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Abstract

Compressed gas-driven shock tubes are widely used for laboratory simulation of primary

blasts by accurately replicating pressure profiles measured in live-fire explosions. These

investigations require sound characterization of the primary blast wave, including the tempo-

ral and spatial evolution of the static and dynamic components of the blast wave. The goal of

this work is to characterize the propagation of shock waves in and around the exit of a shock

tube via analysis of the primary shock flow, including shock wave propagation and decay of

the shock front, and secondary flow phenomena. To this end, a nine-inch shock tube and a

cylindrical sensing apparatus were used to determine incident and total pressures outside of

the shock tube, highlighting the presence of additional flow phenomena. Blast overpressure,

impulse, shock wave arrival times, positive phase duration, and shock wave planarity were

examined using a finite element model of the system. The shock wave remained planar inside

of the shock tube and lost its planarity upon exiting. The peak overpressure and pressure

impulse decayed rapidly upon exit from the shock tube, reducing by 92–95%. The primary

flow phenomenon, or the planar shock front, is observed within the shock tube, while two dis-

tinct flow phenomena are a result of the shock wave exiting the confines of the shock tube. A

vortex ring is formed as the shock wave exited the shock tube into the still, ambient air, which

induces a large increase in the total pressure impulse. Additionally, a rarefaction wave was

formed following shock front expansion, which traveled upstream into the shock tube, reduc-

ing the total and incident pressure impulses for approximately half of the simulated region.

Introduction

For a few centuries, the explosive blast was a threat to soldiers and civilians in armed conflicts.

Only in the early days of the 20th century, technological advances in the weaponry and massive
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deployment of artillery in the trench warfare during World War I resulted in the identification

of the neurological and psychological effects of blast waves, described as the shell shock [1].

The mechanisms responsible for shell shock were poorly understood; the term was subse-

quently banned and replaced with post-concussive syndrome during World War II [2]. It was

only a decade after WWII when systematic research to identify mechanisms responsible for

blast injuries was initiated. Blast lung injury was the subject of intense experimental study at

the Lovelace Foundation in Albuquerque, New Mexico from the 1950s to 1980 [3]. The

research group led by Clemedson was among the first to use blast tubes to study the effect of

shock waves on biological tissues [4]. Both groups used shock tubes, which had previously

been used in other research fields to study detonation, combustion, ionization, supersonic,

and transonic flow fields since the early 19th century [5–8]. In the last two decades, shock tubes

have become a standard laboratory tool to study, the effect of shock waves on animal models,

including rodents, pigs, and ferrets [9, 10]. In a broad survey of recent literature (time span:

2010–2019, S1 Table), trends can be observed in 71 experimental studies using shock tubes

[11].

The survey, summarized in Fig 1, shows that in the majority of the work surveyed, the pur-

pose of the work was to study injury pathologies in animal models (76%). In more than half of

Fig 1. Summary of a recent literature survey of experiments using shock tubes. The survey analyzed 71 recent experiments, published between 2010

and 2018, which were conducted using a shock tube. The experimental subject being investigated, the energy source used to generate the shock wave,

the shock strength, shock tube length, and size, and the location of specimens were identified for each study. Biomech.: Biomechanics; CSA: cross-

sectional area. See S1 Table for additional details.

https://doi.org/10.1371/journal.pone.0227125.g001
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the tests surveyed, the specimens (animal models, human surrogates, or animal surrogates)

were tested near the exit or outside of the shock tubes. However, it is well-established that an

unconfined shock front will undergo diffraction upon exit from the shock tube [11]. Free

expansion of the unconstrained shock front at the exit induces a flow field which is very differ-

ent from that of the inside; the flow field is affected by blast winds, air entrapment, vorticity,

and rarefaction waves [12, 13]. An object placed at different locations both inside, near the

exit, or outside of the shock tube is subjected to different types of loadings based on the static

and dynamic components of the total pressure of the flow field.

Experimental investigation into the hydrodynamica of shock wave diffraction from an

open ended shock tube utilize a variety of optical techniques to visualize the flow field. Some

optical techniques include particle image velocimetry [14], holographic interferometry [15],

schlieren imaging [16], smoke flow visualization [17]. These techniques capture the density or

instantaneous velocities of the flow fields and are primarily used to understand and character-

ize the nature of exit jets, vortex rings. Increasingly, these optical techniques are coupled with

numerical simulations to better describe the observable flow phenomena, enabling additional

quantifiable analysis of the flow field [18]. However, despite the wealth of work performed in

this field, a majority of the work conducted is conducted in shock tubes which are much

smaller [11, 14, 19, 20] or much larger [21] than those conventionally used in biomedical appli-

cations. Additionally, much of the work is conducted at Mach numbers which would induce a

fatal injury in animal models, precluding their usefulness for the study of mild traumatic brain

injury [22–25].

In this work, we have generated shock waves at three shock strengths which have been pre-

viously shown to generate mild traumatic brain injuries in animal models [26]. For each of

those conditions, we have made sixteen measurements of static and dynamic pressures in sepa-

rate experiments. Additionally, we have developed a computational model to simulate the flow

field produced in the shock tube experimental setup and validated the computational model

against experimental measurements. Based on additional simulations, we have identified the

temporal and spatial evolution of flow phenomena resulting from the free expansion of an

unconstrained shock. It confirms the earlier evidence that experiments conducted outside of

the shock tube do not ever reproduce the idealized flow field conditions of primary shock

waves [27, 28].

Methods

Validation dataset

The shock tube used in this work has been validated to reproduce free-field explosions within

the test section accurately at sensor location I3 in Fig 2 (230 x 230 mm2 square cross-section, 6

m in length) [29, 30]. Briefly, compressed helium within a 55 cm length, 10 cm diameter cham-

ber is separated from atmospheric-pressure air by Mylar membranes. When the pressure dif-

ferential causes the membranes to burst, a shock wave is formed which travels through a 1.5 m

transition region to the driven region. Shock strength is dependent upon the pressure ratio

between the pressurized chamber of helium and the body of ambient air. In this work, three

pressure ratios, 15.8:1, 8.7:1, and 2.5:1, were used to generate a shock wave with overpressures

within the test section of the shock tube of 180, 130, and 70 kPa. These overpressures induced

shock waves at the test section traveling at Mach 1.2–1.44 and at the shock tube exit at Mach

1.15–1.29. As this work seeks to study the evolution of the shock wave as a function of over-

pressure, the shocks will be referred to as a high, moderate, and low strength shock,

respectively.
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Incident pressures were measured within the shock tube at six locations (Fig 2A and 2C)

using flush-mounted piezoelectric pressure sensors (Model 134A24, PCB Piezoelectronics).

Additional incident pressure measurements and total pressure measurements were taken out-

side the shock tube, in line with the longitudinal axis of the shock tube as depicted in Fig 2A.

The PCB 102B06 pressure sensors were mounted in an aluminum cylinder referred to as the

sensing apparatus (61 cm length, 51 mm diameter, 6.4 mm wall thickness), rigidly attached to

the shock tube support structure. Four pressure sensors were placed on the upper half of the

sensing apparatus at four heights (H1-H4), with the H1 sensor aligned with the longitudinal

axis of the shock tube and an inter-sensor spacing of 76 mm. The sensing apparatus was posi-

tioned at four locations offset from the exit (open end) of the shock tube, at 4, 16, 28, and 40 in

(100, 410, 710, and 1020 mm; O1-O4). Total pressures were measured by orienting the pres-

sure sensors so that the longitudinal axis of the pressure sensor was parallel to the longitudinal

axis of the shock tube. Although this technique explicitly measured the reflected pressures on

the surface of the sensing apparatus, the reflected pressure is known to decay rapidly to the

total pressure due to wave interference from rarefaction waves generated from the incident

wave diffracting about the cylinder and, therefore, can be assumed to closely approximate the

total pressure [31]. Incident pressures were measured by rotating the sensing apparatus 90

degrees, such that the sensors were perpendicular to the longitudinal axis of the shock tube.

Additional incident pressure measurements were taken within the shock tube at six locations

along the shock tube (I0, I2-I4, I6, and I8). Experiments were repeated four times (n = 4) at

each measurement location (O1-O4), for each measurement type (incident and total), at the

three shock strengths (high, moderate, and low).

Finite element model

The finite element method was used in this work to simulate the generation and propagation

of the shock wave. A three-dimensional Eulerian model of the experimental setup was created

and consisted of two continuous domains, a 4 m segment of the shock tube and a room region

surrounding the exit of the shock tube (3.2 x 1.75 x 1.75 mm3). The length of the shock tube

Fig 2. Schematic of the experimental setup used to create the validation dataset. (A) A shock tube with a square

cross section was used in the development of the experimental dataset. Incident pressures were measured at six

locations within the shock tube (I0, I2-I4, I6, and I8). Total and incident pressures were measured at four longitudinal

locations outside of the shock tube (O1-O4) at four vertical heights (H1-H4). (B) A schematic representation of the

experimental setup for the O1-O4 tests, with the sensing apparatus in the total pressure orientation. (C) The locations

of all sensors with respect to the shock tube exit. Negative values denote upstream distances, into the shock tube, and

positive values indicate downstream distances.

https://doi.org/10.1371/journal.pone.0227125.g002

Evolution of secondary shock flow phenomena

PLOS ONE | https://doi.org/10.1371/journal.pone.0227125 January 16, 2020 4 / 18

https://doi.org/10.1371/journal.pone.0227125.g002
https://doi.org/10.1371/journal.pone.0227125


was selected to simulate the portion of the shock tube located downstream from the first sensor

location (I0). A sensitivity analysis was conducted to identify the dimensions of a room region

which optimizes computational time and solution quality, where the shock wave would not be

affected by any reflections from the boundary of the room (see S1 Fig). The Eulerian domain

was discretized using a biased mesh with a minimum element edge length of 8 mm at all

regions of interest (see S2 Fig). To validate the simulation, a Lagrangian model of the sensing

apparatus was created to match the experimental setup. Fig 3A shows the shock tube, room

region, and the sensing apparatus with the testing locations used for model validation. The

Lagrangian domain offered a converged solution at an ideal mesh density of 6 mm (see S3

Fig). This resulted in a system of approximately 3,600,000 Eulerian and 3,500 Lagrangian iso-

thermal, reduced integration, linear, hexahedral elements with hourglass control. The Eulerian

domain was filled with 300 K air at a density of 1.225 kg/m3. The sensing apparatus was mod-

eled as aluminum, approximated to be linear, elastic, and isotropic with a density, elastic mod-

ulus, and Poisson’s ratio of 2700 kg/m3, 70 GPa, and 0.33, respectively.

A typical experimental pressure-time profile collected from the sensor I0 (Fig 3B) was used

to model the shock wave. Although experiments were shown to be very reliable (see S4 Fig),

the pressure-time pulses of a minimum of four exposures were averaged for each shock

strength to minimize the effect of any measurement artifacts. The edges of the room and shock

tube were constrained against displacement normal to the edge (Fig 3A). The open exit of the

shock tube was unconstrained, allowing for the unimpeded flow of the shock wave from the

shock tube into the room region.

Simulations to derive the incident pressures were conducted without the sensing apparatus

model in a purely Eulerian simulation. Total pressure simulations were conducted with the

sensing apparatus. In the total pressure simulations, all nodes located at the bottom of the sens-

ing apparatus were constrained in all translational and rotational degrees of freedom. The con-

tact between the Lagrangian and Eulerian domains is based on an enhanced boundary

method. Here, the void mesh of the Eulerian domain is occupied by the Lagrangian structure.

Fig 3. Schematic of the experimental simulation setup. (A) A depiction of the modeling domain, consisting of the

sensing apparatus and the shock tube and room region with boundary conditions. Orange triangles indicate

boundaries which are constrained. (B) An example of the pressure-time amplitude used to induce the moderate shock

wave, which consists of the average pressure measured at sensor location I0 from Fig 1 (n = 4). (C) A table of

additional sensor locations which were included in the numerical simulations. The sensor locations are reported with

respect to the shock tube exit. Negative values denote upstream distances, into the shock tube, and positive values

denote downstream distances.

https://doi.org/10.1371/journal.pone.0227125.g003
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The general contact algorithm automatically tracks the interface between the domains, com-

pensating for mesh size discrepancies to prevent the entry of Eulerian material through the

Lagrangian surface. Contact constraints are enforced through the penalty method with a finite

sliding contact formulation. The total pressure simulations use frictionless tangential sliding

with hard contact.

All simulations were performed using Abaqus/Explicit 6.13–4 (Simulia, Dessault Systemes)

in 16 threads of an 3.00 GHz Intel i7-5960X with 64GB of physical memory.

Methodology

Overall thirty-nine simulations were conducted, three incident pressure simulations, one for

each shock strengths (low, moderate, and high), and thirty-six total pressure simulations at

three shock strengths for twelve locations. Additional locations were identified to better map

the shock tube system, including seven locations inside the shock tube (I1-I8), two locations

near the exit of the shock tube (E0 and E1), and four locations outside the shock tube (O1-O4).

Exact locations of the additional measurements are included in Fig 3C.

First, validation was conducted in which the shock wave pressure-time profiles were com-

pared to the experimental measurements. The peak overpressure, impulse, duration, and gen-

eral form of the total and incident pressure-time profiles were compared to ensure validation

of the simulation. Upon validation, the simulation results were analyzed to identify potential

flow phenomena.

Results and discussion

In the discussion below, the evolution of a shock wave at the exit of a shock tube is presented,

including the discussion of how the shock wave decays in strength and induces several flow

phenomena. First, the observations from the experimental measurements will be presented

and the numerical simulations will be validated. Then, the numerical model, supported by

experimental measurements when possible, will be used to discuss several metrics used to

define the characteristics of the shock wave. First, the shock is observed to be planar within the

shock tube and non-planar outside of the shock tube. The shock tube constrains the shock

wave, maintaining the planarity of the wave until the shock front experiences rapid expansion

into the ambient air within the room. Next, the peak pressure decays as the shock wave propa-

gates, decreasing slowly while inside the shock tube and decreasing rapidly upon exiting the

shock tube. Finally, two flow phenomena were generated from the rapid expansion of the

shock front at the shock tube exit: a vortex ring and a rarefaction wave. The vortex ring propa-

gates behind the shock wave at a slower velocity that is dependent on the shock strength. The

rarefaction wave reflects into the shock tube, decreasing the positive phase duration and

impulse. These metrics of the shock wave highlight the regions of the shock tube experimental

setup which experience an ideal shock wave and those which interact with a vortex ring and a

rarefaction wave.

Experimentally observed incident and total pressures

Experimental measurements of the shock overpressure outside the shock tube exit identified

two distinct flow phenomena (Fig 4). First, the shock front arrives, characteristically observed

as a rapid increase in overpressure and an exponential decay to baseline in which the reflected

pressure is proportionally higher than the incident pressure reading. The reflected pressure

rapidly decays to the total pressure, which remains proportionally higher than the incident

pressure reading. The difference between shock front arrival time can be used to confirm the
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shock velocity, which is confirmed to be higher in higher shock intensities and gradually slows

as it propagates in the ambient air outside the shock tube. The peak overpressure of the shock

front decreases as the distance from the shock tube exit increases. Additionally, the peak over-

pressure decreases with increased distance from the midline, i.e., normal to the direction of

shock wave propagation. This trend is less pronounced as the distance from the shock tube

exit increases.

The second distinct flow phenomenon arrives after the shock front and is characterized

by a slow increase in the total pressure and decrease in the incident pressure, resulting in an

incident underpressure, or pressure less than atmospheric pressure. At a distance closest to

the shock tube exit, O1, the flow artifact occurs shortly after the shock passes. This artifact is

observed to travel at a slower velocity than the shock front, moving at a subsonic velocity

with a magnitude proportional to the shock strength. As these rarefaction waves travel at

the speed of sound within the fluid behind the shock front, a subsonic velocity is observed.

This flow phenomenon was observed at sensor locations H1-H3 and the highest sensor

measurement location, H4, showed an underpressure in both the total and incident

pressures.

A few general trends can be observed in Fig 5 by comparing the peak overpressure, positive

phase durations, and the impulse at the four vertical locations (H1-H4) at the four longitudinal

sensing apparatus measurement locations (O1-O4). Trends are conserved between the three

shock strengths examined, differing only in magnitude (Fig 5). Peak overpressure, duration,

and the magnitude of the impulse increased with shock strength. Over the duration of the

pressure signal, underpressures resulted in negative impulse values in all sensor locations in

the incident waveform and in the O4 total pressure measurement. Total pressure measure-

ments exhibited higher peak overpressures and impulses in all cases. As longitudinal distance

from the shock tube exit increased (O1-O4), peak overpressure and impulse decreased. There

exhibited no significant change in incident pressure duration and the total pressure duration

decreased with increasing longitudinal distance. As the vertical distance increased from the

longitudinal axis (H1-H4), the peak overpressure decreased, with the magnitude of the reduc-

tion decreasing with longitudinal distance. Significance was not observed between the H1 and

H2 sensors in the incident pressure measurement at O4. The duration of the total pressure sig-

nal increased in the off-axis locations.

Fig 4. Measurement location along the longitudinal axis (O1-O4) and the vertical axis (H1-H4) changes the

characteristics of the pressure measurements. (A) The experimentally measured total (grey) and incident (black)

pressures at the four measurement locations O1-O4 at sensor location H1 highlight a reduction in the peak

overpressure and a delay in the arrival of the secondary flow phenomena as the distance from the shock tube exit

increases. (B) Likewise, when comparing the pressure profiles vertically (H1-H4) at a single longitudinal location, O2,

shows a change in the nature of the secondary flow phenomena.

https://doi.org/10.1371/journal.pone.0227125.g004
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Validation of computational model

The simulations were validated against the experimental datasets through a comparison of the

pressure-time waveforms, the peak overpressures, impulses, rise-times, and durations. The

simulations, on average, underestimated the peak overpressure and overestimated the rise

time, which is attributed to a sampling rate and an element density which were not adequate

to resolve the shock front location. The simulations were sampled at a frequency of 26 kHz.

Experimentally, sampling frequencies of a similar range have been shown to be sufficient to

resolve the peak overpressure, yet overestimate the rise time of the signal [32]. However, low

sampling frequency coupled with spatial discretization reduces the ability to capture the shock

front location. For the shock strengths simulated, the velocity of the shock front is 345–518 m/

s (low to high strength) which would enable the shock front to traverse an 8 mm element in

the range of 15.5–20.4 μs, respectively. To accurately resolve the shock front at that spatial den-

sity, a higher sampling frequency, coupled with adaptive mesh refinement techniques, would

be required. However, as the accurate resolution of the rise time was not the focus of this

work, additional techniques were not implemented to improve the simulation of the rise time

and the idealized peak overpressure. Despite the underprediction of the peak pressure, average

point-by-point percent error between the experimental and simulated pressures were under

6% for all incident pressures within the shock tube and under 12.5% for all incident and total

pressure measurements taken outside of the shock tube (Fig 6). On average, the best match

was observed at locations closer to the input location, I0.

Simulation results matched the impulse and duration of the shock front, but incident pres-

sure simulations did not exhibit a negative impulse, as seen in the experimental measurements

(Fig 5). Several methods of simulating the incident and total pressures were compared, indicat-

ing that the decrease in pressure was likely due to the interactions between the secondary flow

phenomenon and the cylindrical sensing apparatus (S5 Fig). In general, a comparison of the

Fig 5. Pressure profile characteristics of the incident and total pressures. The peak overpressure (left), signal duration (middle), and

impulse (right) of the experimentally measured incident, and total pressure pulses for the moderate-intensity shock wave showed several

trends.

https://doi.org/10.1371/journal.pone.0227125.g005
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pressure-time waveforms revealed an excellent match, meaning that the simulation can be

considered validated with conservative blast overpressure estimates.

Peak overpressure

The shock pressure ratio, defined as the ratio of the pressure within the shock front and the

ambient pressure, decreased slowly as it propagated through the shock tube and rapidly upon

sudden expansion into the room region (Fig 7). The rate of decay varied with shock strength,

with the high strength shock pressure ratio decaying the most rapidly. The shock pressure

ratio decreased within the shock tube at an average rate of 0.09, 0.19, and 0.22 for the low,

moderate, and high strength shocks, respectively. The peak pressure at the shock tube exit was

30.99%, 33.33% and 34.15% of the input peak overpressure for the low, moderate, and high

strength shock. These results are in line with previous findings from our group, which states

Fig 6. Simulation predictions compared to experimental results for the high-strength shock. The simulated pressures (grey) showed good

validation with the average experimentally measured pressures (black with grey, mean, with standard deviation) for the incident (left and middle) and

total (right) pressure measurements for the high strength shock. The point-by-point percent error for the shock front was under 12.5%. Average errors

for interior locations (I2-I4, I6, and I8) showed the best validation.

https://doi.org/10.1371/journal.pone.0227125.g006

Fig 7. The shock pressure ratio along the longitudinal axis. The shock pressure ratio, z, defined as the ratio of the shock

front, pshock, to the ambient pressure, pambient, decays gradually along the shock tube and declines rapidly after expansion

begins at the shock tube exit. The rate of decay within the shock tube and the following expansion was found to depend on

the shock strength.

https://doi.org/10.1371/journal.pone.0227125.g007
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that the peak pressure decays as the shock wave propagates down the shock tube [29, 32].

Energy loss occurs due to the expansion of the high-pressure shock front as it interacts with

low-pressure upstream air, increasing the shock duration while maintaining a comparable

impulse [29].

Shock wave expansion at the shock tube exit decreased the shock pressure ratio rapidly,

with the average rate of decay increasing to 0.55, 1.00, and 1.19 and an average peak rate of

decay of 2.65, 4.96, and 6.03 for the low, moderate, and high strength shocks, respectively. Out-

side of the shock tube, the pressure decayed rapidly, reducing 92.96%, 94.33%, and 94.51% for

the low, moderate, and high strength shocks, respectively. This rapid decay in overpressure is

consistent with an increased area of the shock front as the shock front experiences expansion

into the ambient air [33]. A relationship exists between the shock strength and the area of the

shock front using the function derived by Chisnell (f(z)) which, when multiplied by the area of

the shock front (A), remains constant [34]. As the area of the shock front increases, the Chis-

nell function decreases, accordingly, and is given for a shock in diatomic air by [34]

f zð Þ ¼
z5

7 z � 1ð Þ
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This function is derived from the Rankine-Hugoniot equations and has been proven to

accurately model symmetrical, spherical and cylindrical shocks experiencing rapid, uncon-

fined expansion between two square or circular chambers of similar or very different cross-

sectional areas[34, 35]. When used in conjunction with the area of the shock front given for a

spherical shock by

A ¼ 2pX2 ð2Þ

where X is the longitudinal distance from the exit of the shock tube after which a critical shock

is formed. It can be calculated from the shock tube diameter (d) and the angle of propagation

(α) by

X ¼
d
2
cot / : ð3Þ

Using a relationship between the angle of propagation and the Mach number, given by

tan2 /¼
ðM2 � 1ÞðM2 þ 5Þ

6M4
; ð4Þ

a relationship describing the loss in shock pressure ratio due to expansion can be derived.

Using this theory for the conditions studied here, the rapid decay of the shock pressure ratio is

explained by the increase in the area of the shock front. As the shock front area increases and

continues to expand, the shock pressure ratio exponentially decays.

Shock planarity

As the simulated shock propagated through the shock tube, it remained planar. At the shock

tube exit, the shock front experienced sudden, unconstrained expansion into the still ambient

air. At this point, the simulation shows the shock front became less planar and expanded. As

the shock front propagated, it eventually regained some planarity (Fig 8).

This simulated phenomenon was confirmed experimentally by examining the shock front

arrival times at each sensor. At all longitudinal measurement locations (O1-O4), the shock

wave arrived at the sensor aligned with the longitudinal axis first (H1). At the measurement
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location closest to the shock tube exit, the center of the shock front remains mostly planar.

When comparing the elapsed time between the shock wave arrival, little difference was

observed between the two sensors closest to the longitudinal axis, H1 and H2. The arrival of

the shock front at H2 was delayed an average of 2.75±0.98 μs. The shock wave curvature is

apparent in the much higher arrival time delays at the sensors located farther from the midline,

with H3 and H4 being delayed by 55.25±1.91 μs and 187.33±2.12 μs, respectively. This demon-

strates that the shock wave is only beginning to lose planarity at this location. The curvature of

the shock wave is more apparent at the O2-O4 longitudinal measurement locations, where the

shock curvature is more even (Fig 9). The curvature is highest at O2, then starts decreasing to

O4. The shock front arrival time delay was mostly independent of the shock strength. A slight

trend was observed where a high-strength shock exhibited a slightly longer delay. This trend

was most apparent at the O1 location, and the strength of the trend decreased with the distance

from the shock tube exit. The shock front travels at a faster speed in the higher strength shock

and, therefore, the shock front will be less planar than a low strength shock, despite there

being little to no difference in the shock front arrival time delay.

These observations highlight that the shock front was behaving in line with previous experi-

mental results of sudden shock wave expansion, further validated by the theory. Using the rela-

tionship in Eq 4, the Mach number of the shock wave as it exits the shock tube can be used to

Fig 8. The planarity of the shock front is largely lost at the shock tube exit. The edge of the shock front at each time

step (Δt = 38.5 μs) from t = 0–13.5 ms in the moderate strength shock in a mid-wall cut. As the shock exits the shock

tube, denoted by a grey bar, the shock front loses its planar nature and expands, becoming non-planar.

https://doi.org/10.1371/journal.pone.0227125.g008

Fig 9. Experimentally observed shock curvature. The arrival times of the shock wave normalized with the shock arrival at

the H1 sensor showed a curvature of the shock front at the measurement locations (A) O1, (B) O2, (C) O3, and (D) O4.

https://doi.org/10.1371/journal.pone.0227125.g009
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predict the angle of propagation of the critical shock, predicting the point at which planarity of

the shock front decays. The difference in the experimentally measured arrival times of the

shock front between the I8 and O1 and the distance between those measurement locations

were used to calculate the shock velocity (v) and the Mach number, using the relationship

M ¼
v
c
; ð5Þ

where the speed of sound, c, was assumed to be 343 m/s. At the measurement location O1, the

angles of propagation for the shock strengths investigated in this study are 69.5, 62.9, and 61.8

mm for the low, moderate, and high strength shocks, respectively. This indicates that the limits

of the planar area fall between the H1 and H2 sensors (76.2 mm) for all three shock strengths

at the O1 location, as demonstrated by a lack of curvature seen in Fig 9A. The point of contact,

or the point in which the shock loses the original planar shock front, occurs between 222–374

mm for the shock strengths examined in this study. Therefore, by the O2 longitudinal mea-

surement location, the shock front no longer retains any planarity and decays completely,

referred to as a “critical shock”. As the shock expands into the ambient air, the shock under-

goes diffraction and expands freely around the sharp edge of the shock tube exit. This shock

front which undergoes diffraction interacts with the planar shock front, causing the planar

front to decay into a critical shock. This interaction creates an expansion wave which propa-

gates longitudinally upstream into the shock tube [33]. The expansion wave, or rarefaction

wave, will be described in detail later.

Following the complete decay of the planar shock front into a critical shock, the critical

shock front was observed in the simulations to propagate at a much lower strength and, even-

tually, become more planar in nature. This is theorized to be due to the initial uneven expan-

sion of the wave into a critical shock and due to interactions of the shock front with the

boundaries of the room region. As the cross-section of the shock tube investigated here is not

of a circular diameter, the planar region will decay in a non-axisymmetric manner. The nar-

rower cross section at the mid-wall of the shock tube will have a smaller planar area than the

widest cross-section, at a diagonal cut. The non-axisymmetric decay will cause the behavior of

the critical shock to deviate from the ideal behavior of a spherical shock. Additionally, as the

critical shock continues to expand, the increase in the shock area will eventually interact with

the boundaries of the domain. At the domain walls, the interaction of the critical shock with

the wall creates an oblique reflected shock, which interacts with the critical shock front [36].

The oblique reflected shock increases the strength of the critical shock, which decreases the

apparent curvature of the shock front at the edges of the domain. As the domain of the room

region in the computational model was not designed to completely replicate the room in

which the experiment was conducted, it is anticipated that the curvature of the shock predicted

in the simulation would differ from experimental conditions. However, as the region of inter-

est tested by the sensing apparatus was small in comparison with the room region, it is hypoth-

esized that any differences would only be apparent at the longitudinal measurement locations

farthest from the shock tube exit.

Vortex ring

Following the shock front, the secondary flow phenomenon observed in the experimental

results was identified as a vortex ring. A vortex ring is formed as the fast-moving volume of

compressed air moves into stationary air. The energy of the shock front is locally reduced due

to the interaction of the shocked and unshocked air, reducing the velocity of the shocked air.

The slowed air then moves around the mass of compressed air, then rejoins the fast-moving

air, forming a toroidal ring. The simulation showed the rotating ring forming at the exit of the
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shock tube and following the shock front at a slower velocity. The velocity of the vortex ring

was dependent on the shock strength, where the highest strength shock produced a vortex ring

which propagates at 90.6 m/s; and with decreasing shock strength, the velocity decreased to

79.8 and 40.3 m/s for the moderate and low strength shocks, respectively. Observed vortex

ring propagation velocity aligns well with the approximation where the vortex ring propaga-

tion velocity is approximately half of the piston velocity, with theoretical velocities of 83.3,

73.2, and 44.9 m/s for the high, moderate, and low strength shocks respectively [37]. The path

of the vortex ring also varied with shock strength (Fig 10). Following the formation of the ring,

the vortex ring follows the shock front and the diameter of the vortex ring core at the mid-wall

increases to match the diameter of the vortex ring core at the corners. The ring over-expands

and comes back to reach a more stable diameter. The diameter of the ring itself increases as it

forms and reaches a relatively stable size. The lower severity shock exhibited a reduction in

ring size as it propagates, indicating that the ring may have begun to dissipate.

At the time of arrival of the vortex ring, an increase in total pressure was observed experi-

mentally and confirmed in the simulation results. A jet of air behind the shock front exists

within the core of the vortex ring. This jet of air arrives with the vortex ring, and the air parti-

cles within the jet of air are stopped by an object in the path, resulting in an increase in total

pressure. The structure of the vortex ring means that the pressure profile varied for each verti-

cal measurement (Fig 11). Along the longitudinal axis, at vertical location H1, the center of the

Fig 10. The location of the vortex ring with respect to time. Contour plots of the pressure for a cut through the

middle of the shock tube wall (upper) and along the diagonal of the square (lower) display the vortex ring location with

time following the expansion of the (left) low, (middle) moderate, and (right) high strength shocks.

https://doi.org/10.1371/journal.pone.0227125.g010

Fig 11. Pressure contours and velocity fields depicting how the vortex ring interacts with the cylindrical sensing apparatus. The

interaction of the vortex ring at the O3 location under a moderate-intensity shock, visualized in (left) a side view of the pressure field,

shown in MPa, and (right) a top-view of the velocity vectors, shown in m/s for (B) shock front arrival, (C) peak pressure, (D) vortex

ring arrival, (E) peak vortex ring interaction, and (F) complete passage of the vortex ring.

https://doi.org/10.1371/journal.pone.0227125.g011
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ring accelerated air, which caused the largest total pressure impulse. The impulse decreases

with increasing vertical distance, as the sensing location approaches the center of the vortex

ring. The vortex ring itself has an underpressure region within the vortex core, where the pres-

sure is falling below atmospheric pressure [38]. The H4 sensor location is closest to the vortex

core and characteristically drops in pressure as the vortex ring interacts with the testing

apparatus.

Rarefaction wave

Another flow artifact was observed following the exit of the shock wave from the confines of

the shock tube. A rarefaction wave radiated upstream back into the shock tube, causing as a

decrease in blast overpressure. The pressure along the longitudinal axis of the shock tube was

mapped with time to capture the nature of this flow phenomenon (Fig 12). After the time

point in which the planar shock front exits the shock tube, a fan can be observed which radi-

ates upstream, into the shock tube. The speed of this rarefaction wave and the affected area

changes with shock strength, with the rarefaction wave in the low strength shock exhibiting

the largest area of influence, with a notable depression observed as deep as sensor I4. The rapid

expansion of the shock front at the shock tube exit causes a density gradient to form, which ini-

tiates the rarefaction wave. Previously, we have shown that a reflection generated from a reflec-

tor plate at an appropriate offset can largely nullify the impact of the rarefaction wave on the

incident waveform within the shock tube [29]. A normal reflection of the shock on a perpen-

dicular endplate causes a reflected compressive wave that greatly reduces the effect of the

Fig 12. Pressure-time contour plots along the longitudinal axis. A surface map of the pressure for each node along the longitudinal axis plotted as

longitudinal location vs. time, shows a rarefaction wave for the (top) low strength, (middle) moderate-strength, and (bottom) high-strength shock. The

posteriorly traveling dark fan shows the region of low pressure, which is characteristic of the rarefaction wave.

https://doi.org/10.1371/journal.pone.0227125.g012
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tensile rarefaction wave. However, without an endplate, the tensile wave travels unimpeded

and can affect the nature of the pressure waveform.

Conclusions

The presented work highlights the spatial and temporal evolution of flow phenomena in the

shock tube experimental setup relevant to the field of blast-induced traumatic brain injury.

Corroberated with pressure measurements and numerical simulations, the nature of these

flow phenomena are confirmed and discussed in the range of shock strengths and shock tube

dimensions commonly used to generate field-relevant shock exposures to study traumatic

brain injury in animal models. In summary, while the shock front is constrained within the

shock tube, the shock exhibits strong similarities to a primary blast in the free field. The sud-

den expansion of the shock front into the free ambient air induces two flow phenomena which

initiate changes to the flow system. The sudden expansion causes a vortex ring formation,

which develops and moves sub-sonically along the longitudinal axis, following the shock front.

The vortex ring and high dynamic pressures are observed as the vorticity forms around the

accelerated air within its core. Additionally, a rarefaction wave develops which propagates

upstream into the shock tube, which decreases the overpressure, reducing the impulse and

duration of the waveform. The shock front expands non-uniformly into the ambient air. This

expanded critical shock continues to dissipate energy through expansion and experiences a

reduction in peak overpressure and duration. These observations were simulated using a

numerical model, validated extensively against experimental pressure measurements. This

work strives to better inform the biomedical field of study by identifying the nature and extent

of these flow phenomena in the common testing regime.

The limitations of this work are primarily associated with the fidelity of the numerical

modeling domain. The room region outside of the shock tube exit was unobstructed by any

other objects. This created an idealized flow field which does not reflect realistic experimental

conditions, which would introduce reflections which cause the experiment to deviate from

numerical predictions. Additionally, only a limited room domain was considered. This was

shown to have a potential influence on the evolution of the critical shock, altering how planar

the shock front would appear. This simplification enabled for more efficient simulations, but

potentially reduced the simulation fidelity of later time points. And finally, the influence of

shock tube size and cross-sectional shape were only postulated in this work. This assumption

is supported by the findings of other researchers but is not confirmed through a parametric

study. Despite these limitations, we are confident in the reported trends.

These observed phenomena are essential to consider in the planning of biomedical shock

tube experiments. If the experimental goal is to capture a primary shock waveform, it is recom-

mended that the experimentalist test in locations which are not affected by the passing of the

vortex ring or which experience the expansion rarefaction wave. Failure to do so would result

in an alteration of the ideal primary shock characteristics. Similarly, if the goal of the experi-

ment is to examine the interaction of an object with a vortex ring, the experimentalist is

encouraged to examine the production and evolution of the vortex ring at the shock strengths

investigated. The propagation speed of the vortex ring is dependent on the shock strength, and

the size of the vortex ring will be dependent on the size and shape of the shock tube. Within

the vortex ring, an area with pseudo-blast winds is observed, but the diameter of the vortex

ring, if formed, should be compared to the experimental area to ensure that the specimen is

not inadvertently experiencing pressure reductions from the vortex ring. Within the shock

tube, close to the shock tube opening, regions of decreased incident pressure impulses and

durations can be isolated by targeting the area of influence of the rarefaction wave. Therefore,
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it is recommended that experimentalists gather incident and total pressures at the experimen-

tal testing location to capture the nature of the desired flow field.
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the testing location within the shock tube was plotted against the number of simulated ele-

ments. (B) The internal energy in the shock tube with respect to the number of simulated ele-

ments. (C) Table comparing the percent change between mesh seed lengths. Convergence was

observed by a mesh seed length of 8 mm.
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S3 Fig. Convergence study of the Lagrangian sensing apparatus exposed to a 130 kPa shock
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tudinal axis of the shock tube, was plotted against the number of Lagrangian elements. (B) The
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