
The Retinoblastoma Tumor Suppressor Pathway Modulates the 
Invasiveness of ErbB2 Positive Breast Cancer

Agnieszka K. Witkiewicz1,2,*, Derek W. Cox1, Dayana Rivadeneira3, Adam E. Ertel3, Paolo 
Fortina3, Gordon F. Schwartz4, and Erik S. Knudsen1,2,*

1Department of Pathology, UT Southwestern Medical Center, Dallas TX

2Simmons Cancer Center, UT Southwestern Medical Center, Dallas TX

3Department of Cancer Biology, Thomas Jefferson University, Philadelphia PA

4Department of Surgery, Thomas Jefferson University, Philadelphia PA

Abstract

The processes that control the progression of ductal carcinoma in situ (DCIS) to invasive breast 

cancer remain poorly understood. Epidermal growth factor receptor 2 (ErbB2) over expression is 

common in DCIS, as is disruption of the retinoblastoma tumor suppressor (RB) pathway. Here we 

examined the cooperative impact of ErbB2 and RB deregulation on facets of disease progression. 

Our studies demonstrate that RB deficiency altered the expression of key molecules needed for 

proper cellular organization and epithelial cell-cell adhesion as part of a program related to the 

epithelial to mesenchymal transition (EMT). An increase in the invasive potential of ErbB2 over 

expressing cells was observed upon RB depletion. Furthermore, stable knockdown of RB resulted 

in invasive lesions in orthotopic xenograft assays, compared to DCIS-like lesions developing from 

RB-proficient cells. Conversely, the invasive phenotype observed in ErbB2-positive cancer 

models was inhibited through CDK4/6 inhibition in an RB-dependent manner. Lastly, in a cohort 

of DCIS cases, we show that while elevated levels of ErbB2 are associated with increased risk of a 

subsequent DCIS recurrence, it is not associated with progression to invasive disease. In contrast, 

RB loss in ErbB2 positive DCIS cases was associated with increased risk for invasive breast 

cancer. Taken together, these data demonstrate a key role for the RB-pathway in invasion 

associated with breast tumor progression, and shed light on the key molecular events that promote 

the progression of DCIS to invasive disease.
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Introduction

A significant fraction of radiologically detected breast lesions are subsequently diagnosed as 

ductal carcinoma in situ (DCIS). With universal mammographic screening, the frequency of 

DCIS diagnosis has dramatically increased over the last twenty years (1, 2). While DCIS is 

generally associated with a favorable outcome, if left untreated, ∼40% of DCIS cases will 

progress to invasive disease that is potentially life-threatening (3). Therefore, veritably all 

patients diagnosed with DCIS are treated. Standard treatment for DCIS includes surgical 

resection of the lesion, typically followed by adjuvant radiation and/or or hormonal therapy 

(4, 5). Although effective at preventing the mortality associated with breast cancer, it is well 

appreciated that DCIS management could be improved (6). Due to an inability to efficiently 

stratify DCIS cases at high-risk of disease progression, many patients are treated with 

unnecessary adjuvant therapies that likely provide no clinical benefit (7-9). Conversely, a 

minor subset of DCIS recurs and progresses in spite of such interventions. Thus, there is a 

significant need to elucidate pathways that contribute to disease progression upon which to 

tailor therapeutic intervention.

The prognostic determinants of DCIS have lagged behind the detailed molecular analyses of 

invasive breast cancer (6). However, recent analyses of clinical specimens have revealed 

several features of DCIS that are associated with progression to invasive breast cancer (10, 

11). Gene expression profiling from several groups comparing DCIS with invasive breast 

cancer has shown that a gene expression program associated with the epithelial to 

mesenchymal transition (EMT) is a unique property associated with invasive breast cancer 

(10, 11). These findings indicate that DCIS undergoing EMT would have a propensity to 

progress to invasive disease. Epithelial tissues are characterized by cytokeratins (CK), 

junctional complexes at cell-cell contact areas, and basal attachment to a basement 

membrane (12-14). These architectural components are important for epithelial cell 

homeostasis (15, 16), and the loss of such components as occurs during the process of EMT 

is associated with metastatic/invasive disease.

In parallel, with the molecular profiling analyses a number of studies have investigated 

specific oncogenic or tumor suppressive signaling proteins in DCIS. These targeted studies 

have utilized immunohistochemical or functional analysis to define pathways associated 

with the pathogenesis of DCIS. The ErbB2 oncoprotein is an important biomarker associated 

with advanced breast cancer classification, prognosis and therapeutic intervention (17-19). 

While ErbB2 over expression is observed in more than half of high-grade DCIS cases (20, 

21), its prognostic value in DCIS is less clear. Studies of epithelial cell organization 

performed in three dimensional (3D) culture models have shown that ErbB2 over expression 

alone is not sufficient to induce cell invasion (22, 23). Correspondingly, ErbB2 over 

expression in DCIS has been associated with increased risk of disease recurrence, but not 

progression (24). Therefore, there are likely pathways that cooperate with ErbB2 to drive the 

progression to invasive disease. Amongst the pathways interrogated in DCIS, disruption of 

the retinoblastoma tumor suppressor (RB) pathway has been shown to be significantly 

associated with recurrence and disease progression of DCIS in multiple independent cohorts 

using different methodologies including direct staining and use of surrogate markers such as 

p16ink4a and Ki67 (24-27). RB is a key negative regulator of proliferation that links 
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multiple signaling pathways to the cell cycle machinery (28, 29). The RB-pathway is 

functionally disrupted in breast cancer by several mechanisms including the loss of 

heterozygosity at the RB1 locus in ErbB2 over expressing breast cancer subtypes (30, 31). 

Taken together, these studies suggest a potential role for the cooperation between RB loss 

and ErbB2 over expression in specifically driving DCIS progression.

Results

Loss of RB and ErbB2 over expression results in deregulated mammary cell proliferation 
and acinar growth

In order to interrogate the individual and combined effect of RB loss and ErbB2 over 

expression, we utilized the immortalized mammary epithelial cell line MCF10A. Stable 

polyclonal RB-knockdown MCF10A cell line (MCF10A miRB) and scrambled control cell 

line (MCF10A miNS) are shown in Figure 1A. Biochemical analysis of the expression of 

downstream RB/E2F target genes (Cyclin A and MCM7) demonstrated minimal differences 

in protein expression from cells grown in culture as a monolayer (Figure 1A, top panel), as 

well as minimal change in proliferation as shown by BrdU incorporation (Figure 1A, bottom 

panel). To interrogate the phenotypic effects of pathway perturbation on the glandular 

organization of mammary epithelia, 3D cultures were employed (32, 33). RB-proficient 

MCF10A cells (miNS) generated normal acinar structures displaying growth arrest by 10 

days as depicted by Ki67 staining. In contrast, RB-deficient cells showed approximately a 

30% proliferation rate even after 10 days of culture (Figure 1B). To investigate the impact of 

RB loss in the context of ErbB2 over expression, we over expressed ErbB2 in RB-deficient 

MCF10A cells as shown in Figure 1C. These cultures exhibited similar levels of ErbB2 as 

observed in ErbB2 positive breast cancer cell lines, and demonstrated relatively uniform loss 

of RB throughout the culture as determined by immunofluorescence microscopy 

(Supplemental Figure 1). Similar to results displayed in Figure 1A, RB depletion resulted in 

minimal alterations in the expression of RB/E2F target genes (Cyclin A, MCM7) in ErbB2 

over expressing MCF10A cells, and proliferation rates remained virtually unchanged 

compared to RB-proficient cells (Figure 1C). In the presence of ErbB2 over expression, RB-

proficient and RB-deficient acinar structures exhibited similar proliferation rates as 

determined by Ki67 staining (Figure 1D). Thus, in the context of proliferation, loss of RB 

has little impact over that observed by ErbB2 over expression alone.

Combinatorial effect of ErbB2- and RB-pathways on acinar morphology

While RB-deficiency had little impact on the proliferation of ErbB2 over expressing 

mammary cells, a noticeable impact on the morphology of the acinar structures was 

observed (Figure 2A). RB-proficient and RB-deficient cells generated spherical acini with a 

hollow lumen, and well-organized actin expression throughout the epithelial cells as 

determined utilizing phalloidin staining (Figure 2A, top left panels). Consistent with the 

enhanced proliferation observed with RB loss in MCF10A acini, an increase in acini volume 

was observed (Figure 2A, bottom left panel). However, as previously shown (22), ErbB2 

over expressing MCF10A cells displayed a multi-acinar phenotype and absence of a hollow 

lumen (Figure 2A, top right panels). Consistent with the minimum difference in proliferation 

rates, minimal difference in acinar volume was observed with RB-deficiency in cells 
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expressing ErbB2 (Figure 2A, bottom right panel). However, the combined perturbation of 

the ErbB2- and RB-pathways resulted in further disorganization of the structures, with the 

appearance of “stellate” acinar morphology as shown by phase contrast images (34), with 

cellular protrusions escaping from the acinar structure into the surrounding matrigel (Figure 

2A, right panels). The appearance of aberrant invasion into the surrounding matrix could be 

observed as early as 3 days post-plating (not shown), and was clearly apparent within 6 days 

(Figure 2B).

Gene expression profiling defines impact of RB deficiency on features of epithelial biology 
and invasion

To define how RB loss influences the acinar morphology of ErbB2 over expressing cells, 

gene expression profiling of RB-proficient and RB-deficient ErbB2 over expressing 

MCF10A cells grown in 3D cell culture was performed (Figure 2C). These data revealed a 

significant number of genes that were reproducibly up and down regulated with RB 

depletion (Supplemental Table 1). Amongst down-regulated genes there were a substantial 

number of genes associated with epithelial differentiation, cell-cell adhesion, and tissue 

function. Gene set enrichment analysis (GSEA) was utilized to compare the genes defined in 

our microarray analysis to previously described EMT core gene expression signature that is 

specifically associated with invasive breast cancer vs. DCIS (35). The data from the 

combined deregulation of the ErbB2- and RB-pathways showed a strong overlap (p<1E-5) 

with this EMT core signature (Figure 2C, middle panel) and revealed a significant decrease 

in the expression of multiple epithelial markers (KRT18, KRT15, KRT17) and structural and 

cell adhesion molecules important for epithelial architecture (ITGB4, JUP, DSG1, SFN) 

(Figure 2C, right panel). Thus, RB loss has a significant impact on the acinar morphology of 

ErbB2 overexpressing cells and alters the expression of molecules implicated in EMT.

Loss of epithelial characteristics and impact of RB loss on polarity

To functionally validate the gene expression data, western blotting and immunofluorescence 

microscopy was performed. As shown, there was significant down-regulation of multiple 

cytokeratins at the protein level with RB-knockdown in ErbB2-expressing MCF10A cells 

(Figure 3A). There was a concordant reduction in cytokeratin expression as determined by 

fluorescence microscopy in 2D cultures (Figure 3B). These findings were also apparent in 

3D cultures (Figure 3C). Correspondingly, junctional plakaglobin (JUP), which is a critical 

adhesion molecule, was significantly reduced consistent with the gene expression analyses 

(Figure 3D). While the levels of E-Cadherin were only modestly reduced as determined by 

microarray; there was a deficit in E-Cadherin expression/localization that was apparent in 

disorganized acinar structures at and the leading edge of ErbB2-positive and RB-deficient 

cells grown in 2D (Figure 3D). Together these data indicate that there is substantial decrease 

in the expression of key epithelial specific proteins that are important for tissue architecture 

and invasion. An important characteristic of normal acini is the deposition of basement 

membrane components such as Laminin V (36). While uniform basal Laminin V expression 

was displayed around RB-proficient ErbB2 over expressing acini, RB-deficient ErbB2 over 

expressing cells harbored diffuse Laminin V expression throughout the acini, indicating 

disruption of cellular polarization (Figure 3E). Taken together, these data indicate that upon 

RB loss in ErbB2 over expressing cells, there is a disruption of cell polarity and defective 
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cell-cell junction complexes through both changes in gene expression and molecule 

localization that could lead to the deregulation of key cellular functions such as cell motility.

RB loss promotes invasive properties in ErbB2 expressing mammary epithelial cells and 
breast cancer cell lines

To determine if RB-deficiency had an effect on cell motility, the migratory and invasive 

activity of RB-proficient and RB-deficient ErbB2 over expressing cells was assessed by 

Boyden chamber assays. While loss of RB or over expression of ErbB2 alone was observed 

to increase the migratory ability of MCF10A cells, the combined deregulation of the ErbB2- 

and RB-pathways demonstrated a cooperative enhancement of cell migration (Figure 4A). 

Upon examination of cell invasion, we found that while RB loss alone had minimal impact 

on the invasive potential of MCF10A cells, ErbB2 over expression significantly increased 

cell invasion (Figure 4B). Furthermore, combined deregulation of the ErbB2- and RB-

pathways resulted in an ∼2-fold increase in cell invasion over ErbB2 over expression alone. 

These effects were dependent on downstream signaling through the ERK and AKT 

pathways. Specific pharmaceutical inhibition of AKT had a dramatic impact on invasion of 

all cells, while inhibition of ERK signaling had a particular impact on RB-deficient models 

(Supplemental Figure 2). These results suggest that RB-deficiency contributes to a more 

invasive phenotype in ErbB2 expressing mammary epithelial cells.

To determine whether the impact of RB loss on cell invasion was also relevant in established 

ErbB2 positive breast cancer models, we generated RB-deficient SKBR3 and BT474 cell 

lines as shown in Figure 4C and 4D. Consistent with results observed in the MCF10A 

models, RB loss resulted in only a slight increase in RB/E2F target genes protein expression 

(MCM7, Cyclin A, PCNA) and cell proliferation as demonstrated by BrdU incorporation in 

both cell lines (Figure 4C, D). However, despite the minimal effects on proliferation, a 

significant increase was observed in cell migration (Figure 4E) and cell invasion (Figure 4F) 

in both RB-deficient SKBR3 and BT474 cells. These data indicate that RB loss can enhance 

cell migration and invasion in ErbB2 positive breast cancer cells.

Pharmaceutical activation of the RB-pathway prevents abnormal multi-acini growth and 
cell invasion

Our data indicate that RB loss cooperates with ErbB2 in promoting invasive behavior. To 

investigate whether activation of the RB-pathway could have an inhibitory effect on the 

invasive phenotype observed with ErbB2 over expression, we used a highly specific 

CDK4/6 inhibitor PD-0332991 (PD) (37, 38). The ability of PD0332991 to decrease 

RB/E2F gene expression and inhibit cell proliferation in MCF10A cells has been previously 

established (39). As shown in Figure 5A, inhibition of CDK4/6 was exceedingly effective at 

repressing RB/E2F gene expression (MCM7, Cyclin A, PCNA) and cell proliferation even 

in cells harboring ErbB2 over expression. This inhibition of proliferation was observed in 

both 2D and 3D cell cultures (Figure 5A). Interestingly, CDK4/6 inhibition was also 

effective at preventing the formation of multi-acini structures in 3D culture (Figure 5B, left 

panel), and significantly inhibited cell invasion (Figure 5B, right panel). These effects were 

dependent on RB status as shown by the minimal effect of PD0332991 on invasive 

phenotype of RB-deficient cells (Figure 5B, right panel).
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To determine if CDK4/6 inhibition could be effective in inhibiting proliferation of RB-

proficient, ErbB2 over expressing breast cancer populations, we analyzed the effects of 

PD0332991 on BT474 cells. Indeed, CDK4/6 inhibition significantly decreased RB/E2F 

target gene expression, as well as cell proliferation of BT474 cells in both 2D and 3D culture 

(Figure 5C). Importantly, PD-0332991 treatment dramatically inhibited the formation of 

abnormal acini structures, and repressed cell invasion in an RB dependent manner (Figure 

5D). Combined, these data suggest that targeting the RB-pathway could be a potential 

therapeutic option for the treatment of ErbB2 over expressing breast cancer limiting both 

proliferation and the ability of such cells tumors to invade.

RB plays a role in limiting invasive progression in vivo

Several commonly utilized breast cancer cell lines have been classified as weakly invasive, 

such as ZR75-1, MDA-MB-453, and SKBR3 cells (40). To examine the ability of RB loss to 

enhance the invasive potential of ErbB2 over expressing breast cancer cells in vivo, we 

injected RB-proficient and RB-deficient ErbB2-positive SKBR3 cells into the mammary fat 

pad of ten-week-old NOD/SCID mice. This model system gave rise to ErbB2 over 

expressing DCIS lesions after six months (Figure 6A). Smooth muscle actin (SMA) and 

ErbB2 staining was used to demonstrate ErbB2 over expressing DCIS lesions confined by a 

continuous myoepithelial layer (Figure 6A). Importantly, this confined structure was 

dependent on the presence of RB, as RB-deficient SKBR3 lesions displayed an invasive 

phenotype as indicated by the poorly defined SMA expression (Figure 6A and 6B) and 

invasion of proliferative cells into the surrounding stroma (Ki67, Figure 6B). Consistent 

with our in vitro analyses, no difference in proliferation was observed between the RB-

proficient and RB-deficient lesions (Ki67, Figure 6B), indicating that the impact of RB loss 

in the context of ErbB2 over expression is predominantly associated with cell adhesion and 

epithelial cell motility.

RB deficiency modifies the risk of recurrence and progression in Her2-positive DCIS

The observation that RB-deficiency is associated with enhanced invasive properties and 

cooperated with ErbB2 over expression, supported a combined role for the two pathways in 

DCIS progression. We employed a cohort of 226 cases of DCIS for which ErbB2 and RB 

status were determined. These patient that were treated with surgery in the absence of 

adjuvant therapy, with long-term followup (median 8.6 years)(26). This cohort provides the 

opportunity to specifically evaluate prognostic markers of ipsilateral breast events or 

invasive progression. Optimized staining for ErB2 and RB was performed (representative 

images, Figure 7A). Consistent with other studies (41), elevated ErbB2 expression (3+ 

staining) is observed in DCIS and is associated with a modest increase in risk for subsequent 

DCIS recurrence (Figure 7B). However, overexpression of ErbB2 is not associated with 

increased risk for invasion (p>0.05). In ErbB2-positive DCIS, histochemical RB loss was 

observed in approximately 25 percent of cases. In this setting RB loss was associated with a 

further increased risk for recurrence within ErbB2-positive and importantly was also 

significantly associated with progression to invasive breast cancer (Figure 7C). These data, 

suggest that loss of RB can contribute to the function of ErbB2 in driving disease 

progression.
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Discussion

Breast cancer is a complex and heterogeneous collection of disease conditions. While 

sophisticated treatment approaches are employed in the context of invasive disease; there is 

significant uncertainty related to how to best treat DCIS (6, 24, 42-44). Surgical resection 

coupled with adjuvant therapy, is the mainstay of therapy with little consideration of 

underlying pathways that may be relevant to disease course and risk of progression to 

invasive breast cancer. Here we evaluated the cooperative impact of ErbB2 and RB 

pathways that are frequently dysregulated in DCIS.

Work from multiple groups has shown that ErbB2 has an important impact on the biology of 

mammary epithelial cells. In 3D cultures, ErbB2 promotes both proliferation and cellular 

survival leading to filled acinar structures that exhibit specific architectural alterations (22, 

32). In spite of these potent effects, and consistent with our observations reported here, 

ErbB2 is not sufficient to drive invasion into the surrounding matrix. RB-deficiency had 

relatively modest effects on the proliferation of mammary epithelial cells, and they still 

exhibited apoptosis leading to hollow acinar structures; however, RB-deficiency potently 

cooperated with ErbB2 loss. Most strikingly, RB-deficiency allowed mammary epithelial 

cells to rapidly invade out of the 3D structure and away from the primary acinus, leading to 

a stellate morphology. This finding was not associated with a significant increase in 

proliferation; underscoring a non-canonical function for RB loss in this setting. Gene 

expression profiling revealed a significant change in expression of a number of cellular 

components involved in cell-cell adhesion and cellular architecture. GSEA analysis showed 

a strong overlap between the genes down-regulated in RB-deficient ErbB2 over expressing 

cells and the EMT core signature generated by Dr. Weinberg's group (35). It is widely 

accepted that in order to activate invasion and metastasis, disruption of the cellular 

architecture, cell-cell adhesions and cell polarity must occur (45, 46). It should be noted that 

the molecular changes observed in our models, most recapitulate loss of an epithelial 

phenotype as opposed to full EMT as there was not a concomitant increase in mesenchymal 

gene expression. However, there were significant parallels between the findings from our in 

vitro studies, and the finding that a key difference between DCIS and invasive breast cancer 

is an EMT gene expression program(47).

Paramount to disease progression in breast cancer, is the ability for the cancer cells in DCIS 

to invade out of the duct into the surrounding stroma. The biology surrounding this feature 

of disease is under intense scrutiny, and likely reflects a number of acquired mutations/

epigenetic alterations in the DCIS lesion. ErbB2 is noted for promoting proliferation and 

invasion; however, invasive effects were strongly augmented by RB knockdown in 3D 

culture and Boyden chamber assays. This activity of RB was blocked by both ERK and 

AKT inhibition, indicating that there is a specific dependency on these signaling pathways. 

While distinct cells invaded out of acinar structures, analyses of AKT signaling by 

immunostaining of 3D cultures did not indicate that such cells were particularly deregulated 

for ErbB2-mediated signaling (not shown). Importantly, RB loss had a significant impact on 

the characteristics of ErbB2-positive tumor cell growth in orthotopic models, where it 

facilitated dissemination in to the stroma of the mammary gland. These findings would 

suggest a functional role for RB and ErbB2 in disease progression. This supposition was 

Witkiewicz et al. Page 7

Oncogene. Author manuscript; available in PMC 2015 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



supported by the analyses of DCIS cases with long-term followup. In this context, ErbB2 is 

a determinant of recurrence, but is not associated with disease progression. However, in 

ErbB2 positive DCIS, RB loss was associated with further increased risk of recurrence but 

uniquely invasive progression. These findings suggest that composite low ErbB2 and 

positive RB status could be useful for delineating DCIS at low-risk for recurrence/

progression that could be treated by surgery alone.

Disruption of the RB pathway is likely an important factor contributing to progression of 

ErbB2 over expressing DCIS. In many contexts, RB inactivation is mediated through the 

action of cyclin D1 which is frequently over expressed and amplified in breast cancer (48). 

Thus, pharmacological inhibition of cyclin D-associated kinase activity could represent an 

effective means to repress proliferation of such lesions. Our group and others have 

demonstrated the efficacy of reactivating RB function and cell cycle arrest in various types 

of cancer, including breast cancer, through pharmacological CDK4/6 inhibition (49, 50). In 

the present study, exposure to the CDK4/6 inhibitor PD-0332991 induced a potent cell cycle 

arrest among RB-proficient, ErbB2 positive cancer cells. Since this is a cytostatic 

compound, it is crucial to delineate its influence on possible tumor spread. Treatment with 

PD-0332991 inhibited the invasive properties of ErbB2-positive models in Boyden chamber 

and 3D culture, which was largely dependent on RB. Presently, PD-0332991 is undergoing 

phase II/III evaluation in ER positive breast cancer. Thus, for women presenting with Erb2 

positive disease PD-0332991 could represent a means to both repress cell proliferation and 

invasion associated with progression to advanced disease.

The present study demonstrates that loss of RB function can have a significant impact in 

disease progression in ErbB2 positive breast cancer by disrupting normal epithelial cell 

architecture and organization. Additional studies with independent DCIS cohorts are needed 

to further validate the prognostic value of RB-pathway disruption in ErbB2 over expressing 

DCIS cases. Furthermore with the emergences of next generation CDK4/6 inhibitors, RB-

pathway analysis will allow for stratification of patients that are likely to respond to novel 

target therapies. Overall our study shows that the RB-pathway plays an important role in 

Erbb2 positive disease and could be utilized as a biomarker for invasive disease and target 

for novel therapeutic regimens.

Materials and Methods

Cell culture

MCF10A cells were maintained in DMEM/F12 supplemented with 5% Horse Serum, 

20ng/ml EGF, 10ug/ml insulin, 1ng/ml cholera toxin, 100ug/ml hydrocortisone, 100U/ml 

penicillin/streptomycin and 2mM L-glutamine. BT474 cells were propagated in DMEM 

containing 10% FBS supplemented with 100 U/ml penicillin/streptomycin and 2mM L-

glutamine at 37°C and 5% CO2. SKBR3 cells were propagated in RPMI containing 10% 

FBS supplemented with 100 U/ml penicillin/streptomycin and 2mM L-glutamine at 37°C 

and 5% CO2.
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Viral expression plasmids and infections

pMSCV-LMP-miRB and pMSCV-LMP-miNS vectors were used to generate Rb-targeting 

(miRB) or non-specific control (miNS) recombinant retroviruses as previously described 

(49). pDONR223-ERBB2 was a kind gift from Dr. Andrew Aplin (Thomas Jefferson 

University). Plasmid was originally purchased from Addgene (plasmid 23888) and 

recombined using LR Clonase II from Invitrogen into pLenti6/UbC/V5-DEST from 

Invitrogen to generate pLenti6/UbC/V5-GW/ERBB2. pLenti6/UbC/V5-GW/lacZ was 

purchased from Invitrogen. Retroviral infections of MCF10A, SKBR3 and BT474 cells were 

performed as previously described (39). Lentiviral infection was done by incubating 

MCF10A cells with ErbB2 lentivirus for 48 hours. Non-infected cells were eliminated by 

selection with G418.

Drug Treatments

The specific CDK4/6 inhibitor PD-0332991 (PD) was used as previously described (37, 38). 

Stock solutions of PD (100μM) were prepared in dimethyl sulfoxide (DMSO) and cells were 

treated with the 1μM PD for times indicated.

BrdU labeling and bivariate flow cytometry

For cell proliferation analysis cells were incubated with bromodeoxyuridine (BrdU) 

(Amersham Pharmacia Biotech) for one hour before harvest. Cells were washed in PBS, 

fixed in cold 70% ethanol and bivariate flow cytometry was utilized for dual analysis of 

BrdU incorporation and total DNA content as previously described (51).

Immunoblot Analysis

Equal total protein was resolved by SDS-PAGE. Proteins were detected by standard 

immunoblotting procedures using the following primary antibodies: hCyclin A (H432), 

RNR2 (I-15), MCM7 (141.2), PCNA (PC10), ErbB2 (SP3, Freemont, CA, USA), Lamin B 

(M-20) (Santa Cruz Biotechnology, Santa Cruz, CA, USA), RB (G3–245) (Becton Dickson, 

Franklin Lakes, NJ, USA,).

Three-Dimensional (3-D) Cultures of Mammary Epithelial Cells

Cells were treated with trypsin and resuspended in Assay medium (DMEM/F12 

supplemented with 2% horse serum, 10μg/ml insulin 1ng/ml cholera toxin, 100μg/ml 

hydrocortisone, 100 U/ml penicillin/streptomycin and 2mM L-glutamine at a concentration 

of 25,000 cells per ml. Eight-chambered RS glass slides (Nalgene Nunc. Naperville, IL) 

were coated with 40μl Matrigel (BD Bioscience Bedford, MA, USA) and solidified for 30 

min. The cells were mixed 1:1 with assay medium containing 4% Matrigel and 10ng/ml 

EGF. 400μl of cells mixture was added to each well with 5,000 cells per chamber. Assay 

media was replaced every 4 days.

Quantification of Mammary Acini Growth

Acini growth was monitored by imaging MCF10A miNS and MCF10A miRB acini using an 

Olympus 80X microscope with a 10X objective connected with a cooled charge-coupled 

device camera. Diameters were measured at the middle optical section of each acinus, with 
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the support of Image J software. A minimum of 50 acini were scored for each genotype. 

Volume was calculated using the acquired diameter and the formula (4/3πr3).

Immunofluorescence analysis

Immunofluorescence staining of acini was performed as previously described (52). For 

details on antibodies refer to table in supplemental material and methods. Staining in 2D was 

performed on methanol fixed cells using the antibodies summarized in the supplemental 

materials.

Migration and Invasion Assays

MCF10A cells were seeded (5 × 104 cells) on Boyden Chambers (Franklin Lakes, NJ; 

BioCoat 354578) under low serum conditions. Complete growth medium was added to the 

wells as the chemo-attractant. Chambers were placed in wells containing complete medium. 

The cells on the lower surface of the membrane were counterstained with 4,6-diamidino-2-

phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA). Cells were scored with a 

fluorescent microscope.

RNA extraction from 3D acini cultures

Media was aspirated from 8-well chamber-slides and added 250 μl of RNA-STAT-60 (Tel-

Test, Friendswood, TX, USA) to each well. Immediately the mixture of cells and matrigel 

was resuspended several times and collected in an Eppendorf tube. Following steps were 

followed according to manufacturer's instructions.

Microarray sample preparation and hybridization

RNA was quantified on a NanoDrop spectrophotometer, followed by RNA quality 

assessment on an Agilent 2100 bioanalyzer (Agilent, Palo Alto, CA, USA). Amplification of 

cDNA was performed using the Ovation Pico WTA-system V2 RNA amplification system 

(NuGen Technologies, Inc.). Briefly, 50 ng of total RNA was reverse transcribed using a 

chimeric cDNA/mRNA primer, and a second complementary cDNA strand was synthesized. 

Purified cDNA was then amplified with ribo-SPIA enzyme and SPIA DNA/RNA primers 

(NuGEN Technologies, Inc.). Amplified ST-cDNA was purified with Qiagen MinElute 

reaction cleanup kit. The concentration of Purified ST-cDNA was measured using the 

Nanodrop. 2.5 μg ST-cDNAs were fragmented and chemically labeled with biotin to 

generate biotinylated ST-cDNA using FL-Ovation cDNA biotin module V2 (NuGen 

Technologies, Inc.).

Affymetrix GeneChip Human Gene 1.0 ST arrays (Affymetrix, Santa Clara, CA), were 

hybridized with fragmented and biotin-labeled target (2.5 μg) in 110 μl of hybridization 

cocktail. Target denaturation was performed at 99°C for 2 min. and then 45°C for 5 min, 

followed by hybridization for 18 h. Arrays were then washed and stained using Gene chip 

Fluidic Station 450, and hybridization signals were amplified using antibody amplification 

with goat IgG and anti-streptavidin biotinylated antibody. Chips were scanned on an 

Affymetrix Gene Chip Scanner 3000, using Command Console Software.
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Microarray Normalization

Raw data files from the Affymetrix GeneChip Human Gene 1.0 ST arrays were processed 

using Affymetrix Expression Console version 1.1. Gene-level expression measurements 

were computed using the iterPLIER algorithm on the “core” probesets and exported with 

annotation release 32, dated June 23rd, 2011. Additional array preprocessing was performed 

in Matlab version 7.13.0 (R2011b), where expression values were converted to iterPLIER

+16 by adding 16, and then transformed to log2 scale. Prior to analysis, data was filtered to 

exclude probesets with no gene annotation, and genes with multiple probesets were handled 

by averaging their rows together and scaling by the probeset with the largest standard 

deviation. Additional data filtering and differential expression analysis were performed in 

matlab.

Differential expression analysis

Differential gene expression analysis expression analysis between sample conditions 

samples was using a two-sample t-test with unequal variance. 10000 sample permutations 

were performed for improved p-value estimations. To account for multiple testing, p-values 

were adjusted based on the estimated false discovery rate (FDR), using the procedure 

introduced by Storey, 2002 (53). For increased statistical power, genes with variance below 

the 50th percentile or expressed below the 25th percentile in over 90% of the samples being 

compared were assigned an adjusted p-value of 1 and filtered out prior to false discovery 

rate estimation (54). Differentially expressed genes were identified as those with an adjusted 

FDR ≤ 0.25 and minimum 1.5 fold change.

Gene set enrichment analysis

A collection of previously described gene sets was analyzed for enrichment in ErbB2-

overexpressing miRB cells. Specific gene sets include epithelial-to-mesenchymal transition 

genes reported in Taube 2010 (35). The Gene Set Enrichment Analysis (GSEA) software 

tool (55) was used to identify similarities between expression profiles in our microarray 

dataset the previously reported disease progression/invasion gene sets.

Mammary fat Pad injections, histology and immunohistochemistry

Mammary gland tissue was embedded in paraffin and sectioned at 4 μm. Tissue sections 

were deparaffinized in xylene and rehydrated through an ethanol gradient. For histological 

analysis, tissue sections were stained in hematoxylin and eosin (H&E) using standard 

staining techniques. Immunohistochemistry was performed as previously described (56). 

Experiments were conducted in accordance with the NIH Guide for Care and Use of 

Laboratory Animals and approved by the Thomas Jefferson University Institutional Animal 

Care and Use Committee. For orthotopic injections mice were anesthetized with the use of 

Isoflourane. We then performed a Y-incision on the abdomen in order to expose the inguinal 

gland. 5×106 cells were resuspended in 100 ul of PBS and injected in the left mammary fat 

pad. Incisions were closed and mice were monitored every week.
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DCIS patient cohort and immunohistochemistry

The DCIS cohort was developed from patients who underwent surgical resection from 1978 

to 2008, with median 8.6 years follow up. Detailed demographic information has been 

previously described. Cases were included for whom tissue was available for staining with 

both ErbB2 and RB. ErbB2 staining (clone 4B5) was performed on the BenchMark XT 

Slide Preparation System following the manufacturer's guidelines (Ventana Medical 

Systems, Tucson, AZ). RB was stained by employing a standard immunoperoxidase method 

(dilution 1:50, clone 1F8, Thermoscientific).

Statistical Analyses

Statistical analyses were performed with GraphPad Prism software (La Jolla, CA). P- values 

were calculated by performing Student t tests. P< .05 was considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RB-deficient or ErbB2 over expression promotes bypass of acini growth arrest
(A) Cells stably expressing miRB or miNS were analyzed by immunoblot for the indicated 

proteins (top panel). BrdU incorporation was analyzed by bivariate flow cytometry and data 

are the average of at least three independent experiments; bars, SD (bottom panel). (B) Ki67 

staining (green) on 10 day acini, (40X) and Ki67 quantification from at least three 

independent experiments scoring a minimum of 20 acinus; bars, SD (***P < .0001). (C) 
Cells were infected with ErbB2 lentivirus and subsequently infected with miRB or miNS 

retroviruses. Cells were harvested and cell lysates were analyzed by immunoblot for the 

Witkiewicz et al. Page 16

Oncogene. Author manuscript; available in PMC 2015 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicated proteins (top panel). BrdU incorporation was analyzed by bivariate flow cytometry 

and data are the average of at least three independent experiments; bars, SD (bottom panel). 

(D) Ki67 staining (green) on 10 day acini (40X) and Ki67 quantification from at least three 

independent experiments scoring a minimum of 20 acinus; bars, SD.
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Figure 2. Combined effect of ErbB2- and RB-pathway deregulation on acinar morphology
(A) Phase contrast images of acini (10X) were used to measure acini diameters and > 50 

acini were scored for each genotype; bars, SD (***P < .0001) Phalloidin staining (red) was 

performed on acini grown for 10days (40x). (B) Phase contrast images of acini (20X) were 

used to visualize stellate acinar structures. Representative images are shown. (C) Gene 

expression data comparing MCF10A/ErbB2 miNS and MCF10A/ErbB2 miRB grown in 3D 

cultures. Changes in gene expression are displayed as a heat map (left panel). GSEA 

associated with the Taube-EMT signature (middle panel) and representative genes with 

corresponding fold change and P-values are highlighted (right panel).
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Figure 3. RB loss compromises the integrity of cell-cell adhesion complexes
(A) Immunoblot analysis of MCF10A ErbB2 cells either transduced with miNS or miRB are 

shown for the indicated proteins. (B) Representative images of cells in 2D cultured stained 

for the indicated cytokeratins. (C) Representative images of CK18 stained in 3D cultures. 

(D) Representative images of cells in 2D stained for junctional plakoglobin (JUP). (E) 
Representative images of cell in 2D cultured stained for E-cadherin (green) and Phalloidin 

(red) (top panel) and acini stained for E-cadherin (red) are shown. Leading edges of RB-
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deficient cells displaying decreased E-cadherin expression are highlighted (arrows, bottom 

panel). (F) Representative images for Laminin V in 3D cultures.
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Figure 4. RB loss promotes cell migration and invasion in ErbB2 over expressing cells
(A) Cell migration and (B) cell invasion of MCF10A cells harboring ErbB2 over expression 

and/or RB-deficiency by Boyden Chamber assays; bars, SD. (***P < .0001) (C/D) SKBR3 

and BT474 cells transduced with miRB or miNS retroviruses. Cells were harvested and cell 

lysates were analyzed by immunoblot for the indicated proteins. BrdU incorporation was 

analyzed by bivariate flow cytometry and data are average of at least three independent 

experiments; bars, SD. (E/F) Analysis of SKBR3 miNS/miRB and BT474 miNS/miRB cell 

migration by Boyden Chamber assays; bars, SD. (**P<0.01) (F) Analysis of SKBR3 miNS/
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miRB and BT474 miNS/miRB cell invasion by Boyden Chamber assays; bars, SD. 

(**P<0.01).
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Figure 5. Activation of the RB pathway prevents abnormal multi-acini growth and cell invasion
(A) RB-proficient MCF10A/ErbB2 cells were treated with 0.5μM PD-0332991 for 24h. 

Cells were harvested and cell lysates were analyzed by immunoblot for the indicated 

proteins (left panel). BrdU incorporation was analyzed by bivariate flow cytometry and data 

are the average of at least three independent experiments; bars, SD (***P < .0001) (middle 

panel). Ki67 and phalloidin co-staining of MCF10A/ErbB2 acini treated with 0.5μM 

PD-0332991 for 72h (20X) (right panel). (B) RB-proficient MCF10A/ErbB2 cells grown in 

3D culture and treated with 0.5μM PD0332991 for 72h, (20X) (left panel). Analysis of cell 
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migration by Boyden Chamber assays supplemented with 0.5μM PD0332991 was 

performed; bars, SD. (**P=.003) (right panel). (C) RB-proficient BT474 cells were treated 

with PD-0332991 and analyzed by immunoblotting, BrdU incorporation and proliferation in 

3D culture. BrdU incorporation data are the average of at least three independent 

experiments; bars, SD (***P < .0001). (D) RB-proficient BT474 cells were treated for 

growth in 3D culture and cell migration. Migration data are the average of at least three 

independent experiments; bars, SD (**P < 0.0037).
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Figure 6. RB plays a role in preventing invasive tumor growth in vivo
(A) Dual staining for ErbB2 (red) and SMA (green) in SKBR3 miNS and SKBR3 miRB 

injected mammary glands. (B) Representative H&E, Smooth muscle actin (SMA) and Ki67 

staining in SKBR3 miNS and SKBR3 miRB lesions are shown (left panels). Table depicting 

percentage of DCIS and invasive lesions from SKBR3 miNS and SKBR3 miRB orthotopic 

injections (n=15) (right panel)
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Figure 7. RB deficiency is associated with increased disease progression in DCIS
(A) ErbB2 high (3+) status was compared against all other ErbB2 staining (0, 1+, 2+) for 

any recurrent disease (ipsilateral breast event) or invasive progression using Kaplan-Meier 

analysis. ErbB2 high was associated with risk of a subsequent ipsilateral breast event, but 

not progression to invasive disease. (B) Representative images of RB staining in DCIS 

lesions cases with high ErbB2. (C) ErbB2 high (3+) cases were stratified by RB status 
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(positive vs. negative). Cases with RB loss in this subtype were associated with both risk of 

a subsequent ipsilateral breast event and progression to invasive disease.
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