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Abstract

Neurons in the primary visual cortex are selective to orientation with various degrees of

selectivity to the spatial phase, from high selectivity in simple cells to low selectivity in com-

plex cells. Various computational models have suggested a possible link between the pres-

ence of phase invariant cells and the existence of orientation maps in higher mammals’ V1.

These models, however, do not explain the emergence of complex cells in animals that do

not show orientation maps. In this study, we build a theoretical model based on a convolu-

tional network called Sparse Deep Predictive Coding (SDPC) and show that a single compu-

tational mechanism, pooling, allows the SDPC model to account for the emergence in V1 of

complex cells with or without that of orientation maps, as observed in distinct species of

mammals. In particular, we observed that pooling in the feature space is directly related to

the orientation map formation while pooling in the retinotopic space is responsible for the

emergence of a complex cells population. Introducing different forms of pooling in a predic-

tive model of early visual processing as implemented in SDPC can therefore be viewed as a

theoretical framework that explains the diversity of structural and functional phenomena

observed in V1.

Author summary

Cortical orientation maps are among the most fascinating structures observed in higher

mammals’ brains: In such retinotopic maps, preferred orientations in the cortical surface

are clustered such that similar orientations activate neighboring cells, and orientation

preference changes gradually along the cortical surface. However, the computational

advantage brought by these structures remains unclear, as some species (rodents and lago-

morphs) completely lack orientation maps. In this study, we introduce a computational

model that links the presence of orientation maps to a class of nonlinear neurons called

complex cells. In particular, we propose that the presence or absence orientation maps

results from the diversity of strategies employed by different species to generate invariance

to complex natural stimuli. These results have important applications for our understand-

ing of how diverse biological organisms can achieve a given function (here low level-
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vision) and also for the elaboration of novel mechanisms in artificial neural network

architectures such as convolution neural networks.

Introduction

Cells in the primary visual cortex of higher mammals (V1) are sensitive to oriented localized

visual patterns and these cells have classically been divided into two classes: simple and com-

plex [1]. Simple cells show in particular a dynamic response to a drifting sinusoidal grating

which is linearly modulated by the rectified temporal component of the sinusoidal grating:

Simple cells are maximally activated when the stimulus matches a specific spatial phase inside

their Receptive Field (RF) [1–3]. On the other hand, complex cells remain relatively invariant

to the phase of the stimulus [1, 2, 4, 5]. As such, it is assumed that the primary visual cortex

extracts elementary orientation features and produces scene representations that are both

selective and invariant to the phase component [6]. Another remarkable property of the visual

cortex is the hierarchical organization of the areas downstream to V1 along the ventral visual

stream. Each of these areas is sensitive to increasingly complex features: simple edges for the

primary visual cortex (V1), shape and textures for V4 [7], and specific objects in infero-tempo-

ral region (IT) [8]. These properties are in line with the challenging tasks of object recognition

[9]: a stimulus is decomposed into simpler features throughout the hierarchical organization

to build a representation that is specific enough to allow accurate recognition (selectivity)

while being invariant to properties that do not affect the object identity (invariance) [10]. His-

torically, those properties of the visual cortex have been modeled with hierarchical networks

which alternate layers of linear filters to describe simple cells with non-linear layers to account

for complex cells invariance. In particular, Sakai and Tanaka [11] demonstrated that spatial

pooling of simple cells units was necessary to reproduce complex cells behavior. Spatial pool-

ing functions, exemplified by the sum of squared simple cells responses (i.e. energy pooling) or

with a winner-take-all mechanism (i.e. max-pooling) [12], account for both spatial and phase

invariance as it is observed in biological complex-cells.

Another phenomenon observed in the cortex of higher mammals is the possible presence of

orientation maps. An orientation map is a functional structure of the selectivity of cells on the

topography of the cortical surface for which neighboring cortical cells are preferentially tuned

to similar orientations. Orientation preference varies smoothly but also shows local singulari-

ties, called pinwheels [13–15]. Both the formation mechanism [16–18] and the function [19–

21] of such a topology have been thoroughly discussed in the literature. For example, [19] has

proposed that orientation maps were optimal to ensure the uniform coverage of features over

the visual space and [20] suggested that the presence of pinwheels could facilitate contour

extraction. While some frameworks have successfully modeled orientation maps [22, 23], only

a few of them have been proposed to make the link between complex cells and topographical

organization. Hyvarinen et al. [24] observed that maximizing the sparseness of locally pooled

simple-cells results in complex cells that were topographically organized in orientation maps.

Similar results were obtained with a type of independent component analysis (ICA) [25].

Antolik et al. [26] managed to demonstrate that complex cells organize themselves in orienta-

tion maps if one includes a lateral inhibition mechanism. Further in that direction, clustering

orientation preference within orientation maps could also facilitate the emergence of orienta-

tion-tuned complex receptive fields. Indeed, to keep orientation tuning while gaining invari-

ance, complex receptive fields must be able to pool locally from all different phase selectivities

within a set of similarly orientation tuned neurons. The emergence of orientation maps would
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facilitate such an operation. However, there is no neurophysiological evidence of a systematic

link between the emergence of complex cells and orientation maps. A topographic organiza-

tion lacking an orientation map is commonly referred to as salt-and-pepper. For example, it is

observed that there is no spatial structure for orientation preference in rodents (most notably

mice, rats, and squirrels), although they do possess complex cells in V1 [14, 15]. The models

listed above, cannot explain the presence of these complex cells in animals that do not present

orientation maps in V1. This questions the actual links that can exist between orientation

maps and complex cells. In particular, can the same framework be used to describe both salt-

and-pepper and orientation maps structures while accounting for the emergence of complex

cells?

In this article, we study the link between the emergence of topographical organization of

orientation preference along with the emergence of complex cells by varying the pooling

strategies between layers, using the Sparse Deep Predictive Coding (SDPC) as a model of V1

[27, 28]. The SDPC model integrates three key computational properties observed in the visual

cortex: selectivity, invariance, and hierarchical architecture. First, selectivity in the SDPC is

achieved with Sparse Coding (SC). Besides being justified by the efficient coding hypothesis

[29], SC has successfully accounted for V1 simple cell’s responses and Receptive Fields (RFs)

[30, 31]. In addition, the SDPC leverages the Predictive Coding (PC) framework to describe

the hierarchical relationship between the network’s layers. PC suggests that every cortical area

predicts at best the upstream sensory information. The mismatch between the prediction and

the lower-level activity elicits a prediction error that is used to adjust the neural response until

an equilibrium is reached [32–34]. The SDPC also includes convolutional layers that allow us

to define distinct pooling functions acting in different subspaces: the spatial retinotopic space,

and the feature space. In this work, we study the combined impact of these pooling strategies

on both the emergence of complex cells and topographical maps. We demonstrate that pooling

across the 2D feature space leads to a topographical organization similar to orientation maps,

with the presence of phase maps but that does not account for the emergence of complex cells.

In contrast, pooling across the spatial dimension leads to cells with complex-like behavior but

without orientation maps. Only the combined pooling on both feature and spatial dimensions

allows the common emergence of orientation maps, complex cells, and no phase maps. More

generally, we argue that the combination of these different pooling strategies allows us to

describe the structural and functional diversity across species. Then, we present the SDPC as a

unifying theoretical model of the early visual cortex, which building principles can explain

the link between topographical structures (retinotopic maps and orientation maps) and the

receptive field structure (complex cells). The paper is organized as follows: First, we describe

our model by detailing the SDPC as well as the pooling strategies. Next, we analyze the com-

plex-like behavior and the topographical organization of the neurons for different pooling

strategies. Then, we evaluate the impact of the network size on the pinwheels’ density.

Finally, we discuss our results and detail the implication of this work with respect to the state

of the art.

Results

Brief description of Sparse Deep Predictive Coding (SDPC)

The Sparse Deep Predictive Coding (SDPC) framework solves a series of hierarchical inverse

problems with sparsity constraints. A group of neurons γi predicts by an optimization proce-

dure the pooled activity from the previous cortical layer pi−1(γi−1) and that was obtained

through a set of synaptic weights Wi. Given a network with N layers, we can define the
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generative model [27, 28] as:

x ¼WT
1
g1 þ �1; s:t: kg1k0 < a1 and g1 > 0:

p1ðg1Þ ¼WT
2
g2 þ �2; s:t: kg2k0 < a2 and g2 > 0:

:::

pN� 1ðgN� 1Þ ¼WT
NgN þ �N ; s:t: kgNk0 < aN and gN > 0:

8
>>>><

>>>>:

ð1Þ

Where x represents the input stimulus and γi are the rate-based neural responses for layer i (see

Fig 1b). Sparsity constraints are introduced using the ℓ0 pseudo-norm which computes the

number of active elements in each activity map γi. The Wi matrices represent the network’s

weights (convolutional kernels), and �i is the prediction error associated to each layer. In Eq 1,

pi denotes the pooling operator we use to model the complex cells. We have tested different type

and combination of pooling functions based on max-pooling (see the section ‘Pooling func-

tions’ for a detailed description). Henceforth, we use a 2 layer version of the SDPC to model V1

(i.e. N = 2 in Eq 1). To tighten the parallel with biology, we index all the first and second layer

variables with the letter S and C to denote the simple and complex cell’s layer, respectively.

One possibility to solve the generative problem defined in Eq 1 is by minimizing the follow-

ing loss function [27]:

F ¼
1

2
k�Sk

2

2
þ

1

2
k�Ck

2

2
þ lSkgSk1 þ lCkgCk1 with �S ¼ x � WT

S gS and �C ¼ pS gSð Þ � WT
CgC ð2Þ

In Eq 2, k�k2 and k�k1 denote the ℓ2 and ℓ1-norm, respectively. Note that the ℓ0 constraint in Eq

1 has been relaxed with a ℓ1-penalty term in Eq 2 as it leads to a more convenient optimization

problem [35]. The minimization of F in Eq 2 is performed using an alternation of an inference

and a learning step. The inference step involves finding the optimal neural responses (i.e. γi)
with a gradient descent on the loss function F [36]:

gkþ1
S ¼ T þ

ZlS
gkS � Z

@F
@gkS

� �

¼ T þ
ZlS

gkS þ ZWS �S � Z�C p� 1
S gkS
� �� �

gkþ1
C ¼ T þ

ZlC
gkC � Z

@F
@gkC

� �

¼ T þ
ZlC

gkC þ ZWC �C
� �

ð3Þ

Once the inference process has converged, the optimization of WS and WC is performed

through the learning process:

Wkþ1
S ¼Wk

S � o
@F
@Wk

S

¼Wk
S þ o gTS x � WT

S gS
� �

Wkþ1
C ¼Wk

C � o
@F
@Wk

C

¼Wk
C þ o gTC pS gSð Þ � WT

CgC
� �

ð4Þ

In Eqs 3 and 4, gkS, g
k
C, Wk

S and Wk
C denote the neural activity and the synaptic weights at the

gradient step number k, respectively. η is the step size of the inference process and ω is the step

size of the learning. Additionally, λS and λC are the sparsity-inducing regularization parame-

ters of the simple and complex cell’s layer, respectively. T þ is the non-negative soft-threshold-

ing operator (see Eq 7 in section ‘Detailed description of SDPC’ for a mathematical

description of the soft-thresholding operator). In Eq 3, p� 1
i denotes the approximation of the

derivative of the max pooling function. Note that max-pooling is not differentiable but its

derivative could be approximated by an unpooling function, i.e. an operator composed of a

matrix filled with ones in the position of the local maximum elements and with zeros

PLOS COMPUTATIONAL BIOLOGY Pooling in a predictive model explains functional and structural diversity in V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010270 July 21, 2022 4 / 21

https://doi.org/10.1371/journal.pcbi.1010270


everywhere else. Fig 1a shows the update scheme of the SDPC network used in this study. In

this study, we aim to model simple and complex cells in V1.

Pooling functions

All pooling functions are based on max-pooling: a function that selects the maximum response

within a group of cells (here, γs1 and γs1 for an example):

pðgs1; gs2Þ ¼ max ðgs1; gs2Þ ð5Þ

Fig 1. The SDPC network. a. Update scheme of the SDPC network used in this study: x is the input image, γs and γc
represent simple and complex cells response maps, respectively. Ws and Wc are convolutional kernels that encode for

the RFs of the simple and complex cell layers, where each synaptic weight matrix is composed of Ms and Mc neurons

(kernels) respectively. ps(γs) is the pooling function used to generate position and feature invariance in the response of

the second layer. Feed-forward connections carry information on the prediction errors (�s and �c) that are used to

refine the neural activities. Feedback information is carried through the unpooling function p� 1
s ðgsÞ, that approximates

the derivative of the pooling function. The circles with arrows inside are error nodes such that the output signal is

equal to the difference of the input signal. b. Here, we show a representation of γs and p(γs). Each pixel represents a

model neuron and the color code indicates the amplitude of the neural response (lighter for no response and darker

blue for the maximal response, here normalized to 1). In this figure, we illustrate three possible outputs ps(γs), used to

generate different network structures: MaxPool 2DS selects the maximum activity over spatial (retinotopic) positions,

in each plane independently; MaxPool 2DF acts in the feature space by selecting the maximum activity across planes in

γs. When the network integrates the two pooling functions in sequence, we refer to them as a unique max-pooling

operator called MaxPool 2DS + 2DF.

https://doi.org/10.1371/journal.pcbi.1010270.g001
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The max-pooling performs a winner-takes-all computation rather than calculating the energy

of the firing of a pool of neurons [11]. We decided to use max-pooling as a way of generating

invariance for two reasons: First, the winner-take-all mechanism can account for numerous

nonlinear responses in the sensory cortex, and it is regarded as one of the fundamental compo-

nents of sensory processing in the brain [10, 11, 37, 38] (see section ‘About the bio-plausibility

of SDPC’ for more details on the bio-plausibility of max-pooling); Second, the local competi-

tion enforced by max-pooling is echoing the global competition mechanism introduced with

Sparse Coding (SC). Indeed, while max-pooling performs a winner-takes-all computation in

cells that belong to the same neighborhood, SC forces all neurons in a given layer to compete

with each other to best predict the input. Using both SC and max-pooling to model respec-

tively simple and complex cells allows us to reduce the core computation of V1 to a single

mathematical competition mechanism.

Given a neural response map, γs, max-pooling can be seen as a nonlinear convolution

whose output, ps(γs), is the maximum value in each pooling region (see Fig 1b). Just as convo-

lution, max-pooling is defined by its kernel size and stride. In this study, by varying these

parameters, we introduce three types of pooling functions:

• MaxPool 2DS acts in the spatial dimension, independently for each feature. In this study, we

use a pooling kernel of 2 × 2 neurons with a stride of 2.

• MaxPool 1DF selects the maximum across a neighborhood of adjacent planes of γs along

with a 1D circular space. This function acts in the feature space, leaving the spatial encoding

unchanged. For this function, we used a linear kernel of size 4 and a stride equal to 1.

• MaxPool 2DF arranges a feature space composed of M neurons on a grid of
ffiffiffiffiffi
M
p
�

ffiffiffiffiffi
M
p

grid,

for each spatial location. Then it selects the maximum activity across 2D pooling regions,

with a size of 2 × 2 neurons with a stride of 1. This pooling function only acts in the feature

space, just as the one we defined above.

Since the pooling functions operate in two different sub-spaces, we can apply them in

sequence to combine the effect of the two strategies (see Fig 1b). We call these functions Max-

Pool 2DS + 1DF and MaxPool 2DS + 2DF.

Pooling in a predictive coding network

Besides reaching a stable point in terms of the loss function (see Eq 2), the network efficiently

developed edge-like Receptive Fields (RFs) in the first layer (see Fig 1b and S1 Fig top left

panel) and second layer (S1 Fig bottom left panel). Note that even if the convergence of the

SDPC is guaranteed due to the convexity of the loss function, nothing prevents the SDPC to

converge towards a trivial solution. This first observation offers then a sanity check and con-

firms that the SDPC is converging towards a meaningful solution. This result holds for the dif-

ferent network sizes that we tested (36, 49, 64, 81, 100 and 121 neurons for each layer) and the

different combinations of pooling functions: MaxPool 2DS, MaxPool 2DF, MaxPool 2DS + 1DF,

and MaxPool 2DS + 2DF. Note that inferring the shape of the second layer RFs is not trivial,

because the pooling function ps(γs) makes it challenging to project the learned filters back into

the space of the input image (see [28] for details). In S1 Fig, we show Vc, a linear approximation

for the second layer kernels (see section ‘Log-Gabor fitting’ for more detail on this linear

approximation). From these linear projections, we can see that the Wc’ RFs also have the shape

of localized edge-like filters (see S1 Fig bottom left panel). This is interesting to observe that the

second layer RFs are similar to the first layer RF even if the second layer response is strongly

PLOS COMPUTATIONAL BIOLOGY Pooling in a predictive model explains functional and structural diversity in V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010270 July 21, 2022 6 / 21

https://doi.org/10.1371/journal.pcbi.1010270


non-linear (due to the max-pooling operation). In the following section, we evaluate the differ-

ence between the first and second layer response.

Phase invariance and complex behavior

In Fig 2 we show some typical responses of complex and simple cells when varying both orien-

tation and phase. While all of the first layer neurons are sensitive to both orientation and

phase (i.e. simple cells), we observe that some of the second layer neurons are invariant to

phase variation (i.e. complex cells, see Fig 2). To quantify phase invariance at the population

level we use the modulation ratio, denoted
F1

F0
and introduced by [4] (see section ‘Modulation

ratio and complex behavior’ for mathematical details on this index). A cell is classified as sim-

ple if
F1

F0
> 1 and as complex if

F1

F0
< 1. We test the phase invariant behavior of the network when

trained using 4 different settings corresponding to the following pooling strategies: ps = Max-

Pool 2DS, ps = MaxPool 2DF, ps = MaxPool 2DS + 1DF and ps = MaxPool 2DS + 2DF. In all

these settings, the distribution of
F1

F0
shows that the first layer develops exclusively simple-like

neurons, while the second layer shows a distribution that depends on the pooling strategy (Fig

3, fourth column). When spatial pooling and circular feature pooling are combined together

(for ps = MaxPool 2DS + 1DF), we observe a sharp high peak of
F1

F0
in 0 in the second layer (see

Fig 3c). In contrast, the
F1

F0
distribution is much broader when the spatial pooling is combined

Fig 2. Response of simple-like and complex-like model neurons. Example of two model neurons exhibiting a simple

(left) and complex (right) behavior. The black lines indicate the model neuron’s response when its receptive field

contains a drifting (top) or rotating (bottom) stimulus; the red lines indicate the response modeled according to a half-

rectified sinusoidal model as in [39]. The modulation ratio,
F1

F0
, is greater than 1 for simple neurons that are tuned to a

specific phase. A complex response, that is partially or completely independent to phase, is quantified by a low

modulation ratio (less than 1). Importantly, both neurons remain tuned to orientation.

https://doi.org/10.1371/journal.pcbi.1010270.g002
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with 2D feature pooling (for ps = MaxPool 2DS + 2DF, see Fig 3d). For these 2 previous settings,

the second layer neurons are strongly invariant to phase (high peak at 0 in Fig 3c and 3d).

When ps = MaxPool 2DF, our model does not develop complex cells, i.e. the
F1

F0
is high for both

layers (see Fig 3b). When we impose only a spatial pooling (i.e. ps = MaxPool 2DS), the second

layer of our network exhibits as many simple cells as complex cells (see Fig 3a).

Fig 3. Emergence of orientation maps in the first layer and complex response in the second layer. We show the different properties learned by our model

depending on which pooling functions we used (a—d). All networks showed here are trained with Ms = 100 and Mc = 100. First column. Representation of the

simple cells Receptive Fields (i.e. the synaptic weights of the first layer Ws). The red rectangles for (b—d) indicate the size of the feature pooling, the red arrows

illustrate the circular (c) or toroidal (b and d) structure of the feature space. Second column. Orientation preference of each neuron represented by the filters

in Ws. The luminance of the map is modulated by the orientation selectivity (HWHH) of each neuron. Third column. Phase preference of each neuron

represented by the filters in Ws. Fourth column. Distribution of the modulation ratio (
F1

F0
) for the first and second layers of the network. Fifth column. Local

homogeneity index (LHI) associated with each element is Ws. White stars indicate the position of pinwheels. Sixth column. Linear relationship between the

LHI and the orientation selectivity, measured by the half-width at half-height (HWHH) of the response of cells from the first layer.

https://doi.org/10.1371/journal.pcbi.1010270.g003
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Learning topographic orientation maps in the SDPC network

Networks trained using pooling functions that act in the feature space (MaxPool 2DF, MaxPool

2DS + 2DF, and MaxPool 2DS + 1DF) showed the emergence of differential topographic struc-

tures for Ws and, by consequence, γs. Interestingly, as we introduce pooling in the feature

space (see section ‘Pooling functions’ for more details on pooling functions), the arrangement

of filters on Ws converges to form a topographic orientation map where neighboring neurons

become tuned to similar orientations (see Fig 3b–3d, second column). To compare quantita-

tively the orientation maps learned by our model with the ones observed in neurophysiological

experiments, we used the local homogeneity index (LHI), introduced by [40] (for mathemati-

cal details on the LHI index see section ‘Local homogeneity index (LHI)’). We observed in the

fifth column of Fig 3b–3d that the orientation maps developed by the SDPC contain regions

where orientation preference varies smoothly (high LHI) combined with local discontinuities

(low LHI), in analogy with pinwheels observed in higher mammals [13–15]. One may wonder

if the existence of these topographic maps has functional implications for the properties of

neurons from the first layer. Indeed, electrophysiological experiments have shown a clear link

between a neuron’s position in the cortical map and its tuning properties [20, 40] (but see

[13]). Specifically, neurons located near pinwheels tend to have a broader orientation tuning,

while neurons located in iso-orientation regions display a narrower, more selective tuning. We

evaluated the relationship between the LHI of single neurons in the first layer and their orien-

tation tuning, evaluated as the half-width at half-height (HWHH) of their response to a rotat-

ing grating. We found a linear relationship similar to one of [40] and [20]. This relationship is

valid for all networks with a 2D topographic map (ps = MaxPool 2DS + 2DF) and Ms� 64

(p< 0.01). The linear relationship is significant (p< 0.01) for few configurations of ps = Max-

Pool 2DF and ps = MaxPool 2DS + 1DF, with no clear dependence on Ms.

Interestingly, the networks trained with a combination of spatial and feature pooling (Max-

Pool 2DS + 1DF and MaxPool 2DS + 2DF) appear to develop a topographic map when we look

at the preferred orientations θ of neurons in the first layer (Fig 3c and 3d, second column).

However, this structure is not present if we look at the preferred phase map ϕ, where there

appears to be no particular structure (Fig 3c and 3d, third column), in line with the known

neurophysiology [41]. This is not true in the case of MaxPool 2DF, where both maps appear to

be organized in groups of cells sensitive to similar orientations and phases, in contrast with

neurophysiological evidence (see Fig 3b, second and third column). To further analyze the ori-

entation map structures, we used the LHI. The LHI quantifies the number of pinwheels gener-

ated by our model in different tested conditions (for mathematical details on the pinwheels

density calculation see section ‘Local homogeneity index (LHI)’). We found that the tested

pooling functions, MaxPool 2DF, MaxPool 2DS + 2DF, and MaxPool 2DS + 1DF, generated a

comparable number of pinwheels centers even for networks about 4 times bigger than the

smallest network tested: Ms = 36 and Ms = 121 (see Fig 4). Thus, the number of pinwheels sin-

gularities remarkably does not depend on the size of the first layer Ms. A similar effect has

been reported across many species [42].

Invariance to phase vs. invariance to orientation

We want to further explore why the complex cells developed by the second layer of our model

show invariance to the stimulus phase while remaining tuned to orientation (see Fig 5). A

highly nonlinear network could respond unspecifically to a broad set of different stimuli.

Invariance to multiple properties of the stimuli (e.g. both to phase and orientation) would be

in contradiction with neurophysiological experiments. In fact, it is well established that com-

plex cells exhibit phase invariance but show orientation tuning similar to simple cells [4, 5]. To
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assess whether the network’s response is orientation-selective or not, we tested the network’s

invariance property to both phase and orientation of gratings. We used drifting gratings as sti-

muli that change phase over time. Conversely, we used rotating gratings that change orienta-

tion, to modulate the response of orientation-selective neurons. This was performed for each

cell of the second layer of our network at its optimal spatial frequency (see section ‘Drifting

grating vs. Rotating grating’). For quantification purposes, we define R as the percentage

of cells that show a complex-like response for phase, or that are unselective to orientation

(
F1

F0
< 1). We report the results relative to the second layer of the networks, as in all the tested

conditions, the first layer of the network exclusively exhibited simple-like responses (Rϕ = 0,

see Fig 3, fourth column). In Fig 5, the black and green lines Rϕ and Rθ correspond to the

dependence on phase (drifting) and orientation (rotating), respectively. We analyze these

results as a function of the number of channels in the first layer, Ms to evaluate the impact of

the network structure on the second layer’s responses. For ps = MaxPool 2DS, the networks

showed high Rϕ (up to 60%) and low Rθ (at most 20%), independently to Ms. This suggests that

the SDPC network efficiently develops phase-invariant responses while maintaining a rela-

tively narrow tuning to the stimulus’s orientation (see Fig 5, top-right). When ps = MaxPool

2DS + 1DF, that is, a spatial pooling and a feature pooling organized on a linear structure, Rϕ is

much higher (up to 100%, see Fig 5, bottom-right) and a smaller Rθ, also independent on Ms;

this can be explained by the combined action of pooling across spatial locations and across fea-

tures with same orientation but different phases (see Fig 3). Interestingly, only when we

impose ps = MaxPool 2DS + 2DF, the network’s behavior appears to vary as a function of Ms

(see Fig 5, bottom-left). For low dimensions (up to Ms = 64), the tested networks show a high

fraction of complex-like cells. For Ms> 64, Rϕ decreases as Ms increases (see S1 Text for statis-

tical tests). The same effect can be observed for Rθ, which appears to be high for Ms = 36, and

then decreases with increasing Ms.

Discussion

In previous work [28], we introduced the SDPC algorithm, and we used it to model local inter-

actions in the early visual cortex (V1/V2). We showed SDPC can predict how strong intra-cor-

tical feedback connectivity (from V2 to V1) shapes the response of neurons in V1 according to

the Gestalt principle of good continuation. In this article, we have extended the SDPC with dif-

ferent pooling operations such that it is now including this non-linear computation. Our

2-layer SDPC model of V1 allows us to test different types of pooling operation: MaxPool 2DS,

Fig 4. Pinwheel density does not depend on network size. Here we show that there is no relationship between the

tested first layer’s network size (Ms) and the density of pinwheels (ρ). Pinwheel density is defined as the average

number of pinwheels per area unit (see section ‘Local homogeneity index (LHI)’). For all networks showing

orientation maps, we found no significant trend between the size of the map, Ms, and the pinwheel density, in line with

neurophysiological observations.

https://doi.org/10.1371/journal.pcbi.1010270.g004
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MaxPool 1DF and MaxPool 2DF and to assess their impact on the cell’s response and on the

emergence of an orientation map.

Summary of results

We have shown that when we introduce a 2D spatial pooling only (i.e. MaxPool 2DS), our

model efficiently develops complex cells, but we do not observe the emergence of an orienta-

tion map (see Figs 3a and 5). In the case of MaxPool 2DF, the network only pools in the feature

space. In this condition, the model learns a topographic map in the first layer for both orienta-

tion and phase (Fig 3b) but no complex cells are present in the second layer (Rϕ� 0%). For

MaxPool 2DS + 1DF, the network pools in both retinotopic and feature space (circular topol-

ogy). In this case, the first layer of the network develops a topographic structure for orientation

preference but not for phase (Fig 3c). The second layer presents a high fraction of complex

cells (up to Rϕ = 100%) in all tested conditions irrespective of Ms. For MaxPool 2DS + 2DF, the

network pools in both retinotopic and feature space (toroidal topology). Similar to the

Fig 5. Complex cells population analysis. Here we show how the type of pooling function used and the number of

cells type present in the first and second layers of the network (Ms and Mc, respectively) affect the complex cells

population’s properties developed by the model. Top-left. We tested the network’s second layer invariance to phase

(drifting) and orientation (rotation) in sinusoidal gratings (see section ‘Drifting grating vs. Rotating grating’). The

ratios of cells Rϕ (complex) and Rθ (orientation invariant), are defined as the percentage for which
F1

F0
< 1 in the second

layer of the network. While the network’s second layer shows a strong invariance to a drifting grating (black lines), the

same effect is not present for the rotating grating (green lines). This result indicates that the network’s invariant

response is specific to the stimulus’s phase and not to its orientation. Overall Rϕ is much higher when the max-pooling

acts also in the feature space (ps = MaxPool 2DS + 1DF and ps = MaxPool 2DS + 2DF). Interestingly, for ps = MaxPool

2DS + 2DF, the number of complex-like cells seems to depend on the size of the network’s first layer Ms.

https://doi.org/10.1371/journal.pcbi.1010270.g005
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previous case, the network develops, in the first layer, a topographic map for orientation but

not for phase (Fig 3d). In this case, however, Rϕ appears to depend on Ms, with smaller dimen-

sions for the first layer (low Ms) appearing to produce more complex cells (Fig 5). Conse-

quently, the different combinations of pooling functions, allow the SDPC to account for a high

diversity of cells types and cortical maps. In the next section, we interpret our computational

findings in light of current neuroscientific knowledge and link our work with other state-of-

the-art models to discuss the bio-plausibility of the SDPC model.

SDPC models the diversity of V1 cells’ type and topological maps across

species

We observed that when the pooling function used in the model acts in the feature space (Max-

Pool 2DF, MaxPool 2DS + 1DF, and MaxPool 2DS + 2DF), the SDPC model develops an orien-

tation map in the first layer. These orientation maps show quantitatively strong similarities

with those observed in higher mammals: First, we found that a linear relationship exists

between the local homogeneity index (LHI) of a model neuron (i.e. its position relative to

pinwheels in the map) and its orientation tuning as observed in neurophysiological studies

[20, 40]. In particular, neurons near pinwheels (low LHI) have a broader tuning than those in

iso-oriented regions (see section ‘Learning topographic orientation maps in the SDPC net-

work’). Second, we found the number of pinwheels for each of the conditions listed above to

be independent of the network first layer’s size, Ms (Fig 4). To sum up, our model can predict,

without any supervision mechanism, a key property of cortical orientation maps across

different species such as carnivores and primates, that is, the emergence of pinwheels and ori-

entation domains with a constant pinwheel density even for a large diversity of V1 sizes [14,

18, 42].

According to our model, complex cells emerge by pooling in the retinotopic space, even in

absence of orientation maps, thanks to hierarchical pooling in V1. Pooling across retinotopic

positions (MaxPool 2DS) can explain, by itself, the emergence of complex cells by enforcing

position invariance, a fundamental mechanism observed in complex cells [43, 44]. In this

case, the absence of cortical orientation maps suggests that the emergence of complex cells

depends solely on pooling across different positions in the retinotopic space. This type of net-

work could be the one preferably implemented in animals that do not exhibit orientation

maps [14, 15]. This is in line with the results from [45], showing that orientation selectivity can

emerge even in networks that connect locally neurons with a random preferred orientation, as

in a salt-and-pepper map; in analogy with the random maps that the network produces in the

case of MaxPool 2DS [45, 46]. On the other hand, in the case of MaxPool 2DS + 1DF and Max-

Pool 2DS + 2DF, our model can generate feature invariance by pooling in the feature space. As

a consequence, the model converges to a configuration where complex cells can be generated

by pooling across the same orientations and different phases (Fig 3c and 3d).

We have shown that networks that develop topographic maps, on top of classical spatial

pooling, exhibit more complex-like cells and, in general, more phase invariant response (see

section ‘Phase invariance and complex behavior’ and Fig 3c and 3d). These findings suggest

that rodents should show a lower fraction of complex cells in V1, compared with other mam-

mals. This prediction is, indeed, in line with neurophysiological findings in mouse [47, 48]

and the rabbit [49], although squirrels (that are highly visual rodents) show a fraction of com-

plex cells comparable to other mammals [46]. The most remarkable fact is that these results

are obtained solely by changing a single computational mechanism, that is the type of nonlin-

ear pooling used, and by learning neural responses directly from natural images.
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Predictive Coding as a mechanism for orientation map formation

In SDPC, the orientation maps are naturally emerging thanks to the combined action of pre-

diction error minimization and pooling. We have observed that there is no orientation map in

the first layer when we remove the feedback connection (i.e. the orange connection in Fig 1a).

This observation suggests that the feedback from the second layer mediates the formation of

cortical maps in the first layer. Interestingly, a similar relationship between simple and com-

plex cells has been suggested by Kayser & Miller [50]. We can then hypothesize that the orien-

tation map (in the first layer) represents the best possible organization to minimize the

prediction error with a representation (in the second layer) that is locally feature-invariant

(because of the pooling in the feature space).

Relation to the state-of-the-art

One of the first models to account for both complex cells and orientation maps is the Topo-

graphic ICA from Hyvarinen et al. [25]. The topographic ICA describes the topology in V1 as

a quantification of the residual dependence between the components of an ICA (the closer the

features in the topological space, the more dependent they are). In addition, Hyvarinen et al
have also observed orientation maps when maximizing the sparsity of a feedforward network

with an energy pooling layer [24]. In contrast, the topology is naturally emerging from the

combined action of feedback connection and pooling in the SDPC (see section Predictive Cod-

ing as a mechanism for orientation map formation). To the best of our knowledge, SDPC is

the first model that links the emergence of the orientation map with the predictive coding

framework. Another difference is that SDPC is convolutional while [24] and [25] have fully-

connected neural layers. Fully-connected architectures do not disentangle the role of retino-

topy from the one of orientation map in building complex cell responses, as the two structures

are merged in the same map. The SDPC being convolutional, the feature space is by construc-

tion dissociated from the retinotopic space. This particular property allows the SDPC to

describe not only the primate and carnivore orientation maps, but also the salt-and-pepper

configuration observed in rodents (see section SDPC models the diversity of V1 cells’ type and

topological maps across species).

Other frameworks have been proposed to compute the optimal topography of features in

natural image representation. For example, [51] propose a model based on strong dimension

reduction (using PCA) that learns to ignore fine-grained structure from the signals of simple

cells and discover a linear pooling of correlated units. Interestingly, [22] adopted a similar

approach in which pooling emerges to model the geometry of the manifold of a sparse code.

Different from the SDPC, these models have not studied the combination of complex cells

with the emergence of different types of topographical maps (orientation map and salt and

pepper).

About the bio-plausibility of SDPC

In this article, we have modeled complex cells using the max-pooling function that relies on

the max operation. As demonstrated by [38], a cortical circuitry could implement a max-like

operation. Interestingly, the proposed canonical circuit could also be used to model energy

pooling.

The SDPC model is relying on convolution operation. Convolutions assume that the synap-

tic weights are repeated across the image to tile the whole visual field. This weight-sharing

mechanism is unlikely to be implemented in biology. However, the same retinotopic architec-

ture can be achieved with local untied connections to keep the same structure without replicat-

ing the set of weights at each spatial position. In particular, [52] showed that such a model
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converges to a network similar to a convolutional network. These results suggest that convolu-

tions can be regarded as a good model of retinotopic processing, even if it is not strictly biolog-

ically plausible.

The SDPC satisfies computational constraints that are thought to occur in the brain. As

illustrated by Eq 3, all computations involved in the neural response update are local. Indeed,

the new state of the neural population (i.e. gkþ1
i ) only depends on its previous state (i.e. gki ), the

states of the adjacent layers (gki� 1
and gkiþ1

) and the associated synaptic weights (Wi and Wi+1).

In addition, one can observe that the weight update equation (see Eq 4) is a product of mono-

tonically increasing functions of pre-synaptic (γi−1) and post-synaptic activity (γi). It could

then be interpreted as an Hebbian rule [53] that have strong grounding in biology.

Concluding remarks

In this study, we have shown that SDPC including different variations of max-pooling could

be regarded as an unsupervised and simple computational framework to model the diversity of

mammals’ V1. It provides a plausible explanation for the emergence of complex cells in differ-

ent types of topographical structures (salt-and-pepper and orientation maps) as observed in

different species. One interesting perspective would be to extend to SDPC such that the pool-

ing function can be learned rather than being fixed. To do so, one might leverage the more

general parametrization of the pooling function that was proposed in [38]. Such a formaliza-

tion would allow the SDPC to learn a continuum of pooling functions spanning from energy

pooling to max-pooling. In addition, the SDPC allows us to analyze the effect of the feedback.

In previous work, we have shown that more feedback strength in the SDPC, 1—reshapes neu-

ral organization to improve contour integration [28], 2—modulates the shape of the V1 RFs

[27] and 3—improves generalization abilities [54]. Further work could then be conducted to

assess the impact of feedback strength on the topology of features in the first layer.

Methods

Detailed description of SDPC

In the section ‘Brief description of Sparse Deep Predictive Coding (SDPC)’, we have described

the generative problem solved by the SDPC model (see Eq 1). For the sake of concision, in

Eq 2, we have given the loss function only for a 2-layered SDPC network. Here we showcase a

more general formulation of this loss function, applicable to a N-layered network:

F ¼
1

2

XN

i¼1

k�ik
2

2
þ likgik1 s:t: �1 ¼ x � WT

1
g1

and 8i 2 ½2;N�; �i ¼ pi� 1ðgi� 1Þ � WT
i gi

ð6Þ

In this equation, �i encodes for the prediction error, γi represents the neural response at the

layer i, and Wi denotes the synaptic weights (which has a convolutional structure) between the

layer i − 1 and i. The λi coefficient controls the strength of the sparse regularization constraint

on the neural response γi. Convolution is an efficient mathematical framework to model reti-

notopic activity in the visual system: synaptic weights are repeated across the image to tile the

whole input image. This brings the advantage of having a model that is translation invariant:

the synaptic weights (also called features or kernels) encoded by W are translated at each posi-

tion of the input image (for more details on the bio-plausibility of the convolution, see section

‘About the bio-plausibility of SDPC’). The resulting vector γ can thus be viewed as a neural

response map, whose pixels encode for neurons sensitive to a specific feature and at a specific

PLOS COMPUTATIONAL BIOLOGY Pooling in a predictive model explains functional and structural diversity in V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010270 July 21, 2022 14 / 21

https://doi.org/10.1371/journal.pcbi.1010270


position in the input image, in perfect analogy with a retinotopic map (see Fig 1b). The other

parameters of this convolution are the kernel size and the stride, as detailed in section ‘Train-

ing’. The minimization of Eq 6 is performed using an alternation of inference (see Eq 3) and

learning (see Eq 4) steps. The soft-thresholding operator T þ in Eq 3 is enforcing that the

majority of neurons from γi are inactive (it thus has a sparsifying effect). The mathematical

definition of the soft thresholding operator is:

T þ
Zli

xð Þ ¼
x � Zli; if x � Zli > 0:

0; otherwise:

(

ð7Þ

Training

We built different SDPC networks to model simple and complex cells in V1. Each network has

convolutions with kernel sizes of 7 × 7 pixels for the first layer (Ws), and 4 × 4 for the second

layer (Wc). For both layers, we used a stride of 1. We tested the network with 4 different pool-

ing functions: MaxPool 2DS, MaxPool 2DF, MaxPool 2DS + 1DF and MaxPool 2DS + 2DF.

Importantly, we introduced a zero padding before the pooling to make sure that first and sec-

ond layer cells have the same receptive field size with respect to the input image (14 × 14 pix-

els). Each network was also trained with different neural populations sizes: with Ms and Mc

equal to 36, 49, 64, 81, 100 and 121 neurons for the first and second layer respectively, leaving

us with 36 networks for each tested pooling function. The kernel values Ws and Wc were ini-

tialized as random noise and were normalized during training such that the energy (Euclidean

norm) of each kernel was set to 1. All the networks were trained using grayscale natural images

from the STL-10 dataset (96 × 96 pixels per image) [55] for 9 epochs (28125 iterations with

mini-batches of 32 images). The input images were pre-processed with a whitening filter simi-

lar to the one used in [30] to model retinal processing. Each image was then bounded between

the values −1 and 1. The synaptic weight Ws and Wc were updated using stochastic gradient

descent with a learning rate, ω, of 0.01 and a momentum, β, of 0.9. Additionally, the sparsity

parameters λs and λc were gradually incremented during training up to a value of 0.1.

Modulation ratio and complex behavior

In this study, in order to quantify the simple and complex behavior of model neurons in the

SDPC, we use the classical
F1

F0
measure, also known as the modulation ratio [4]. Given the

response of a neuron to a grating drifting at temporal frequency f, the
F1

F0
measure represents

the ratio between the first harmonic of the response (f = F1) and the mean spiking rate F0. Intu-

itively, a high modulation ratio (between 1 and 2) indicates that the cell is sharply tuned to a

specific phase and it is thus regarded as simple. If a cell shows a low modulation ratio (between

0 and 1) it is then regarded as complex, showing a broad tuning to the stimulus’ phase. For a

neural population containing simple and complex cells, the distribution of the modulation

ratios will appear to be bi-modal, with two peaks roughly in the regions described above. In

[39], authors showed that the modulation ratio can be derived analytically from a half-rectified

model of the a neuron’s response to a drifting grating. In particular,
F1

F0
depends non-linearly

on χ defined as:

w ¼
Vth � Vmean

jAj
ð8Þ

Where Vmean and Vth represent respectively the mean membrane potential and the threshold
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for spiking generation and A is the maximal amplitude of the modulation. Here we use the

simplified rate based model:

gð�Þ ¼ ða cosð� � �0Þ � bÞþ ð9Þ

With γ being response of the model neuron, ϕ is the stimulus’ phase and ϕ0 the phase at which

the response is maximal. Finally, ( )+ indicates an half-rectified function that only output zero

or positive values. In this case w ¼ b
jaj and the modulation ratio can be obtained through the

nonlinear mapping (see [39] for details):

F1

F0

¼ g wð Þ ¼

� w
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � w2
p

þ arccos w
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � w2
p

� w arccos w
; if � 1 � w � 1:

�
1

w
; if w < � 1:

undefined; if w > 1:

8
>>>>>>><

>>>>>>>:

ð10Þ

In [39], authors further suggested that the classification of V1 cells as simple or complex might

be caused uniquely by the nonlinear relationship between
F1

F0
and χ rather than reflecting an

actual neuro-physiological difference. Here, for simplicity, we refer to the same values conven-

tionally used in literature: we consider model neurons as simple-like if
F1

F0
> 1 and as complex-

like if
F1

F0
�1. We use the modulation ratio also to evaluate the response to rotating stimuli in

order to compare it to the response in the case of drifting phase. Although this measure is not

in standard use to evaluate orientation tuning, it can be seen as a spectral analysis of the orien-

tation response, similar to the work of Wörgötter and Eysel [56]. Nevertheless, to perform sta-

tistical tests on the different conditions, we analyze the distribution of χ (see S1 Text). Indeed,

the χ index is easier to analyze as it does not show the typical bimodal distribution of
F1

F0
and is

linked to
F1

F0
through a nonlinear, monotonous, and invertible function (Eq 10).

Local homogeneity index (LHI)

To evaluate the functional implication of the orientation maps learned by our model, we used

the local homogeneity index (LHI) as defined by [40]. The LHI measures the similarity of the

preferred orientation in neighboring cells:

LHIðmÞ ¼
1

k

X

n

exp �
ðn � mÞ2

2s2

� �

exp 2jynð Þ

�
�
�
�
�

�
�
�
�
�

ð11Þ

With m being a location on the orientation map, n a set of neighboring locations and θn the

preferred orientation at n. Then, j is the imaginary unit, so that j ¼
ffiffiffiffiffiffiffi
� 1
p

and | | represents the

module of a complex number. The constant k normalizes the measure and changes if m and n
are bi-dimensional or mono-dimensional, for example in the case of MaxPool 2DF or MaxPool

1DF. Finally, σ is proportional to the width of the Gaussian window in which the LHI is calcu-

lated, here we set σ = 1 pixel. The LHI is bounded between 0 and 1, with high values corre-

sponding to iso-orientation domains and low values to pinwheels. We define pinwheels as

local minima in local neighborhoods of 3 × 3 pixels with LHI under a threshold of 0.2. In

order to calculate the pinwheel density we define the average size of a cortical column as

the ratio c ¼ 180�

meanðHWHHÞ

� �2

, for each tested network. The pinwheel density is then defined as
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the ratio:

r ¼
num: of pinwheels

Ms

c
ð12Þ

Log-Gabor fitting

To estimate the optimal frequency and orientation for each model neuron, we fitted the synap-

tic weights of each cell with log-Gabor wavelets [31, 57]. This fit allows us to identify the pre-

ferred stimuli for each neuron in the first and second layers. Specifically, we can extract: the

preferred orientation (θ), phase (ϕ), frequency (f0) as well as the orientation tuning width

(half-width at half-height, HWHH) [58]. Since second layer cells in the model project into the

first layer of the network through a nonlinearity (pooling), we defined an approximated linear

mapping V�c for the second layer such that:

V�c ¼ argmin
Vc

1

2
k x � VT

c gc k
2

2 ð13Þ

Specifically, V�c is used to back project (and visualize) the second layer’s weights in the input

visual space. The kernels in V�c were then fitted using log-Gabor functions to assess for the best

orientation and spatial frequency to stimulate the second layer of the network.

Drifting grating vs. Rotating grating

One goal of our study is to assess the ability of our network to predict complex behavior in V1,

that is, to show phase-invariant responses. We test the network’s invariance to drifting and

rotating gratings. We do this to make sure that the networks we model indeed exhibit

responses that are invariant to phase, yet that they remain tuned to orientation, as observed in

neurophysiological experiments. Using the preferred orientation, θ, and frequency, f0, for each

neuron in the first and second layer, we created sinusoidal grating with optimal parameters for

each neuron. All stimuli were masked by a circular window of 14 pixels in diameter, that is,

the size of the receptive field of model neurons. Finally, we evaluated the response of the net-

work at different phases and orientations of the same grating (see Fig 5).
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S1 Text. Analysis on χ.
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S1 Fig. Sparse neural activity maps. Left. Example of synaptic weights learned from natural

images Ws and Wc, for the first and second layer, respectively. Here we show Vc, a linear

approximation of Wc (see section ‘Drifting grating vs. Rotating grating’). Each kernel corre-

sponds to a channel in the neural activity maps. Right. Representation of 3 channels from the

neural activity maps (γs and γc) elicited by the input x. Here, each pixel represents a model neu-

ron and the color code indicates the amplitude of the neural response (lighter for no response

and darker blue for the maximal response, here normalized to 1). The kernel in the top-left

corner indicates the preferred stimulus of each channel.

(TIFF)

S2 Fig. Emergence of topographic maps during learning. We show the evolution of the topo-

graphic organization learned by Ws during training when the SDPC network embeds the
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MaxPool 2DS + 2DF function. Here, for Ms = 100. The weights are initialized to random values

and the network gradually learns from input data. At first, we observe the emergence of edge

detectors similar to the ones observed in the V1 of mammals. Gradually, thanks to the com-

bined action of the feedback coming from the second layer of the network and the pooling

function in the forward stream, neighboring cells in the topography become tuned to stimuli

of similar orientations but different phases, generating a topographically organized map.

(TIFF)

S3 Fig. Complex cells population as a function of the network size. We analyze the same

results of Fig 5 in terms of the unimodal variable χ as defined in [39] (see section ‘Modulation

ratio and complex behavior’). In the top-left graph we illustrate the nonlinear relationship

between χ and
F1

F0
. Here the results for Mc = 100 are shown. To avoid the assumption of nor-

mally distributed variables, we represent χ using the median ±MAD (median absolute devia-

tion). Black (χϕ) and green (χθ) lines indicate distributions obtained using drifting and

rotating grating, respectively. The dashed lines indicate the value χ = −1 for which
F1

F0
= 1, the

threshold value for which a V1 cell is typically considered either simple or complex. Using

drifting gratings as stimuli significantly generated lower values of χϕ (more complex-like cells)

than rotating gratings, in all tested settings (one-tailed Wilcoxon signed-rank test). This result

confirms that the network’s invariance is linked to the stimulus’ phase and that model cells

remain narrowly tuned to orientation. For ps = MaxPool 2DS and ps = MaxPool 2DS + 1DF the

distribution of χθ and χϕ do not vary significantly as a function of the network size. When the

network shows a functional topographic map, for ps = MaxPool 2DS + 2DF, we can see a clear

dependency between χϕ and the number of features in the first layer of the network Ms.

(TIFF)
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