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S U M M A R Y

Background: Detailed evaluation of bile duct (BD) is main focus during endoscopic ultrasound (EUS). The aim
of this study was to develop a system for EUS BD scanning augmentation.
Methods: The scanning was divided into 4 stations. We developed a station classification model and a BD seg-
mentation model with 10681 images and 2529 images, respectively. 1704 images and 667 images were
applied to classification and segmentation internal validation. For classification and segmentation video vali-
dation, 264 and 517 videos clips were used. For man-machine contest, an independent data set contained
120 images was applied. 799 images from other two hospitals were used for external validation. A crossover
study was conducted to evaluate the system effect on reducing difficulty in ultrasound images interpretation.
Findings: For classification, the model achieved an accuracy of 93.3% in image set and 90.1% in video set. For
segmentation, the model had a dice of 0.77 in image set, sensitivity of 89.48% and specificity of 82.3% in video
set. For external validation, the model achieved 82.6% accuracy in classification. In man-machine contest, the
models achieved 88.3% accuracy in classification and 0.72 dice in BD segmentation, which is comparable to
that of expert. In the crossover study, trainees’ accuracy improved from 60.8% to 76.3% (P < 0.01, 95% C.I.
20.9�27.2).
Interpretation: We developed a deep learning-based augmentation system for EUS BD scanning
augmentation.
Funding: Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Hubei
Province Major Science and Technology Innovation Project, National Natural Science Foundation of China.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Endoscopic ultrasound (EUS) has excellent performance for the
diagnosis of biliary disease, such as choledocholithiasis, bile duct
(BD) obstruction, ampullary carcinoma and common BD carcinoma.
In BD evaluation, EUS is closest to endoscopic retrograde cholangio
pancreaticography (ERCP), which is the gold standard [1,2]. For chol-
edocholithiasis diagnosis, the sensitivity was 0.97 for EUS and 0.0.87
fro magnetic resonance cholangiopancreatography [3].

Multi-station imaging techniques is the standard scanning proce-
dure in EUS-BD evaluation. The stations contain anatomical land-
marks which could be used to locate the transducer and to identify
areas that have not been scanned. EUS of the BD can be done from
the stations as follows: Station 1: the fundus of stomach (liver); Sta-
tion 2: body of stomach (and antrum); Station 3: duodenal bulb; Sta-
tion 4: descending duodenum [4-6]. Comprehensive evaluation of BD
is frequently the main focus of imaging during EUS and in such situa-
tions, multi-station imaging is necessary to scan the whole BD [7].
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Research in context

Evidence before this study

We searched PubMed for papers published between Jan 1,
2001, and March 1, 2020, with the keywords “machine learn-
ing”, “artificial intelligence” OR“deep learning” AND “endo-
scopic ultrasound”. No restrictions on study type or language
were implemented. Our search retrieved studies on the use of
deep learning for computer aided diagnosis of pancreas lesions
but no studies to improve the ultrasonographics interpretation
in biliary system.

Added value of this study

We constructed a deep learning-based system, BP MASTER, for
real-time endoscopic ultrasound biliary scanning augmenta-
tion. This system was followed by internal- and external valida-
tion in images or videos, and subsequently compared with the
performance of endoscopists. The effect of the system on elimi-
nating the difficulty of ultrasonographic interpretation was
evaluated among trainees in prospectively collected endoscopic
ultrasound videos. Our study confirmed the feasibility of using
deep learning for endoscopic ultrasound biliary augmentation.

Implications of all the available evidence

Endoscopic ultrasound provides improved imaging functions
and has provided multiple treatment method in biliary disease,
but the endoscopic ultrasound systems have been hesitantly
adopted by some gastroenterologists due to its steep learning
curve and relying too much on the operator. Our study shows
that the BP MASTER system can recognize the standard station
for bile duct scanning and prompt the physicians for the corre-
sponding operation instruction. Moreover, the system can also
segment the bile duct with high precision and automatically
measure the bile duct diameter. With the system’s augmenta-
tion, the trainees improved their accuracy of station recogni-
tion. The BP MASTER system has potential to play an important
role in endoscopic ultrasound biliary scanning augmentation.

2 L. Yao et al. / EBioMedicine 65 (2021) 103238
However, EUS is one of the most challenging endoscopic proce-
dures to learn and requires integration of both cognitive and endo-
scopic skills [8,9]. The cognitive portion of the procedure is
exceedingly difficult to learn. Most experienced endosonographers
believe that the key to acquiring competence in both components of
the EUS procedure is pattern recognition obtained through repetitive
examinations. Such experience can be acquired only at a training cen-
ter performing a large volume of cases. Because few centers provide
this experience, other training options are needed [10]. Therefore, an
augmentation system is very needed when performing EUS BD exam-
ination and training. Ideally, a station recognition model could pro-
vide the information of transducer location as well as the operation
instruction. A BD annotation model could help endosonographers to
visualize the BD.

EUS-guided biliary puncture is an emerging technique that com-
bines the advantages of the endoscopic and percutaneous
approaches, without the inconveniences and discomfort of an
indwelling external catheter [11]. Puncture route selection is critical
in successful BD puncture cases [12]. The choice among different
routes is mainly based on the degree and location of the duct dilation
[13,14]. Three routes were proposed for BD puncture. The first route
is transmural puncture of the intrahepatic BD by transesophageal
and transgastric puncture. The second and third methods are trans-
duodenal puncture of the extrahepatic BD via the proximal
duodenum and the second portion of the duodenum, respectively.
The prerequisite for choosing a suitable puncture route is to deter-
mine the obstruction position and degree of the duct dilation. Station
recognition and BD annotation augmentation has potential to
improve the comprehensive evaluation of BD.

In recent years, deep learning has made tremendous progress in
the field of digestive endoscopy [15]. Previous work from our group
showed that Deep Convolutional Neural Networks (DCNNs), one of
the representative algorithms of deep learning, could accurately rec-
ognize the stations of EUS pancreas in real-time manner [16]. How-
ever, the role of deep learning in EUS biliary scanning remains
unknown.

In our current study, we constructed a deep learning-based sys-
tem, BP MASTER, for real-time stations recognition and BD annota-
tion in linear EUS. There were two reasons why the radial images
were not utilized: First, linear EUS was superior in the delineation of
the area from the hepatic portal region to the superior BD [17]. Sec-
ond, EUS-guided biliary puncture is conducted by linear EUS while
the radial EUS can only applied for diagnosis. For station recognition,
deep learning-based image classification model was constructed. For
BD annotation, a BD segmentation model was constructed to detect
the BD within the digital image from the endoscopy processor and
output the BD boundary as a green line. This system was followed by
internal- and external validation in images or videos, and subse-
quently compared with the performance of EUS endoscopists. The
effect of the system on eliminating the difficulty of ultrasonographic
interpretation was evaluated among trainees in prospectively col-
lected EUS videos. The purpose of this study is to explore the role of
deep learning in linear EUS BD scanning.

2. Method

2.1. System framework

Four DCNN models were incorporated into BP MASTER system to
achieve two main functions: First, to position the station where the
transducer is located and provide the corresponding operation
instructions. Second, to annotate the CBD and provide diameter mea-
surement when endoscopists froze the frames. DCNN1 was applied
to filter out white light images and input the ultrasound images to
DCNN2. DCNN2 was applied to classify ultrasound images into stan-
dard and non-standard categories, and activate DCNN3 with standard
images. DCNN3 was used to recognize BD stations. DCNN4 was used
to segment and annotate BD (Fig. 1). The STARD 2015 reporting
guidelines was followed when writing this work.

2.2. Datasets and preprocessing

For DCNN1 training and validation, 2000 white light images of
gastroscopy and 2000 EUS images were applied at a 9 to 1 ratio. For
unqualified images filtering, 10001 standard station and 17335
unqualified EUS images were used to train, 1735 standard station
and 1412 unqualified EUS images were used to test DCNN2. The crite-
ria for unqualified images were jointly negotiated by two EUS
experts, including: obscure, large lesions, kidney, spleen, abdominal
aorta, elastography, and extremely dilated bile/pancreatic duct. Rep-
resentative images of the unqualified images were shown in Fig. S1.

Five data sets were used for training, internal validation and
external validation of BP MASTER system:

(1) 10681 images from 443 EUS procedures were used to train the
model for BD station recognize (DCNN1). 2529 images contained
complete and clear BD from the same procedures were applied
to train the model for BD annotation. The average age of the
patients is 55 years old (standard deviation is 12.6). The propor-
tion of men in this dataset is 49.7% (220/443). All the images



Fig. 1. BP MASTER system framework: DCNN1 was applied to filter out white light images and input the ultrasound images to DCNN2. DCNN2 was applied to classify ultrasound
images into standard and non-standard categories, and activate DCNN3 with standard images. DCNN3 was used to recognize stations. DCNN4 was used to segment and annotate
bile duct.
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were from Wuhan Renmin Hospital during December 2016�July
2020.

(2) 1704 images from 44 EUS procedures from Renmin Hospital of
Wuhan University during October 2019�December 2019 were
used for internal validation. 264 video clips contained 33280
frames from the same procedures were applied for station recog-
nition video validation. 251 positive video clips contained 13751
frames with each frame contained BD and 300 negative video
clips contained 12771 frames without BD were used to test the
performance of DCNN4. The average age of the patients is
50.6 years old (standard deviation is 13.8). The proportion of
men in this dataset is 47.7% (21/44). All the images were from
Wuhan Renmin Hospital during October 2019�December 2019.

(3) 120 images from 44 EUS procedures from Renmin Hospital of
Wuhan University during September 2019 - May 2020 were
used to compare the performance of DCNN3 and DCNN4 with
that of EUS experts (man-machine contest). The average age of
the patients is 56 years old (standard deviation is 12.1). The pro-
portion of men in this dataset is 61.4% (27/44).

(4) For the external validation, an external testing data set contained
799 images from 20 examinations (Wuhan Union Hospital) and
89 examinations (Wuhan Puai hospital) were collected. The aver-
age age of the patients is 59 years old (standard deviation is
10.3). The proportion of men in this dataset is 31.2% (34/109).

The sample distribution for each data set was shown in Table 1.
The 4 stations and its representative images predicted by the DCNN
models were shown in Fig. 2. Images from the same person were not
split among the data sets. The procedures were performed by
Table 1
Baseline information.

Patient (n) Stati

DCNN3 training set (frames) 443 1518
DCNN4 training set (frames) 443 360
DCNN3 internal validation set (frames) 44 312
DCNN3 video validation set (clips/frames) 44 42/4
DCNN4 internal validation set (frames) 44 72
DCNN4 video validation set (clips/frames) 44 69/4
Man-machine contest set (frames) 44 30
External validation set (frames) 109 335
Crossover study set (videos) 29 22

DCNN, deep convolutional neural network.
Olympus EU-ME1 and EU-ME2 (Olympus Medical Systems Co., Tokyo,
Japan) processors and adapted endoscopes.

2.3. Annotation

Two EUS experts A and B from Wuhan Renmin Hospital labeled
each images and video clips with negotiation. Their labels were used
as gold standard for all the training and validation.

For man-machine contest, expert C, senior endoscopists D, E and F
were required to classified each image in the comparison data set
and then, annotate the BD based on the classification results. Both
endoscopists and model results were compared with ground truth
annotated by expert A and B.

For annotators level of expertise, expert endoscopists were
defined as who had at least 10 years while senior endoscopists were
defined as 5 years of experience in performing EUS examination and
treatment.

2.4. Training of DCNN models

We used ResNet for image classification and Unet++ for image
segmentation. Both networks were trained on an NIVIDIA GeForce
GTX 2080. The technical details and neural network architecture
were illustrated in supplementary. For DCNN1, 2 and 3, ResNet-50, a
mature DCNN architectures pretrained by data from ImageNet
(1.28 million images from 1000 object classes), were used to train
DCNN1, 2 and 3. We replaced the final classification layer with
another fully connected layer using transfer learning, retrained them
on 1 Station 2 Station 3 Station 4 Total

5768 1071 2324 10681
692 799 678 2529
619 333 440 1704

295 76/10498 96/10134 50/8281 264 /33208
160 283 206 721

762 76/4484 43/1931 63/2576 251 /13753
30 30 30 120
148 204 112 799
29 29 23 29



Fig. 2. A schematic illustration of the stations about the visualization of bile duct in linear EUS and its representative images predicted by the DCNN3.
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using our datasets, and fine-tuned the parameters to fit our needs.
The dataset was randomly divided into 5 subsets and one subset was
validated individually with the remaining for training in Google’s
TensorFlow [18]. Three method, dropout [19], data augmentation
[20] and early stopping [21], were used to minimize the overfitting
risk.

For BD annotation, UNet++, a novel and powerful architecture for
medical image segmentation was implemented to develop DCNN4
[22,23]. With the original EUS image as the input, the resolution is
512 £ 512, and the expert-marked map as the output, UNet ++ is
used to train and test DCNN4 in image-to-image manner in Keras.
According to the result of internal validation, we get the best seg-
mentation threshold by increasing 2 each time and the threshold was
set as 0.55 (Fig. S5) Besides BD annotation, DCNN4 also provide diam-
eter measurement result when endoscopists froze the videos. The
details of how to identify whether the videos were frozen and algo-
rithm of diameter measurement were provided in supplementary.

2.5. Construction of BP MASTER System

For station recognition prediction, we used the Random Forest
Classifier model [24] and the rule of ‘output results only when three
of the five consecutive images show a same result’ to smooth noises.
The FPS (frames per second) for running the system in videos was
4.78 on a GPU. The speed of the DCNN in the clinical setting to output
a prediction per frame in the endoscopy center of Renmin Hospital of
Wuhan University was 200-300ms, including time consumed in the
client (image capture, image re-sizing, and rendering images based
on predicted results), network communication, and the server (read-
ing and loading images, running the three networks, and saving
images). For BD annotation, the system was set to segment and out-
put the result at 15 FPS. All the models were trained and ran on a
server with a GPU NVIDIA RTX2080Ti (with 8 GB GPU memory).

2.6. Ultrasonographics interpretation study

2.6.1. Prospective data set collection
To evaluate the effect of BP MASTER, we prospectively consecu-

tively enrolled patients undergoing EUS examinations and their cor-
responding videos were collected between July 2020 to August 2020.
The study was approved by the Ethics Committee of Renmin Hospital
of Wuhan University (WDRY2019-K091) and under trail registration
number ChiCTR1900028648 of the Primary Registries of the WHO
Registry Network. Informed consents were obtained from each par-
ticipant. Patient with lower gastrointestinal EUS, radial EUS or no
standard station scanned were excluded.

2.6.2. Study procedure
With the prospectively collected videos, a crossover study was

performed to evaluate BP MASTER effect in improving trainees sta-
tion recognition and BD segmentation. 8 primary trainees and 4
advanced trainees were included in this study. The primary trainees
who participated had already more than one-year gastroenterology
fellowship experience and none had any prior experience or training
in EUS while the advanced trainees had handled at least 100 training
EUS. All the trainees were required to read the reference of CBD
multi-station scanning and were provided 20 typical images of each
station for learning a week in advance [4].

Clinicians were provided videos and were requested to record the
time point of first recognizing each station. Using a crossover design,
the trainees were randomly and equally divided into 2 groups. The
randomization was generated by a random grouping software. Group
A first read the videos and images without BP MASTER augmentation,
and group B first read with BP MASTER augmentation. After a wash-
out period of 2 weeks, the arrangement was reversed such that group
A performed read with augmentation and group B read the videos
without (Fig. 4). With the model augmentation, readers had the
option to take it into consideration or disregard it based on judgment.
The time point and accuracy at which the BP MASTER first recognized
each station as well as the segmentation result were also recorded.

2.7. Statistical analysis

For station classification evaluation, we used accuracy as metric,
which defined as the number of correctly classified images divided
by the total number of images. Similarly, per frame accuracy was
defined as the correctly classified frames divided by the total number
of frames.

The standard deviation was calculated as: SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ðxi � uÞ2
s

For segmentation evaluation, intersection over union (IOU) was
defined as the relative area of overlap between the predicted
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bounding box (A) and the ground-truth (B) bounding box. The
ground truth was labeled by the Expert A and B:

IOU ¼

����A\B
��������A

����[
����B
����

Dice F1 scoreð Þ ¼ IOU

When the IOU>threshold, the prediction is true positive; When
the IOU<threshold, the prediction is false positive; When the model
Fig. 3. Flowchart of the study de
segmentation area = 0, it is false negative.

Precision ¼ TP
TPþ FP

Recall ¼ TP
TPþ FN

Inter-observer agreement of the endoscopists and the DCNN were
evaluated using Cohen’s kappa coefficient.

For the crossover study, we compared the time point accuracy for
each trainee with or without augmentation.
velopment and validation.



Fig. 4. The crossover study design: a. Study design. 12 trainees were divided into 2 groups to perform reads with and without model augmentation in random order, with a 2-week
washout period between. b. Unaugmented read, with original EUS videos. c. Augmented read, videos with model labeled. EUS, endoscopic ultrasound.

Table 2
DCNN3 station recognition accuracy in internal, external and video validation.

Internal validation External validation Video validation

Station 1 (%) 86.3 83.6 82.5
Station 2 (%) 99.5 82.4 95.9
Station 3 (%) 93.7 76.5 91.4
Station 4 (%) 89.8 91.1 87.1
Total 93.3 83.9 90.1
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To assess whether the trainees achieved significant increases in
performance with model augmentation, McNemar’s test was per-
formed on the differences in aforementioned metric across all 12
trainees. P < 0.05 was considered statistically significant. All calcula-
tions were performed using SPSS 23 (IBM, Chicago, Illinois, USA).

2.8. Role of the funding source

The funder had no role in study design, data collection, data analy-
sis, data interpretation, or writing of the report. The corresponding
author had full access to all the data in the study and had final
responsibility for the decision to submit for publication.

3. Results

3.1. Internal and external validation

For white light and ultrasound images classification, DCNN1
achieved an accuracy of 100%. In the standard and non-standard
images classification, the DCNN2 achieved an accuracy of 87.4%. The
confusion matrixes of DCNN1 and 2 were shown in Fig. S2 and S3,
respectively.

For DCNN3, the model had an accuracy of 93.3% in image valida-
tion set (Fig. S4). In video validation set, the model had a per-frame
accuracy of 90.1% (Table 2). As for the BD segmentation performance,
DCNN4 had a Dice of 0.77. The recall and precision at 50% IOU were
85% and 98.2%. In video validation set, the sensitivity among positive
video clips was 89.5% and the specificity among negative video clips
was 82.3% (Table 3).

Among the retrospectively collected images from Wuhan Puai
Hospital and Wuhan Union Hospital, the DCNN3 achieved an accu-
racy of 82.6%.
3.2. Man-machine contest

In the testing dataset for man-machine contest, DCNN3 correctly
classified the BD stations with an accuracy of 88.3%. The accuracy for
expert C, endoscopists D, E and F was 90%, 85.8%, 74.2% and 84.2%,
respectively. For the BD annotation, the model had a dice of 0.59.
Among the images that contained BD, the Dice was 0.72 for models
and 0.74, 0.65, 0.67, 0.65 for endoscopists, respectively (Fig. 5).
Among all images, the dice for expert C, endoscopists D, E and F was
0.61, 0.54, 0.55 and 0.54 (Table S1). The inter-observer agreement
between DCNN3 and experts was shown in Table S2.

3.3. Crossover study

In the crossover study, trainees achieved a time point accuracy of
60.8% without augmentation as a group. With augmentation, the
accuracy significantly improved from 60.8% to 76.3% (P < 0.01, 95% C.
I. 20.9�27.2). The underlying model had an accuracy of 86.2%. The
performances of individual trainees were reported in the Table 4. All
the 12 trainees have made significant improvement with the aug-
mentation.



Table 3
DCNN4 segmentation performance.

Internal validation Video validation

DICE Precision>0.5 Recall>0.5 Precision>0.3 Recall>0.3 Sensitivity (%) Specificity (%)

Station 1 0.83 0.94 0.99 0.98 0.99 89.5 �
Station 2 0.72 0.75 0.98 0.84 0.98 89 �
Station 3 0.76 0.81 0.98 0.9 0.98 90.2 �
Station 4 0.69 0.87 0.69 0.93 0.85 82.6 �
Total 0.77 0.85 0.95 0.92 0.97 88.1 82.30%

Table 4
Trainees’ station recognition accuracy with and without augmentation.

Without augmentation (%) With augmentation (%) Increase (%)(95% C.I.) P value
Model - 86.2 � �

Group A Trainee A 72.4 83.6 11.2 (5.2�21.6) <0.01
Trainee B 43.1 73.3 30.2 (17.6�41.4) <0.01
Trainee C 45.7 62.9 17.2 (4.42�29.3) <0.01
Trainee D 56 77.6 21.6 (9.46�32.8) <0.01
Trainee E* 70 78.3 8.3 (�2.7 to 19.6) <0.01
Trainee F* 65.8 77.5 11.7 (0.5�23.3) <0.01

Group B Trainee G 57.8 73.3 15.5 (3.3�27.1) <0.01
Trainee H 69.8 83.6 13.8 (2.9�24.3) <0.01
Trainee I 63.8 74.1 10.3 (�1.6 to 21.9) <0.01
Trainee J 42.2 62.1 19.8 (7.0�31.8) <0.01
Trainee K* 69.2 82.5 13.3 (2.8�24.4) <0.01
Trainee L* 73.3 86.7 13.4 (2.6�23.0) <0.01
Total 60.8 76.3 15.5 (20.9�27.2) <0.01

* : These trainees were advanced trainees.
Group A: Augmented reading first; Group B: Unaugmented reading first.

Fig. 5. The accuracy, Dice, recall and precision in the man-machine contest. In the
man-machine contest, the accuracy for DCNN 3, expert C, endoscopists D, E and F was
88.3%, 90%, 85.8%, 74.2% and 84.2%, respectively. Among the images with bile duct, the
dice for DCNN 4, expert C, endoscopists D, E and F was 0.72, 0.74, 0.65, 0.67, 0.65,
respectively.
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4. Discussion

In this study, we constructed an artificial intelligence-assisted lin-
ear EUS system, which can recognize the standard station for BD
scanning and prompt the physicians for the corresponding operation
instruction. Moreover, the system can also segment the BD with high
precision and automatically measure the BD diameter, which could
simplify the physician's operation. In the comparison with endoscop-
ists, the DCNN1 accuracy was better than that of senior EUS endo-
scopists and was comparable with EUS expert.

EUS provides improved imaging functions and has been available
on the market since the 1980s, but the EUS systems have been hesi-
tantly adopted by some gastroenterologists due to its steep learning
curve and relying too much on the operator [25]. Although efforts to
shorten the EUS learning curve have been ongoing, and some specific
centers use computer-based simulators or live animal models to
improve the learning curve, EUS is still not fully applied globally
[26�28]. In particular, although EUS-BD has a significant clinical
impact on the treatment of patients, the performance of EUS-BD is
still limited to tertiary referral centers [29]. Since EUS strongly relies
on the training, skills and experience of endoscopists, the develop-
ment of real-time ultrasonographics interpretation system is essen-
tial for the widespread adoption of EUS.

The standard stations contain specific anatomical landmarks and
represent the precise location where the transducer was scanning.
Therefore, the stations could serve as navigation marks under ultra-
sonographics. Among the stations, there are specific operating tech-
niques. The physician can complete ultrasound endoscopic scanning
by identifying the standard station. On the other hand, different parts
of BD can be observed from each station and the station recognition
can remind the part that the endoscopists have missed. Therefore, in
recent years, the EUS training has gradually focused on standard sta-
tion scanning education. Wani et al developed a scoring tool to evalu-
ate the learning curve of advanced ultrasound endoscopy trainees
[30,31]. The tool utilizes a 4-point scoring system: 1
(superior) = achieves independently, 2 (advanced) = achieves with
minimal verbal instruction, 3 (intermediate) = achieves with multiple
verbal instructions or hands-on assistance, and 4 (novice) = unable to
complete requiring trainer to take over. The tool is scored based on
the scanning performance of the advanced students at each station. If
the endoscopists can obtain the positioning information and the cor-
responding operation method from a real-time augmentation system,
the endoscopists can reach the competence in EUS in a shorter time.
In our crossover study, the augmentation from our system has signifi-
cantly improved the accuracy of the station recognition and BD seg-
mentation by the endoscopists. The results from the crossover study
indicated that the system has the potential to shorten the learning
curved in the future.

Since the initial report on the use of BD puncture after failed ERCP
in 2004, several studies have reported BD puncture as an effective
salvage technique for achieving biliary cannulation after failed ERCP
[32�35]. The BD puncture techniques comprise three methods that
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are based on the approach route: TG, from the second portion of the
duodenum in a short endoscopic position, and from the bulb of the
duodenum in a long endoscopic position. Though there is no formal
consensus for how to decide between intrahepatic or extrahepatic
approach, studies have suggested that endoscopists should choose
the approach according to the bile duct anatomy. Therefore, compre-
hensive BD scanning is critical for the routes selection. The system in
our current study can contribute to a comprehensive BD scanning
and thus, can contribute to the dilation and stricture evaluation.
Moreover, the function of automatically measure the diameter of the
BD can further improve the diagnostic sensitivity of BD dilation.

For the popularity of the system, it can ensure stable and smooth
operation on a computer with an RTX3070 graphics card. The price of
such a computer configuration is about $2000 which is totally afford-
able for a practicing gastroenterologist in a private practice. The sys-
tem could run totally automatically and giving real-time instruction
for endoscopists. Therefore, this system will be easy to spread among
practicing gastroenterologists in private practice.

There are several limitations of our study. First, though the accu-
racy of this system has been fully validated, the effect of this system
was only tested in an augmentation reading study. In the future, a
randomized study on evaluating the effect of the system was needed.
Secondly, lesion identification function has not been added to this
system. That is because though EUS can evaluate the nature of the
stenosis and dilatation of BD, its accuracy is not as good as that of
spyglass and the role of EUS in the biliary system is mainly focus on
screening and treatment. However, the lesions identification system
is under development in our unpublished study.

In conclusion, we constructed an EUS BD scanning augmentation
system based on deep learning. The accuracy of this system has been
validated both internal and external. In the future, this system has
potential to play an important role in EUS training and quality con-
trol.
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