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ABSTRACT: The mining of antidiabetic dipeptidyl peptidase IV (DPP-IV)
inhibitory peptides (DPP-IV-IPs) is currently a costly and laborious process. Due
to the absence of rational peptide design rules, it relies on cumbersome screening
of unknown enzyme hydrolysates. Here, we present an enhanced deep learning
model called bidirectional encoder representation (BERT)−DPPIV, specifically
designed to classify DPP-IV-IPs and explore their design rules to discover potent
candidates. The end-to-end model utilizes a fine-tuned BERT architecture to
extract structural/functional information from input peptides and accurately
identify DPP-IV-Ips from input peptides. Experimental results in the benchmark
data set showed BERT−DPPIV yielded state-of-the-art accuracy and MCC of
0.894 and 0.790, surpassing the 0.797 and 0.594 obtained by the sequence-feature
model. Furthermore, we leveraged the attention mechanism to uncover that our
model could recognize the restriction enzyme cutting site and specific residues
that contribute to the inhibition of DPP-IV. Moreover, guided by BERT−DPPIV, proposed design rules for DPP-IV inhibitory
tripeptides and pentapeptides were validated, and they can be used to screen potent DPP-IV-IPs.

■ INTRODUCTION
Due to the side effects and the requirement of injection of
commercial dipeptidyl peptidase IV (DPP-IV) inhibitors,
which are used to treat approximately 537 million patients
with type II diabetes, it is crucial to develop new DPP-IV
inhibitory drugs and functional foods.1−3 Peptides with DPP-
IV inhibitory activities are a promising class of oral
hypoglycemics without adverse effects that are derived from
products of enzymatically hydrolyzed edible animal, plant, and
macroalgal proteins.1

Current approaches for the discovery of DPP-IV inhibitory
peptides (DPP-IV-IPs) are known to be labor- and cost-
intensive. For instance, the conventional enzymatic hydrolysate
screening method requires extensive separation and purifica-
tion, mass spectrometric identification, and revalidation of
peptide synthesis.2,3 In addition, the lack of design rules and
effective characterization methods makes it challenging to
design DPP-IV-IPs and synthesize peptide libraries for DPP-
IV-IPs screening.4 These problems have limited the discovery
of efficient DPP-IV-IPs. Therefore, it is an important task to
develop a high-throughput method capable of rapidly
identifying effective DPP-IV-IPs that can be used in functional
foods or medicine innovation.1,2,5

Recently, powered by artificial intelligence, large language
models based on natural language processing (NLP) have been
successfully used to solve biological problems. Therefore,

computation tools complement experimental studies in the
DPP-IV-IPs discovery process. Over the past decade, several
computational approaches have been used for the discovery of
DPP-IV-IPs, including the quantitative structure−activity
relationship method6−9 and machine learning (ML).7,10−13

The ML methods mainly include support vector machines and
random forest.14−16 However, such methods reported to date
have some major limitations, leading to poor performance: (1)
the performance of these models is heavily dependent on the
quality of the features extracted by feature engineering, (2)
they are poorly able to represent amino acid sequences, and
(3) they fail to capture information hidden in the amino acid
sequence itself, which renders these models inefficient.
Furthermore, classifiers for DPP-IV-IPs developed to date
have not been verified experimentally due to the low accuracy
of the model, which will result in the high cost of experimental
verification.
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Deep neural networks with advanced architecture can
overcome these limitations and have the capability of
automating feature learning to extract discriminating feature
representations with minimal human effort.17 In particular,
deep learning (DL) methods, e.g., long−short-term memory,
which is based on NLP and regards amino acid sequence as
natural language, are a promising method for identifying
functional peptides for extraction of discriminative feature
representation, such as antimicrobial peptides.18−21 However,
DL-based models have been criticized for their interpretability
and unexplainable characteristics, which are referred to as
“black box”. Moreover, the limited volume of data is a great
challenge to training DL models from scratch.

In this article, we present the first novel peptide language
model (PLM)-based DL model, named BERT−DPPIV, to
offer a promising solution to address the challenges of DPP-IV-
IPs screening and design. BERT−DPPIV combines a
pretraining process based on unlabeled protein data and a
NLP BERT model with an attention mechanism to identify
DPP-IV-IPs. By learning the discrimination task, BERT−
DPPIV was trained to automatically learn the characteristics
and features contained in the original peptide sequences and to
distinguish and represent amino acid sequences in high-
dimensional spaces, achieved state-of-the-art.

Benefiting from the attention mechanism, BERT−DPPIV
has good interpretability, which is more advantageous than
existing ML algorithms for DPP-IV-IPs identification. Accord-
ing to the attention analyses, we have found that our model can
learn the tertiary structure properties of peptides except for

physicochemical properties. Particularly, we have found that
BERT−DPPIV can identify cleavage sites of DPP-IV enzymes
on the substrate polypeptides, which was first reported, and
suggested that the NLP DL model may be used to analyze
enzyme cleavage sites.

The accuracy of BERT−DPPIV was validated by a wet
laboratory experiment based on measurement of the half
maximal inhibitory concentration (IC50) of synthetic peptides
predicted to be DPP-IV-IPs by BERT−DPPIV, and the results
suggest that the prediction accuracy is in alignment with
experimental data, thus extending the computational model to
practical applications. By combining both the PLM model and
biological assays, we have proposed a novel DPP-IV inhibitory
pentapeptide design strategy based on the dipeptide repeat
unit X-proline to provide a new idea for the design of DPP-IV-
IPs. This design strategy has addressed the bottleneck in DPP-
IV-IP discovery and demonstrated that the in silico evaluation
method can aid peptide drug development.

■ RESULTS
Overview of BERT−DPPIV. BERT−DPPIV is a PLM-

based DL framework designed to mine novel DPP-IV-IPs
based on their amino acid sequence (Figure 1). To realize this,
the framework consists of four main components: pretraining,
fine-tuning, analysis, and model validation and application.
During the pretraining procedures, a total of 556,603 protein
sequences from databases including UniProt, SWISS-PROT,
TrEMBL, and PIR−PSD were used to pretrain 12 layers of
BERT-based language models. We employed three different

Figure 1. Schematic representation of the study workflow. We first collected sequences to pretrain a BERT model (upper left). We then used the
DPP-IV-IP data set for fine-tuning the pretrained BERT model to obtain three kinds of PLMs. The three models were combined to construct the
BERT−DPPIV (upper middle). To determine what the model had learned, we analyzed and visualized the model’s attention (upper right, analysis
module). We then used BERT−DPPIV to screen tripeptides that may inhibit DPP-IV to illustrate the performance of our model inhibition (upper
right, model validation module). After the model screening, the functional peptides screened out by the model were verified by biological
experiments (lower right). Having demonstrated the practical applicability of our model, we proposed a design strategy for DPP-IV-IPs based on
dipeptide repeat units and demonstrated the feasibility of this strategy using models and experiments (lower left).
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word segmentation approaches, i.e., k-mer = 1, k-mer = 2, and
k-mer = 3, to generate three pretrained BERT models. Two
major tasks, i.e., the masked language model (MLM) and next
sentence prediction (NSP), are involved in the pretraining
procedures for capturing word-level and sentence-level
representations and learning the common features of protein
sequences. The fine-tuning process aimed to construct the
PLM model specifically for the task of identifying DPP-IV-IPs.

The framework’s analysis component involved evaluating the
performance and capabilities of BERT−DPPIV. Various
metrics were conducted to assess the model’s ability to predict
and identify DPP-IV-IPs accurately. Three models with
different k-mers in the test set showed the highest accuracy
(Acc) and Matthews correlation coefficient (MCC) of 0.891
and 0.784 were achieved for k-mer = 1, followed by 0.887 and
0.775 for k-mer = 2, and 0.842 and 0.684 for k-mer = 3, and
BERT−DPPIV combining three models achieved state-of-the-
art, which resulted in an improved Acc and MCC of 0.894 and
0.790 (Supporting Information Table S1).

Our models (k-mer = 1, k-mer = 2, and k-mer = 3)
outperform the first sequence-based iDPPIV-SCM model, as
evidenced by significant improvements in Acc, MCC, and
AUC, respectively (Supporting Information Table S1). These
results highlight the ability of our models to extract more
valuable information from peptide sequences. To further
compare with sequence-based physicochemical properties, the
SVM model and the sequence- and structure-based StackDP-
PIV model. Our model (k-mer = 1) achieves the same accuracy
and MCC as the best model, StackDPPIV, and a comparable
AUC of 0.957 less than 0.961 of the StackDPPIV. BERT-
DPPIV outperforms it by improvements of 0.003 and 0.006 in
Acc and MCC, respectively, and achieves a comparable AUC
of 0.960. These results suggest that our models are able to
extract physicochemical properties or structure information,
and BERT−DPPIV can make good use of information from
different models. Moreover, visualization of the model
demonstrated these findings further.

Finally, the model was validated and applied to real-world
scenarios, providing a tool for mining and discovering novel

Figure 2. Sequence representation visualization and attention visualization of structural information learned by the model. A vector representation
of the peptide sequence and of individual amino acids was extracted from the model and analyzed by t-SNE. The amino acid representation learned
by the model (a) and the physicochemical properties contained in the model-learned representations of peptide sequences (b,c) are shown. Here,
we show how the inner workings of the model’s attention heads can be used to analyze a single peptide in more detail. Each attention head
performs internally an all-against-all comparison to compute weighted sums for each token relative to all other tokens in the sequence. High scores
indicate that the model learned to put more weight on certain residue pairs (upper left, lower left, and lower right). The structure of the peptide
shows that Ser-3 can interact with Phe-1, Gln-6, and Gln-7 and that Gln-14 can interact with His-18. When visualizing the attention weights for
these sites, we observed that some of the attention heads could capture this interaction information.
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DPP-IV-IPs based on their amino acid sequences. Overall, we
demonstrate the capability of BERT−DPPIV to predict
important parameters for DPP-IV-IPs to guide DPP-IV-IPs
screening, i.e., (1) inhibitory activity of peptides, (2)
physicochemical properties of peptide sequences, (3) struc-
tural properties from peptide sequences, and (4) capture of
cleavage site information. Furthermore, we have also shown
the application of BERT−DPPIV in guiding the design of
DPP-IV-IPs in addition to peptide screening. Pentapeptides
were designed, and their DPP-IV inhibitory activities were
predicted and verified.
Sequence Representation and Its Properties Learned

by BERT−DPPIV. To investigate the information captured by
our models, we selected k-mer = 1, which exhibits the highest
Acc among our three k-mers models, for further study. First,
we analyzed the representation of the peptide sequences
learned by the pretrained BERT, as prior studies have shown
that BERT models can effectively learn the representation of
the sequence.18−21 The vector representations of the peptide
sequences during the training process of the model were
extracted and projected to 2D by t-distributed stochastic
neighbor embedding (t-SNE) for visualization (Supporting
Information Figure S1), which showed that the model was able
to identify DPP-IV-IPs by learning the vector representation of
peptides.

In addition, we have illustrated the ability of our model to
learn the physicochemical properties of peptides by visualizing
the distribution of amino acid and peptide representations.
The vector representation learned by the model was well able
to distinguish amino acids with different properties (Figure
2a). We then used the modlAMP package22 to extract 10 kinds
of physicochemical property information from peptide
sequences. Based on the peptide sequence physicochemical
properties, the vector representation of it was then analyzed.
The vector representations learned by the model were able to
distinguish among sequences with different physical and
chemical properties (Figure 2b,c, Supporting Information

Figure S2). To this point, we have shown that the PLM can
learn the physicochemical properties of the peptide sequences.
Capturing the Structural Information and Attention

Patterns Generated by the Models. The attention
mechanism provides a way to reveal the “black box” of DL
models and features learned by it.23,24 In this section, we
investigated the capability of our model to learn structural
information about peptide sequences with the help of an
attention mechanism, which is a technology that mimics
cognitive attention. First, the structure of the peptides with a
length of ≥5 amino acids from positive samples was predicted
by APPTEST software,25 and 12 kinds of peptides with α-helix
secondary structure were found (Supporting Information
Figure S3). Three peptides were randomly selected from
among these peptides for further structural confirmation using
AlphaFold2.26 The presence of α-helical structures was
confirmed.

Then, the attention of the model for each head at each layer
of the model was visualized (12 layers, 12 heads per layer)
(Supporting Information Figure S4). As shown in Figures 1,
2d, and Supporting Information S5, we observed that the
attention was focused on the interacting sites of peptides,
suggesting that this model was able to capture the structural
information on peptide sequences. Furthermore, analysis of
144 attention mechanisms (Supporting Information Figure S4)
showed that several learning mechanisms existed in the model,
which include previous-word attention patterns (Supporting
Information Figure S6a), next-word attention patterns
(Supporting Information Figure S6b), delimiter-focused
attention patterns (Supporting Information Figure S6c),
specific-word attention patterns (Supporting Information
Figure S6d,e), and related-word attention patterns (Supporting
Information Figure S6f).
Attentions of BERT−DPPIV Divert to DPP-IV Cleavage

Sites and Proline. In most cases, the attention learned by
BERT−DPPIV focused on the second and third positions of
the N terminus of the polypeptide sequences (Supporting
Information Figure S6d−g), which are the cleavage sites of

Figure 3. Visualization of the position and importance of the amino acid species. To study the importance of position and amino acid species,
attention to positions and amino acids was statistically analyzed. BERT−BASE and BERT−DPPIV represent the models before and after fine-
tuning, respectively. The statistical importance of the position of the peptide sequence according to the attention of the model is shown (a,b). The
statistical importance of amino acid species according to the attention of the model is shown (c,d). The attention of the model to proline and
cysteine in the peptide sequence was visualized (e−h).
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DPP-IV.4 This result suggested that our model can capture
information about DPP-IV cleavage sites by learning the
sequence of the polypeptide substrate.

To further illustrate the capability of cleavage site prediction,
we statistically analyzed the attention sites of the sequences in
the training set (Figure 3a,b). These results suggests that the
attention of our model focused on the cleavage sites of DPP-
IVs. Furthermore, a comparison of the changes in attention
positions of the model before and after fine-tuning has
supported the idea that our model could capture cleavage site
information on DPP-IVs.

We further investigated the capability of our model to
analyze the importance of each amino acid in the sequences.
Statistical analyses have suggested that proline is the amino
acid of major concern in our model, whereas cysteine is the
amino acid of the least concern. An increase in attention
toward proline and a decrease in attention toward cysteine
were observed (Figure 3c,d).

To investigate the importance of proline and cysteine in
these amino acid sequences, we have visualized the attention of
our model for each amino acid in a randomly selected
sequence from α-lactalbumin, “QNPHSSNICN”. We observed
differences in all amino acids after training, which suggested
that the model had directed its attention toward important
amino acids, e.g., proline (which is an important amino acid for
DPP-IV inhibition), whereas less important amino acids, e.g.,
cysteine, received less attention (Figure 3e−h). To illustrate
the accuracy of this result, we have statistically analyzed the
proportion of our model’s attention that was focused on each
of the 20 standard amino acids (Figure 4) and compared it to
the proportion of the pretrain model’s attention (Supporting
Information Table S2). These results demonstrated that our
model efficiently captured the amino acid types that play
important roles in the amino acid sequences of a peptide.
Application of BERT−DPPIV for DPP-IV Inhibitory

Tripeptide Screening. To illustrate the usefulness of

Figure 4. Percentage of each attention head that is focused on the 20 natural amino acids.
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BERT−DPPIV in the mining of DPP-IV-IPs, which can be
used as antidiabetic drugs, we applied our model for the
screening of DPP-IV inhibitory tripeptides. Prior work
conducted by one of the authors (C.G.) classified DPP-IV
inhibitory dipeptides into five classes and, from one class of
peptides represented by VPX and IPX (where X represents one
of the 20 amino acids), isolated nine tripeptides with efficient
human DPP-IV (hDPP-IV) inhibitory activity.27 However, it
was unknown whether other kinds of tripeptides could
efficiently inhibit hDPP-IV. In this section, one class of
tripeptides that contains WPX, WAX, WRX, and WVX from
five classes previously classified was selected for screening.

We predicted the DPP-IV inhibitory activity of the 80 kinds
of tripeptides with our models and found that all of these

tripeptides are expected to possess DPP-IV inhibitory activity
(Supporting Information Table S3). Then, these tripeptides
were chemically synthesized, and the inhibitory activity was
verified experimentally based on the IC50, which is inversely
correlated to inhibitory activity. IC50 values were detected for
72 out of the 80 kinds of tripeptides, and the DPP-IV
inhibitory activity of each of these tripeptides was confirmed
(Table 1). The Acc achieved in this study was 90%, which is
consistent with our prediction (Supporting Information Table
S1). The top three tripeptides for DPP-IV inhibitory activity
were WAW, WAY, and WPN, with IC50 values of 103.66,
117.40, and 128.59 μM, respectively. This result demonstrated
that our model could predict DPP-IV-IPs with 90% accuracy.

Table 1. Experimental Characterization of Tripeptides That Inhibit DPP-IVa

peptide IC50, μM peptide IC50, μM peptide IC50, μM peptide IC50, μM
WRM 896.67 WPE 353.02 WAC 282.79 WPQ 196.18
WRP 741.50 WAG 352.16 WRH 277.20 WVE 192.50
WPC 739.03 WVD 343.00 WVV 275.33 WAH 189.55
WAR 664.68 WVA 341.25 WAA 274.53 WVF 188.33
WRW 603.14 WVG 340.63 WRG 269.85 WPW 182.96
WPS 588.31 WVT 335.63 WRS 265.09 WRE 160.15
WRT 555.60 WVK 331.38 WAL 260.10 WAF 153.32
WRV 541.17 WRI 330.4 WRF 257.07 WRL 150.75
WRA 534.67 WAM 329.85 WVH 256.86 WPG 134.98
WPV 511.47 WVM 317.00 WAV 249.79 WPN 128.59
WPD 480.61 WPH 314.57 WVS 247.00 WAY 117.40
WAE 461.79 WRN 313.20 WVW 238.63 WAW 103.66
WPL 461.32 WPY 303.79 WVC 231.78 WPI
WAP 440.97 WPP 303.49 WPM 218.75 WPK
WPT 435.08 WAN 301.78 WVY 214.88 WAK
WAD 432.65 WRY 296.50 WRC 209.64 WAS
WVP 402.00 WAT 296.33 WPR 208.94 WRK
WVL 398.88 WAQ 289.19 WPA 206.01 WRR
WVN 372.88 WPF 285.91 WRD 203.64 WVI
WVQ 366.00 WRQ 285.50 WAI 198.88 WVR

aIC50: half maximal inhibitory concentration. -: undetectable.

Figure 5. Characteristics of the activity of the DPP-IV inhibitory pentapeptides. The pentapeptides were characterized by (a) IC50 and (b) binding
affinity.
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Proposed Strategy to Design DPP-IV-IPs Based on
the Repeating Dipeptide Unit X-Proline. Recently, the
development of protein synthesis technology has enabled the
screening of DPP-IV inhibitory activity among chemically
synthesized peptides. These studies were conducted based on
the property of preferential cleaving of X-proline or X-alanine
from the N terminus of peptides by DPP-IV. However, the
feasibility of designing the repeating dipeptide unit X-proline
remained unclear. To address this problem, we used our model
to investigate the potential of this design strategy.

As VPI has the highest hDPP-IV inhibitory activity,27 the
dipeptide unit VP was selected for further study. A library of 20
pentapeptides containing two VP repeats (VPVPX) was
designed, and the inhibitory activity of these 20 kinds of
pentapeptides was predicted by our model. In addition, IPIPI
and IPVPI were also predicted by our model, as IPI has the
highest porcine DPP-IV inhibitory activity.27 The model
predicted that 14 out of 22 pentapeptides exhibit inhibitory
activity against DPP-IV, which has provided us with new
insights into the properties of pentapeptides capable of
inhibiting DPP-IV (Supporting Information Table S4).

To verify the properties of the peptides predicted, these
peptides were chemically synthesized, and their IC50 values
were measured (Figure 5a,b, Supporting Information Table
S5). Eight pentapeptides were identified as false negatives,
whereas the IC50 for the other peptides was correctly
predicted. The top three peptides with the highest IC50 were
IPIPI, VPVPH, and VPVPC, which were 47.47, 51.11, and
54.77 μM, respectively. The inhibitory activity of IPIPI was
2.18-fold higher than that of WAW, which is the tripeptide
with the highest inhibitory activity detected in this study. This
result indicates that pentapeptides with the repeating dipeptide
unit VP exhibit higher DPP-IV inhibitory activity as compared
with tripeptides and thus suggests that designing peptides with
repeating units is a more efficient strategy.

To understand the DPP-IV inhibitory activity of these
pentapeptides, their binding energy, which is inversely
proportional to inhibitory activity, was analyzed with
MDockPeP.28 We calculated the binding affinities of
pentapeptides to hDPP-IV and found that VPVPW, VPVPR,
and VPVPY had the lowest affinity. However, a difference was
observed in their ranking with respect to binding affinity
relative to that for IC50 (Supporting Information Table S5).
This difference might have resulted from (1) the docking
method, which reflects only the first step of the interaction
between the polypeptide and DPP-IV and cannot reflect the
subsequent two consecutive VP cleavage steps, or (2) the
docking affinity being calculated based on DPP-IV in the static
state, which thus did not consider the dynamic of DPP-IV.

These results suggested that a design strategy based on
repeating X-proline units is effective and feasible, although the
efficiency of peptides with repeating units of X-alanine should
be investigated.

■ DISCUSSION
In this study, we have successfully built a PLM-based model,
BERT-DPPIV, for mining novel DPP-IV-IPs and applied it to
guide biological experiments for screening and design. Our
model, BERT−DPPIV, demonstrated an Acc of 0.894, which is
higher than those previously reported, e.g., StackDPPIV.16

Furthermore, this model can also capture more biologically
relevant information from peptide sequences, notably the
cleavage site information on DPP-IV and structure information

on peptide sequences (Figure 2a−d, Supporting Information
Figure S5). Our model can automatically capture information
from various aspects of sequence, structural feature informa-
tion from the peptide sequence, and specific cleavage site
features from the peptide data set. This renders our model
more advantageous than StackDPPIV, which has been the best
model described to date, as the latter must extract sequence
and structure feature information by feature engineering.

Although our model achieved good performance, there is
room for further improvement. As BERT models that use the
word segmentation method with overlap, e.g., DNABERT,29

typically show higher accuracy than those that do not, our
model, which is based on the nonoverlapping word
segmentation method, can be further improved by using an
overlapping segmentation method.

The attention-based BERT model adopted in this study
overcomes the poor interpretability of DL methods. Visualizing
the model’s attention during learning revealed what the model
learned and how it had changed during training. Through this
strategy, we discovered that our model can capture cleavage
site information for DPP-IV in addition to the physicochemical
properties and structural information on the peptide sequence
(Figure 2a−d, Supporting Information Figure S5), which had
not previously been reported as a classifier. This is the first use
of the PLM BERT to discover enzyme cleavage site
information from substrate information, and this model should
be extremely helpful in understanding the biological
implications of DPP-IV. Apparently, this feature can be
extended to other enzymes after pretraining with respective
databases, and it should be applicable to understanding the
functions of different enzymes and to mining the cleavage site
information on enzymes.

In contrast with the previous classifiers for inhibiting DPP-
IV peptides14−16 that were tested only on a data set and were
not verified by actual screening experiments, we used the
proposed model to screen tripeptides with DPP-IV inhibitory
activity and showed experimentally that our model had an
accuracy of 90%. DPP-IV inhibitory activity was identified in
72 out of 80 tripeptides predicted (Table 1). This result
suggests that our model can be used to aid in the screening of
functional peptides that inhibit DPP-IV.

The number of reported DPP-IV inhibitory polypeptides is
still limited due to the absence of strategies for designing DPP-
IV inhibitory polypeptide libraries. Therefore, we have also
proposed a new peptide design strategy to design polypeptides
that inhibit DPP-IV based on repeating dipeptide units to
accelerate the mining of DPP-IV inhibitory polypeptides. This
design strategy has been verified and shown to be feasible
through the predictions of our model and subsequent
biological assays. Twenty two pentapeptides containing VP
or IP were discovered to inhibit DPP-IV efficiently. This design
strategy can help researchers efficiently explore peptides that
inhibit DPP-IV. The accuracy of the model for pentapeptide
prediction was 63.6%, despite the lack of sequences with
repeating dipeptide units in the training data set. It is likely that
the model can be improved by increasing the availability of
data in biological assays. Verification of the efficiency of the
model in predicting long peptide sequences is in progress.

In conclusion, we constructed the first PLM-based DPP-IV
classifier and verified its performance experimentally. Fur-
thermore, based on the assistance of the classifier, 72 peptides
were revealed to inhibit DPP-IV. A novel design strategy for
peptides with DPP-IV inhibitory activity was proposed and
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verified, based on which 22 pentapeptides were discovered to
have DPP-IV inhibitory effects. This model could aid in the
screening and design of DPP-IV-IPs, which will greatly
accelerate the process and reduce the cost of antidiabetic
drug development. However, the Acc of the model also needs
to be improved by constructing a big data set; for example, the
screened DPP-IV-IPs in this work should be integrated into the
data set, and the IC50 prediction model should be developed so
that more potent DPP-IV-IPs can be found.

■ METHODS
Database. The pretrained protein data were downloaded

from UniProt and can be accessed on Google Drive at https://
d r i v e . g o o g l e . c o m / fi l e / d / 1 Q e X W V 5 _
OIKgms7u5ShNfvPEKPBLOC3UT/view?usp=sharing. This
data set contains 556,603 protein sequences.30 The data set
used for fine-tuning was previously described and was used to
train and test our proposed model.14 The benchmark data set
includes 532 DPP-IV-IPs and the same number of peptides
with no inhibitory activity against DPP-IV. The number of IPs
and noninhibitory peptides in the independent data set was
133 peptides each.
Reagents and Peptides. hDPP-IV (>200 U/mL) was

obtained from the ATGen company (South Korea). Gly−Pro
p-nitroanilide (Gly-Pro-pNA) was obtained from Cayman
Chemical Co. (Michigan, US). Peptides containing VPVPX,
WPX, WAX, WRX, and WVX (where X represents any one of
20 amino acids) with purity >95% were synthesized by Gen-
Script (Suzhou, China).
Training of the PLM. BERT31 is a pretrained language

model developed by Google for natural language text
applications and achieves state-of-the-art results on down-
stream NLP tasks through transfer learning. We pretrained 12-
layer BERT-based language models on 556,603 protein
sequences from the UniProt data set.30

To adapt our model to different sequence lengths, we used
different word segmentation lengths, k-mer = 1, k-mer = 2, and
k-mer = 3, to generate three pretrained BERT models. The
pretraining process consisted of two pretraining tasks: MLM
and NSP, so that our pretrained BERT models could capture
word-level and sentence-level representations and learn the
common features of protein sequences. MLM is able to model
complex relationships between amino acids and capture
evolutionary information on proteins.32 During the MLM
task, 15% of the tokens among the original protein sequence
were randomly masked to obtain the masked sequence, and a
special token [MASK] was used to replace the masked token
80% of the time; a random token was used 10% of the time,
and the selected token was unchanged 10% of the time. The
model then predicted the masked tokens based on the context
of the unmasked sequence for language modeling. For training,
we minimized the negative log likelihood of the true amino
acid at each of the masked positions using eq 1

= | \L q x xlog ( )
x m x

m xMLM
( )

( )
(1)

where LMLM is the loss function of MLM, m(x) and x\m(x)
denote the masked tokens from the protein sequences x and
the remaining tokens, respectively. During the NSP task, the
data were randomly divided into two equal parts A and B:
choosing the protein sequence segments A and B for each
pretraining example, 50% of the time B is the actual next

sentence that follows A (labeled as IsNext), and 50% of the
time it is a random sentence from the corpus (labeled as
NotNext). BERT was trained by identifying whether these
protein sequence segment pairs were continuous. The loss
function of the NSP task, LNSP, was described as eq 2

= |L p t x ylog ( , )NSP (2)

where t = 1 if x and y are continuous protein segments from
the protein corpus.

Then MLM and NSP were trained together with the goal of
minimizing the combined loss function of the two strategies, as
defined in eq 3.

= +L L LMLM NSP (3)

The pretraining hyperparameters included train steps of 10
million times, a learning rate of 2 × 10−5 and a batch size of 32
to train the BERT model.30 After the pretraining process, we
obtained three pretrained BERT models. To construct the
PLM for a specific downstream task that identifies and predicts
DPP-IV-IPs, we modified the pretrained BERT models by
adding a classification layer on top of the BERT output for the
[CLS] token. We fine-tuned the pretrained model on a
benchmark data set containing DPP-IV-IPs without major
architectural modifications. For the fine-tuning hyperpara-
meters, we used a learning rate of 2 × 10−6, a batch size of 32, a
warm-up proportion of 0.1, and an average training time of 50
epochs.
Performance Evaluation of the Model. We used four

general quantitative indicators to evaluate our model: Acc,
sensitivity (Sn), specificity (Sp), and MCC, each of which is
defined by eqs 4, 5, 6, and 7, respectively. TP (true positive) is
the number of correctly predicted DPP-IV-IPs, FN (false
negative) is the number of DPP-IV-IPs that were in fact
predicted to be non-DPP-IV-IPs, true negative (TN) is the
number of correctly predicted non-DPP-IV-IPs, and false
positive (FP) is the number of non-DPP-IV-IPs that were in
fact predicted to be DPP-IV-IPs.

= +
+ + +

Acc
TP TN

(TP FP TN FN) (4)

=
+

Sn
TP

(TP FN) (5)

=
+

Sp
TN

(TN FP) (6)

= × ×
+ × + × + × +

MCC
TP TN FP FN

(TP FP) (TN FN) (TP FN) (TN FP)
(7)

Sn and Sp reflect the model’s ability to recognize DPP-IV-
IPs and non-DPP-IV-IPs, respectively, and Acc embodies the
overall prediction effect of the model. The value range of the
three is [0,1], and the larger the value, the more accurate the
model’s prediction. MCC is usually considered a balanced
indicator and can be used, even if the sample is not balanced.
Its value is between −1 and +1, reflecting the correlation
between the true label of the sample in the testing set and the
predicted result. The higher value indicates a greater
correlation. When the value is close to +1, the classification
performance of the model is excellent; when it is close to −1,
the prediction result of the model is the opposite of the actual
result; and when it is close to 0, the prediction result of the
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model is similar to a random prediction. In addition, the area
under the receiver operating characteristic (AUC) was used as
another statistical metric. Considering these five evaluation
indicators, the performance of the classification models can be
better evaluated.
Visualization of the Model. Representation visualization

was used to analyze the learning capacity of the model. To the
original protein sequence, x = [x1, ..., xn], we added the special
start and end tokens, CLS and SEP, respectively, and got the
final input sequence x′ = [CLS,x1, ..., xn, SEP]. The resulting
sequence representation, hi was obtained from hidden states in
the ith layer of BERT−DPPIV.

Analyzing the information contained in the representation
learned by the model, we used the vector corresponding to
CLS in each layer of BERT−DPPIV to represent the analytical
sequence and analyzed the representation at the residue level
and sequence level by t-SNE. At the residue level, amino acids
were divided into six categories, consisting of aromatic (W, F,
Y), aliphatic (M, L, I, A, V), positive (R, H, K), negative (D,
E), polar neutral (Q, N, S, T), and special-case (G, P, C)
residues. At the sequence level, 10 kinds of physicochemical
property information were obtained from the modlAMP
package.22

Attention visualization was used to analyze the information
about which the model was specifically concerned and provide
interpretable analysis. Each attention head in a model layer
produces an attention matrix, α, which indicates the degree of
correlation between token pairs. For example, αi,j indicates the
attention from token i to token j, and the weight of token i for
all tokens is 1, as shown in eq 8.

=
=

1
j

n

i j
1

,
(8)

We analyzed attention through a multiscale visualization tool
for the Transformer model.24 The attention-head view in this
tool expresses the self-attention matrix α in the form of
connected lines and displays the attention patterns generated
by one or more attention heads in a given layer. The lines in
the head view indicate how much of the hidden state
information on the attending token (right) will flow to the
attended token (left) (Figure 2d). The different colors of the
lines indicate different attention heads, whereas the color
depth of the line is related to the attention weight. The model
view in the tool provides a global view of attention patterns
across all layers and heads of the model. We then use a slightly
simplified version of AlphaFold26 to obtain structure
information on the polypeptide sequences and explore the
relationship between sites of interaction in polypeptide
structures and model attention patterns.

We then used the attention matrix to calculate the
importance of each token, dj, in the peptide sequence, as
shown in eq 9.

=
=

dj
i

n

i j
1

,
(9)

We carried out a statistical analysis of 144 attention patterns,
including all layers and all heads of each layer. We removed
sequences of less than or equal to three amino acids. Then, we
calculated the importance of all tokens, including the special
tokens (CLS, SEP), and selected the three most important
tokens from each sequence for each attention pattern. We

counted the distribution of the top three most important
tokens across the different patterns for each sequence, with
respect to their position and amino acid type. We also selected
a specific residue in the sequence, calculated the importance of
this residue in 144 attention patterns, and visualized the results
using a heatmap. We then investigated the interaction between
attention and particular amino acids.24 We used eq 10 for
amino acids and defined an indicator function, f(i,j), which
returns a value of 1 if this amino acid was present in the token j
(e.g., if token j is a proline).

=
·=

| |
=

| |
>

=
| |

=
| |

>
p f

f i j
( )

( , ) 1

1
x X i

x
j
x

x X i
x

j
x

1 1

1 1

i j

i j

,

, (10)

where pα( f) equals the proportion of attention directed to the
amino acid. We computed the proportion of attention for the
fine-tuned model and the pretrained model directed toward
each of the 20 standard amino acids.
DPP-IV Inhibitory Assay. DPP-IV inhibitory activity was

measured according to a slightly modified version of the
method described previously.8 hDPP-IV was used for the
triplicate measurements. Peptide solution (20 μL); substrate
solution, consisting of 2 mM Gly-Pro-pNA (20 μL); and Tris−
HCl buffer (pH 8.0; 20 μL) were premixed in a 96-well
microplate. The reaction was initiated by adding 40 μL of
hDPP-IV (final concentration, 0.025 U/ml) in 100 μL of the
above mixture. The samples were then incubated at 37 °C for
60 min. Absorbance at 405 nm was measured by using a
microplate reader. The negative control mixture included
Tris−HCl buffer (pH 8.0), Gly-Pro-pNA, hDPP-IV, and
phosphate-buffered saline (pH 7.4). The hDPP-IV inhibitory
ratio of the sample was calculated according to eq 11

=
A A

A
inhibition ratio control sample

control (11)

where Acontrol is the absorbance of the control sample with PBS,
and Asample is the absorbance of the peptide sample.
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