis.

of cases and controls from the Thai population and other
different ethnic groups to confirm that intermediate alleles
can be a risk factor of autism.

The CGG repeat distribution has been reported to vary
widely among different populations [69]. In Thailand, this
study reported the distributions of CGG alleles to be similar
in both ASD and normal control groups. The most common

alleles in our study group were 29 and 30 repeats, followed
by 36 CGG repeats, which are the same frequencies as previ-
ously reported in the Indonesian, Chinese, Korean, and Thai
populations in previous reports [58, 96-98]. The 29 and 30
CGG repeats are also the most common numbers found in
Caucasian populations, but the 30 repeats are present at a
higher frequency than the 29 repeats, which is different from
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Asian populations [69]. In contrast, a study in Japanese
patients found 27, 26, and 28 to be the most common alleles
[53]. In some Mexican subpopulations, 32 and 30 were the
most frequent repeat numbers [99].

According to the American College of Medical Genetics
and Genomics and the American Academy of Pediatrics, the
first-tier genetic tests for individuals with ASD, DD, and/or
ID include chromosomal microarray and fragile X testing
[9, 29-32]. Moreover, several studies have suggested that
the diagnostic yield of fragile X syndrome and chromosomal
microarray combined with next-generation sequencing was
significantly higher than that of fragile X syndrome and/or
microarray alone [42, 45]. Due to the limitations of the
methods commonly used for FXS diagnosis, we were unable
to detect other uncommon causes of FXS including point
mutations, deletions, and duplications which can also affect
FMRI1 expression and FMRP level; however, during the
FXS testing in our study, some available DNA samples of
the patients in this cohort were also evaluated using SNP
microarray and whole exome sequencing to look for point
mutations, deletions, and duplications of the FMRI gene
and other genes that may be associated with ASD in patients.
During preparation of this research article, of the 202 ASD
patients, SNP microarray was performed for 65 of them,
and 9 patients were found to have pathogenic copy number
variations (CNVs) or variants of uncertain significance
(VOUS), likely pathogenic CNVs [100]. Whole exome
sequencing was performed on 11 ASD patients, and two
patients carrying clinically significant variants were identi-
fied [101, 102]. However, no point mutation, deletion, and
duplication of the FMRI gene were detected in these
patients. Our results and review of the literature support
the recommendation that fragile X testing should be
included as part of initial genetic testing in patients receiving
a diagnosis of ASD. We also recommend that the combined
genetic testing of FMRI testing, chromosomal microarray,
and/or whole exome sequencing should be performed to
increase the diagnostic yield of ASD.

5. Conclusion

This study reports for the first time the frequency of the FXS
mutation in ASD patients in Thailand. Although no FMRI
premutations or full mutations were found, the study identi-
fied high normal and intermediate alleles in three ASD
patients while these alleles were absent in the normal con-
trols. Our findings add weight to the evidence that interme-
diate alleles may be considered as indicating an increased
risk for autism; however, further studies with larger samples
of ASD cases and controls from different ethnic groups are
required to further elucidate the role of intermediate alleles
in the etiology of autism and other neurodevelopmental dis-
orders. The causes of ASD could involve multiple genes and
other factors, and efforts should be made to identify the
causes of ASD in this group of patients. FXS may be less
common in children being clinically diagnosed with ASD
in the Thai population; thus, we cannot conclude from this
study that the FMRI gene is a susceptible genetic factor in
Thai autistic patients. The data from this study should pro-

vide a foundation for further investigations of FXS in Thai
patients with ASD.
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gene in ASD females. Supplementary Figure I: fluorescent
PCR fragment analysis showing 31 and 53 CGG repeats in
the mother and 53 CGG repeats in the ASD son. Supple-
mentary Figure 2: methylation-specific PCR results. Lane 1:
100bp marker, lane 2: normal male control showing a
FMRI1 promoter unmethylated band and an XIST promoter
methylated band, lane 3: full mutation male (positive con-
trol) showing a FMRI promoter methylated band and an
XIST promoter methylated band, lane 4: ASD male with 44
CGG repeats, lane 5: ASD male with 46 CGG repeats, lane
6: ASD male with 53 CGG repeats, lane: 7 normal female
control, and lane 8: no template DNA. Supplementary Fig-
ure 3: electropherogram of TP-PCR for FMRI CGG
expanded alleles and AGG interruptions. Mothers of male
patients carrying high normal or intermediate CGG alleles
had at least one AGG interruption: (A) full mutation female
(positive control) showing serial peak; (B) female with 29
and 44 CGG repeats: 44 repeat alleles having one AGG inter-
ruption; (C) female with 29 and 46 CGG repeats: 46 repeat
alleles having one AGG interruption. Superimposed close-
up electropherogram shows the end of continuous stutter



peaks of 46 repeats allele. (D) Female with 31 and 53 CGG
repeats: 53 repeats allele having four AGG interruptions.
CGG repeats are based on the fluorescent PCR results. In
heterozygous females, AGG interruption patterns can only
be determined in larger repeat alleles because it is difficult
to correctly identify AGG patterns in lower repeats alleles.
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