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The Adaptation Model Offers a
Challenge for the Predictive Coding
Account of Mismatch Negativity
Patrick J. C. May*

Department of Psychology, Lancaster University, Lancaster, United Kingdom

An unpredictable stimulus elicits a stronger event-related response than a high-
probability stimulus. This differential in response magnitude is termed the mismatch
negativity (MMN). Over the past decade, it has become increasingly popular to explain
the MMN terms of predictive coding, a proposed general principle for the way the
brain realizes Bayesian inference when it interprets sensory information. This perspective
article is a reminder that the issue of MMN generation is far from settled, and that an
alternative model in terms of adaptation continues to lurk in the wings. The adaptation
model has been discounted because of the unrealistic and simplistic fashion in which it
tends to be set up. Here, simulations of auditory cortex incorporating a modern version
of the adaptation model are presented. These show that locally operating short-term
synaptic depression accounts both for adaptation due to stimulus repetition and for
MMN responses. This happens even in cases where adaptation has been ruled out
as an explanation of the MMN (e.g., in the stimulus omission paradigm and the multi-
standard control paradigm). Simulation models that would demonstrate the viability of
predictive coding in a similarly multifaceted way are currently missing from the literature,
and the reason for this is discussed in light of the current results.
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INTRODUCTION

Change detection in the brain is studied by using the oddball paradigm where sporadically
presented deviant stimuli are mixed in among often-repeating standard stimuli. The brain tends to
respond weakly to standards and vigorously to deviants. In event-related potential (ERP) and field
(ERF) measurements, the mismatch negativity (MMN) is defined as the difference in the respective
responses elicited by deviants and standards. Despite the simplicity of this technical definition,
there is nothing simple nor self-evident about the MMN. This is because it reflects two fundamental
aspects of brain function: the flair for representing the world in terms of patterns, and the ability
to pick out pattern-breaking events that carry the promise of salience. Butler (1968) originally
described the differential between the standard and deviant N1 (“V”) responses and explained in
terms of neuronal habituation which selectively suppresses those neurons tuned to the standard.
Näätänen et al. (1978) named this differential the MMN and suggested that it reflects the operation
of sensory memory. Näätänen (1990, 1992) proposed a model of two-tier processing where the
adherence of the stimulus to a repeating pattern is evaluated in a dedicated MMN generator,
and where the suppression of the N1 happens in a separate generator which registers stimulus
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onsets. A rival explanation, the so-called adaptation model, is
similar to Butler’s interpretation and suggests that suppressive
effects within auditory cortex can account for the MMN and that
the MMN is part of a modulated N1 response (May et al., 1999,
2015; Jääskeläinen et al., 2004; May and Tiitinen, 2010; Fishman,
2014). It is unclear what the physiological mechanisms of cortical
adaptation/suppression are, but a likely candidate is short-term
synaptic depression, STSD (Wehr and Zador, 2003, 2005). This
has decay times up to several seconds, which coincides with the
time constants of stimulus-specific adaptation (SSA) measured
intracortically (Ulanovsky et al., 2003, 2004).

The MMN has edged its way toward mainstream
neuroscience, helped along by its new-found role as a prime
specimen of predictive coding (PC). This posits that perception
is essentially an inference problem which the brain solves by
constructing “generative models” to explain the causes of the
sensory input (Rao and Ballard, 1999; Friston, 2005, 2010; Bastos
et al., 2012). Such models sit at the top of the brain’s processing
hierarchy and generate prediction signals that are passed down
the hierarchy. At each level, these signals attempt to match the
sensory signals making their way up the hierarchy. When this
matching occurs, the successful prediction signal suppresses
the sensory signal. If there is a mismatch between the two, the
sensory signal remains unsuppressed and continues its upwards
journey. Therefore, sensory responses inform the system that
a prediction error has occurred and that the generative model
needs updating. Perception is a process where error signals nudge
generative models into forms which minimise the prediction
error, thereby offering the best explanation of the sensory input.
In this framework, the repetition suppression of the N1 response
to the standard is due to a dampening of the sensory signal by a
successful prediction signal (Auksztulewicz and Friston, 2016)
and the MMN to the deviant is a prediction error signal (Garrido
et al., 2009; Wacongne et al., 2012; Chennu et al., 2013; Lieder
et al., 2013a,b; Rentzsch et al., 2015; Carbajal and Malmierca,
2018; Fong et al., 2020).

The rise of PC as an explanation of the MMN has been
heralded by a number of studies which point to evidence in favour
of PC and against the adaptation model (e.g., Wacongne et al.,
2012; Lieder et al., 2013a; Fitzgerald and Todd, 2020). Here, we
revisit this issue and consider the viability of PC obliquely: I
present the modern version of the adaptation model and a variety
of simulations which produce MMN responses, including some
that might pose a challenge for PC.

THE ADAPTATION MODEL COMES IN
VANILLA AND CHOCOLATE

There are two varieties of adaptation model. Its most common
form is also the traditional and most simplistic one. It builds on
the premise that neurons that are repetitively stimulated become
less responsive. The traditional model takes a unit-centric view
by extrapolating this behaviour to event-related responses. The
MMN is explained by the populations tuned to the standard being
more adapted than those tuned to the deviant. The response
to the stimulus is then a bottom-up process where the sensory

signal drives the neural population to respond with a magnitude
that depends on the adaptation level. Further, it is assumed that
adaptation on both the unit and the population level depends
on one aspect only: the time series of the specific stimulus to
which the population is tuned. Thus, other stimuli used in the
paradigm do not affect the responsiveness of the population. This
traditional adaptation model is unconvincing (Fitzgerald and
Todd, 2020): It can’t explain the mismatch response to stimulus
omissions (Yabe et al., 1997, 1998), because the responses of
the model require a sensory signal. Also, it fails to explain the
MMN to unexpected stimulus repetitions (Wacongne et al., 2012)
because stimulus repetition supposedly always leads to more
adaptation and a weaker response.

The traditional adaptation model can be operationalised
to produce predictions of evoked responses. For example,
Lieder et al. (2013a) formulated the adaptation hypothesis as
exponentially adapting and recovering frequency channels and
found that the experimental data favoured a model based on
PC. Moreover, this idea of isolated adapting frequency channels
is the basis for the multi-standard control paradigm (Schröger
and Wolff, 1996; Jacobsen and Schröger, 2001). Here, the oddball
condition is complemented by a control condition where the
standards are replaced by several different stimuli equiprobable
with the deviant. Because the presentation rate of the deviant
is identical across the two conditions, the level of adaptation,
according to the traditional adaptation model, should also be
identical. Therefore, if the response to the deviant is stronger
in the oddball condition than in the multi-standards control
condition, this is taken as unequivocal proof that adaptation
cannot explain the MMN, and that the MMN must therefore
reflect something more. The multi-standard control condition
has produced plenty of evidence that apparently refutes the
adaptation model (for a review, see May and Tiitinen, 2010). It
has recently become popular in animal electrophysiology where
it is used for demonstrating that mismatch responses cannot be
explained in terms of stimulus-specific adaptation (e.g., Harms
et al., 2014; Kurkela et al., 2018) and that PC is therefore a more
likely explanation (e.g., Parras et al., 2017).

There is a modern version of the adaptation model which
bears but passing resemblance to its traditional counterpart. The
acorn for this was planted by May et al. (1999) who argued
that the frequency MMN can be explained as a modulated
N1 response being generated on tonotopic maps with post-
stimulus inhibition. The study used a computational model of
auditory cortex where individual microcolumns interact with
each other through lateral connections. This departure from
the traditional adaptation model yielded a prediction, verified
in EEG measurements, that the peak latency of the response
to the deviant should have a non-monotonic dependence on
the standard-deviance separation. This idea of modeling the
auditory cortex as a system of interacting units (rather than
isolated channels) was further developed by May and Tiitinen
(2010) in their treatise on the adaptation model. These authors
noted that the results which initially might appear to falsify
the adaptation model are in fact consistent with this model.
For example, the activity associated with the response to the
standard has a different spatial distribution than the activity
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underlying the MMN, (e.g., Rinne et al., 1999). Findings such
as these have been used as evidence against the adaptation
model as they appear to show that the generators of the MMN
are separate from those of the N1 (for a review, see Näätänen
et al., 2005). However, the adaptation model offers a simpler
explanation in terms of variations in stimulus selectivity across
cortical fields. For example, a field with broadly tuned neurons
will respond similarly to the standard and deviant while, at
the same time, a field with sharply tuned neurons will show
stronger activation to the deviant. The spatial distribution of the
responses elicited by the standard and deviant will therefore differ
without implying the existence of a dedicated MMN generator
(see sections 6.2 and 6.3 of May and Tiitinen, 2010). Further,
one of the themes put forward by May and Tiitinen was that
synaptic depression operating in the interconnected system of
auditory cortex makes the system’s responses highly context-
dependent. This dependence shows up as MMN responses of
various kinds as well as stimulus selectivity on the single-
unit level. Staying on this theme, May and Tiitinen (2013)
introduced a computational model that structurally copies the
gross anatomy of the auditory cortex and where the synapses
are modulated by STSD. Simulations showed that this system
performs temporal binding, with individual columns exhibiting
combination sensitivity similar to that found in monkey auditory
cortex (Rauschecker, 1997). This sensitivity was found to be
caused by the combination of STSD and the serial core-belt-
parabelt structure of auditory cortex. In further simulations (May
et al., 2015), the model replicated single-unit forward masking
and SSA (Ulanovsky et al., 2003, 2004) as well as forward
facilitation (Brosch et al., 1999; Brosch and Schreiner, 2000).
Further, the model reproduced repetition suppression of the N1
(Lü et al., 1992) as well as several types of MMN. These were the
frequency MMN (Tiitinen et al., 1994), MMN to “abstract” sound
features (Korzyukov et al., 2003), and the MMN to small changes
in complex tone sequences (Näätänen et al., 1993), where the
latter two types are classed as evidence for “primitive intelligence”
of auditory cortex (Näätänen et al., 2001). The success of the
model in being able to recreate such a wide variety of phenomena
was found to be a consequence of STSD. Removing STSD also
abolished SSA, masking, facilitation, combination sensitivity, N1
adaptation, and the MMN.

THE ADAPTATION MODEL IN ACTION:
SIMULATION METHODS

Original simulations of the modern version of the adaptation
model were carried out to demonstrate that it reproduces
those types of MMN which previously have been taken as
evidence against the adaptation hypothesis. Importantly, these
MMN responses, both empirically observed and simulated, might
pose a challenge for the PC model as currently formulated.
The model here is a modification of that of auditory cortex
introduced in May and Tiitinen (2013) and May et al. (2015).
It has a hierarchical structure with feedforward and feedback
connections between cortical fields. However, the resemblance
to PC stops here, there being no separate prediction and error

units. Instead, as shown in Figure 1A, the dynamical unit of the
model is a simplified description of the cortical column. Within
each column, the excitatory and inhibitory neurons are treated
as lumped populations described by mean-field state variables
u(t) and v(t), respectively. These variables correspond to the
membrane potential, and they are transformed into the mean
firing rate through g(x) = 1[x –θ]tanh[2(x – θ)/3], where θ = 0.05
is the threshold for firing and 1[.] is the Heaviside step function.

As depicted in Figure 1B, there are 208 cortical columns
arranged into three core fields, eight belt fields, and two
parabelt fields, with 16 columns per field (see Hackett et al.,
2014). In addition, there is a 16-unit field where the excitatory
populations represent the medial geniculate nucleus (MGN)
of the thalamus and the inhibitory populations represent the
surrounding thalamic reticular nucleus (for details, see Hajizadeh
et al., 2019). There are therefore a total of 224 units. Fields
are connected topographically to each other according to the
anatomical results of Hackett et al. (2014). The signal progresses
along the feedforward connections by first entering the MGN
which then targets the three core fields, and these project to
the surrounding belt fields, which in turn are connected to the
two parabelt fields. These forward connections are reciprocated
by feedback connections. Anatomically neighbouring fields are
strongly interconnected while obliquely situated fields have fewer
interconnections. The rostral parabelt field is interconnected with
the anterior belt fields, and the caudal parabelt field connects with
the posterior belt fields.

As illustrated in Figure 1C, the connectivity between the
fields is expressed in the way the populations of excitatory
neurons are connected to each other according to the 224 × 224
weight matrix Wee. The connections from the excitatory to
the inhibitory neuron populations are defined by Wie, and the
reciprocal connections are given by Wei. All column-to-column
connections, both within and across fields, are assumed to be
excitatory. The inhibitory populations make only local, short-
range connections within the cortical column. Lateral inhibition
across columns within a field is mediated by the excitatory
population of each column exciting the inhibitory populations of
neighbouring columns. The state equations are:

τmu̇ (t) = −u (t) + WeeQ (t) · g [u (t)]

−WeiQ (t) · g [u (t)] + iaff (t) , (1)

τmv̇ (t) = −v (t)Wieg [u (t)] , (2)

where u(t) and v(t) are vectors (224 × 1) of the state variables
u and v, respectively, and τm = 30 ms is the membrane time
constant. The term iaff(t) represents afferent sensory input. This
input is tonotopically organised into 16 frequency channels
(cf = 1. . .16) which represent the activity of the inferior colliculus.
This targets the MGN field through topographically organised
connections so that each unit essentially represents a frequency
channel. Because the various fields are topographically connected
to each other, the cortical columns exhibit tonotopic organization
in their responses, with the tuning curves becoming broader as
one moves from MGN toward the parabelt. Q expresses STSD
which drives adaptation. It is a diagonal 224 × 224 matrix where
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FIGURE 1 | A computational model of auditory cortex as a modern version of
the adaptation model. (A) The basic functional unit of the model is the cortical
column. This comprises a lumped description of the excitatory (e) and
inhibitory (i) neuron populations. The e-population connects back to itself via
feedback connections described in the weight matrix Wee. It also excites the
excitatory populations of other columns. Lateral inhibition occurs through the
e-population driving the i-population of neighbouring columns. (B) There are
208 cortical columns organised into three core fields (R, RT, AI), eight belt
fields (AL, RTL, RTM, RN, MM, CM, CL, ML), and two parabelt fields (RPB,
CPB). Neighbouring fields are strongly interconnected, as indicated by the
arrows. The connections from RPB to RTM and RM as well as those from
CPB to RM, MM, and CM are not shown. Abbreviation key: A – anterior
(except for AI, primary auditory cortex), R – rostral, C – caudal, M – medial, L –
lateral, T – temporal, PB – parabelt. (C) The weight matrices Wee (blue) and
Wie (red) are overlayed. Wie mediates lateral inhibition within each field.
Long-range connections are found in Wee only. Feedforward connections are
below the diagonal, and feedback connections are above it.

the diagonal elements are described by the 224-element vector
q(t) of synaptic efficacies:

q̇ (t) = −
q (t) g [u (t)]

τo
+

1− q (t)
τrec

, (3)

where the first r.h.s. term describes the fast onset of STSD and
the second term encapsulates the slow recovery. Note that STSD
is assumed to depend on the presynaptic firing rate only, and
therefore all the connections originating from the same column
are modulated by the same element of q (hence q is a 224-
element vector). There are two time constants: τ o is the onset
time constant (100 ms in cortex, 20 ms in MGN), and τ rec is the
time constant of recovery. The recovery time constant was treated
as a free variable, justified by N1 recovery being highly subject-
specific (Lü et al., 1992; Ioannides et al., 2003). The respective
values of τ rec across Experiments 1–5 described below were: [1.2,
1.2, 1.2, 1.7, 1.4] s.

The MEG signal is to a large extent generated by dendritic
current flowing in the apical dendrites of cortical pyramidal
neurons (Hämäläinen et al., 1993). In the model, the MEG is
approximated by spatially summing the excitatory input currents
to the excitatory neuron populations, that is, the second term
on the r.h.s. of Eq. 1 (for a detailed description, see Hajizadeh
et al., 2019). In the summation, the contribution from each
connection is weighted according to connection type, with the
weights being [−2,1,1] for feedforward, feedback, and intra-field
connections, respectively.

Five experiments were carried out with the following oddball
stimulation:

Experiment 1 – Standard stimuli (duration 50 ms, frequency
channel cf = 7) were presented with a stimulus onset interval
(SOI) of 100 ms and omitted with 10% probability (parameters
from Yabe et al., 1998). Each stimulus omission was treated as the
deviant when calculating the ERF.

Experiment 2 – The standard stimulation was a series of tones
(duration 50 ms, SOI 500 ms) which alternated in cf frequency
between 6 and 9. Occasionally, the tone with cf = 6 was repeated
(p = 5%). Comparisons were made between the ERF response
elicited by the cf = 6 tone in these two cases.

Experiment 3 – In the “global deviance” setup, two types of
stimuli were used: a sequence of five identical tones (“xxxxX”;
duration 50 ms, SOA 150 ms, cf = 5) and a sequence “xxxxY”
that was otherwise the same as xxxxX except that the fifth tone
(cf = 12) differed in frequency from the first four tones and
was therefore a “local” deviant. These stimuli were presented in
two conditions: one where xxxxY was the standard (p = 75%)
and xxxxX was the “global” deviant (p = 15%), and one where
these roles were reversed. In addition, the blocks contained
occasional four-tone sequences (p = 10%). The sequences
were separated by silent 850-ms periods. The parameters are
from Wacongne et al. (2011).

Experiment 4 – Standards (cf = 9, p = 90%) and deviants
(cf = 10, p = 10%) were presented in the oddball paradigm (tone
duration 50 ms, SOI = 500 ms). In a separate multi-standard
control condition, the standards were randomly replaced with
equiprobable tones of different frequencies (cf = 4. . .13,
p = 10% for each).
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Experiment 5 – Standards (cf = 6, p = 80%) and deviants
(cf = 9, p = 20%) were presented as a series of anisochronous
stimuli (duration 300 ms). The silent interval between
consecutive tones varied randomly between 200 and 1,000 ms
(flat distribution). The parameters are from Schwartze et al.
(2011).

In all experiments, simulations comprised at least 400
presentations per condition. The responses to standards and
deviants were averaged separately. The resulting ERFs were
baseline-corrected (100 ms) and highpass filtered at 1 Hz.

THE ADAPTATION MODEL IN ACTION:
SIMULATION RESULTS

Simulation results shown in Figure 2 demonstrate that the
modern version of the adaptation model reproduces those types
of MMN which previously have been taken as evidence against
the adaptation hypothesis.

Experiment 1 – The omission MMN is shown in Figure 2A.
Due to the fast stimulus presentation rate, the standards
(blue curve) produce no discernible responses. The occasional
omission elicits a prominent response (red) which, apart from a
late peak latency, resembles the observations of Yabe et al. (1998).

Experiment 2 – Tones alternating in frequency served as the
standard stimulation. Occasionally alteration was replaced by
stimulus repetition. As shown in Figure 2B, this results in a
stimulus repetition MMN, as was found in simulations of the PC
model of Wacongne et al. (2012).

Experiment 3 – Two types of sequences served as stimuli:
five identical tones (xxxxX), and four identical tones followed
by a “local” frequency deviant (xxxxY). Figure 2C shows the
responses to the xxxxX sequence in two conditions: (1) It was the
“global” standard stimulus, representing an expected repetition
of the fifth tone. (2) It was the global deviant stimulus among
xxxxY standards, therefore constituting an unexpected stimulus
repetition. The global unexpectedness of the stimulus causes a
late, “higher-order” MMN response, as observed by Wacongne
et al. (2011).

Experiment 4 – Figure 2D shows the results where the multi-
standard control condition was utilised. The deviant in the
oddball condition elicits a larger response (red) than it does in
the control condition (black). This is surprising given that we are
viewing the behaviour of the adaptation model.

Experiment 5 – Figure 2E shows the results due to
oddball stimulation. The frequency deviants (red) elicit stronger
responses than the standards (blue). The twist here is that the
presentation of the stimuli is anisochronous, with the stimulus
onset intervals (SOIs) being random.

To summarise, the adaptation model produces a wide variety
of MMNs which have been used as arguments against the
adaptation hypothesis (Experiments 1–4). It is beyond the
current scope to explore in detail what is generating the MMN
in each experiment. As explained in May et al. (2015), SSA
on the single-unit level is only part of the explanation, with
tuning to stimulus features also playing a major role. Omission
responses (Experiment 1) are to be expected as resonance

effects, given that interacting excitatory and inhibitory neural
populations are dynamically equivalent to driven oscillators with
damping (May and Tiitinen, 2001; Hajizadeh et al., 2019, 2021).
In addition, the omission response could be enhanced or even
caused by high-pass filtering acting on the sudden, omission-
related drop in the sustained activity which is elicited by fast-rate
stimulation (May and Tiitinen, 2010). As for the multi-standard
control results, these arise from the cortical columns being
interconnected rather than acting as isolated frequency channels.
Therefore, the response of each column depends not only on
the stimulation rate (which would be required for the multi-
standard control condition to be valid), but it is also modulated
by lateral connections and the pattern of synaptic depression over
the entire network, as established by the previous stimulation
(May and Tiitinen, 2010). This means, for example, that columns
that respond selectively to the standard-deviant combinations in
the oddball condition respond less vigorously when this pattern
is no longer dominant in the multi-standard condition, where
the deviant is preceded by multiple different stimuli (May, 2017).
This issue will be addressed in more detail in a separate paper.

ADAPTATION, PREDICTIVE CODING, OR
A BIT OF BOTH?

It is time to reconsider what we mean by the adaptation
model of MMN. The traditional model posits that adaptation is
merely the repetition suppression of individual isolated neural
populations. This version is really just a straw man that we should
abandon because the brain does not contain isolated populations.
A modern, updated adaptation model can be encapsulated thus:
There is no process, mechanism, cortical area, or set of pathways
that is dedicated to MMN generation, functionally separate from
the rest of auditory cortex. Instead, the physiological mechanism
that causes repetition suppression of neural responses (e.g., of
the N1), is the same as that which makes the MMN happen.
The candidate for this mechanism is STSD, which on its own
might seem low-level because it causes transient weakening
of synaptic connections. However, the effect of these synaptic
modulations on the system level is profound. This is because
synaptic depression happens in the context of an intricately
interconnected, hierarchically organised network containing
both excitation and inhibition. The stimulation at any one time
point leaves, via STSD, a slowly decaying, highly malleable
imprint on the functional structure of auditory cortex, that is, on
the multitude of synaptic strengths by which the auditory cortex
neurons are connected to each other. This functional structure
keeps evolving and, at any time point, represents a weighted
integration of all the stimulation that has occurred in a time
window stretching seconds into the past. Temporarily weakened
excitatory connections thus contribute to an attenuated response
if they belong to an excitatory feedback loop triggered by the
incoming stimulation, but they can contribute to an enhanced
response if the activated circuit drives inhibition. The response
of a neuron in auditory cortex thus intertwines the effect
of the stimulus with the effect of the stimulation history
and in this way is specific to both stimulus and history.
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FIGURE 2 | Simulation results. (A) Standard stimuli presented at a fast rate (blue curve) elicit no discernible response, whereas the occasional stimulus omission (red
curve) results in a prominent MMN. (B) Occasionally repeating a tone (red) in a sequence of alternating tones (blue) results in an MMN. (C) The blue curve is the
response to a sequence xxxxX of five tones presented as a global standard, and the red curve is the response elicited by the same xxxxX as an infrequent global
deviant. When the sequence is a global deviant, the ending of the sequence elicits a much stronger response than when it is a global standard. Zero time indicates
the onset of the fifth tone. (D) In the classic oddball paradigm, frequency deviants (red) elicit a stronger response than the standards (blue). The response to the
deviants is also stronger than the response elicited by the same deviants when these are presented as part of a random sequence of tones, in the so-called
multi-standard control condition (black). (E) Standards (blue) and deviants (red) were presented as a series of anisochronous stimuli where the SOI varied randomly.

Therefore, repetition suppression is only one of many possible
consequences of synaptic depression. These consequences show
up as context sensitivity and, perhaps counterintuitively, as
forward enhancement, depending on stimulation history (see

May and Tiitinen, 2013; May et al., 2015). While STSD is a root
cause of MMN, it plays a far wider role, enabling the gamut of
other dependencies on stimulation history. Thus, there is nothing
low-level about adaptation: while it is detected by using stimulus
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repetition – the simplest and the most boring of stimulation
paradigms – it reflects a fundamental mechanism whereby the
auditory cortex is able to keep track of the past in a way which
informs the way it responds to the present.

The version of the adaptation model used here has a
hierarchical structure in terms of the core, belt, and parabelt,
and in the above simulations, the feedback connections are
all excitatory. However, in contrast to the PC model, there is
no requirement for the feedback to be exclusively inhibitory,
and neither does it have to be exclusively excitatory; in either
case (not shown here), the model of auditory cortex is able to
generate MMN responses. The model suggests that the functional
significance of the hierarchical structure of the auditory cortex
lies in the way it modulates temporal binding. Namely, simulation
results suggest that the time window over which combination
sensitive responses occur increases as one moves up the core-
belt-parabelt hierarchy (May and Tiitinen, 2013; May et al., 2015;
Westö et al., 2016).

“Adaptation model” is somewhat of a misnomer because the
object of modelling is not the MMN but, rather, the auditory
cortex. Indeed, other modelling studies have similarly linked
STSD in auditory cortex to SSA (Mill et al., 2011; Yarden and
Nelken, 2017; Kudela et al., 2018) and to combination sensitivity
(Lee and Buonomano, 2012; Goudar and Buonomano, 2015).
Also, the current auditory cortex model is by no means complete.
It lacks input from, for example, the inferior frontal cortex (IFC),
which is known to contribute to the MMN response generated
in auditory cortex (e.g., Rinne et al., 2005; Tse et al., 2018; Lui
et al., 2021). The simulations can be taken as a demonstration that
the “local” processing happening in auditory cortex is sufficient
for the generation of MMN. There is no need to postulate a
top-down generative model outside auditory cortex. However,
it is still perfectly possible, even within the AM framework,
that IFC and other areas have a modulatory role in shaping
the MMN. Further, although mimicking the gross anatomy of
auditory cortex, the model is an extremely simplified description,
and it lacks, for example, long-term dynamics such as Hebbian
learning. Nevertheless, it is noteworthy that such a simple model
can mimic the behaviour of auditory cortex in so many ways and
levels of observation.

Can PC claim similar success? Certainly, the results from
Experiments 1–3 can be explained in terms of PC, as was done
in the modelling work of Wacongne et al. (2012). However,
explaining the omission MMN (Experiments 1 and 3) is not
straightforward because there is no sensory signal for the
prediction signal to suppress. Why, then, would there be an
error signal? Wacongne and colleagues suggested that in this
case, the MMN could reflect the activity of the prediction signal
itself. This explanation is problematic because this signal should
then be visible also when the prediction is successful, so that
we would measure MMNs to standards too. Instead, as in the
above simulation, the observed omission response tends to be
more prominent than the responses to the standards (Yabe et al.,
1997, 1998). Further, how does the generative model at the top of
the hierarchy actually emerge? On this question, PC accounts are
abstract and conceptual. For example, Wacongne and colleagues

implemented the generative model as a set of delay lines which
keep the stimulus-elicited signal in memory for precisely the
right time so that the signal can then be recycled back as a top-
down inhibitory prediction signal that coincides with the next
stimulus. Noting that this delay-line scheme is unrealistic, the
authors speculated that the generative model might in fact be
due to parts of cortex acting like an echo state network. This
is fair, and it will probably be a tremendous task to construct
a mechanistic explanation of how the brain creates, on the fly,
generative models to attempt to fit whatever the world is throwing
at it. Even though the brain could be adept at doing this, given
its pattern generating abilities, the generative model nevertheless
currently plays the role of deus ex machina in PC theory. The
existence of the generative model enthroned atop the hierarchy
is assumed rather than explained. Research has concentrated on
testing whether sensory responses are compatible with the PC
view, and it remains unaccounted for how the past evidence is
actually transformed into a projection of what the future most
likely holds. One exception is the study by Friston and Kiebel
(2009) where the generative model was a pair of Lorenz attractors
offering an abundance of priors which could recover the hidden
state of similar attractors driving the input. The input in this case
was simulated bird song, which has a precise frequency and time
structure. Thus, the requirement for the generative model was
the ability to provide prediction signals with the right intricate
timing. But how would such a precise system fare when the input
arrives at random times, such as in Experiment 5 and in the
MMN experiment of Schwartze et al. (2011)? This consideration
is different from the one concerning precision weighting of the
error signal. Rather, it concerns what form the actual generative
model should take. By what mechanism would the generative
model know when to employ temporal precision and when
not to? Further, with repetitive stimulation, the N1 amplitude
depends strongly on SOI: the rate of growth is strongest for
shortest SOIs (<1 s) before levelling off with longer SOIs. This
behaviour is easily replicated by the adaptation model (May et al.,
2015). From a PC perspective, one would need to explain why
the performance of the generative model deteriorates the fastest
when modelling the regularity should be the easiest.

The physiological evidence for PC is mixed, and the theory
has been criticized for being difficult to falsify (Walsh et al.,
2020) – something the adaptation model also suffers from.
There is thin evidence for the proposed separateness of neurons
representing predictions and prediction errors (Heilbron and
Chait, 2018) and it is unclear how PC might correlate with
perception (Denham and Winkler, 2020). Therefore, while
Bayesian inference seems to be a computational principle of
the brain, the actual implementation of it is uncertain, with PC
being one among many candidates (Rescorla, 2021). Perhaps
a reformulated version of Bayesian inference incorporating the
adaptation model might be worth considering. The pattern of
STSD could be seen as a posterior model for sensory stimuli,
though of course not a generative one. A separate version of the
model will exist on each level of the hierarchy, updating itself
based on local information. In this view, the MMN can still be
seen as an error signal, but one perhaps targeting a generative
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model on the highest level of attention and action selection.
It is possible that the brain uses local adaptation and PC in
tandem but for different purposes: One the one hand, adaptation
might be central to bottom-up change detection which drives
involuntary attention shifts and is expressed in the MMN. On
the other hand, PC might be the top-down mechanism which
suppresses task-irrelevant signals in auditory cortex according to
a generative model. This model would selectively describe those
signals that need to be filtered out and this selection would be a
function of the attentional set rather than just signal probability.
Evidence for this kind of top-down, attention-related inhibition
of sensory processing can be found in the visual system in the case
of visual marking (Watson and Humphreys, 1997; Braithwaite
and Humphreys, 2003, 2007), and it could be present in the
auditory system also.

CONCLUSION

It is too early to discard the adaptation model as an explanation
of deviance detection as revealed in the MMN. Its modern
version is able to reproduce a wide variety of MMN responses as
well as intracortical results. PC as currently formulated provides
a mostly conceptual explanation, and therefore it is difficult
to contrast the relative successes of these models. Whilst the
adaptation model is incomplete and it lacks the normative
power and elegance of predictive coding, there are challenges

ahead before the PC can match the adaptation model on a
mechanistic level.
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