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Preoperative prediction 
of perineural invasion 
with multi‑modality radiomics 
in rectal cancer
Yu Guo1, Quan Wang2, Yan Guo3, Yiying Zhang1, Yu Fu1* & Huimao Zhang1*

Perineural invasion (PNI) as a grossly underreported independent risk predictor in rectal cancer is 
hard to identify preoperatively. We aim to predict PNI status in rectal cancer using multi‑modality 
radiomics. In total, 396 radiomics features were extracted from T2‑weighted images (T2WIs), 
diffusion‑weighted images (DWIs), and portal venous phase of contrast‑enhanced CT (CE‑CT) 
respectively of 94 consecutive patients with histologically confirmed rectal cancer. T2WI score, 
DWI score, and CT score were calculated via the radiomics features selection and optimization. 
Discrimination, calibration, and clinical benefit ability were used to evaluate the performance of the 
radiomics scores in both training and testing datasets. CT score and T2WI score were independent risk 
predictors [CT score, OR (95% CI) = 4.218 (1.070–16.620); T2WI score, OR (95% CI) = 105.721 (3.091–
3615.790)]. The concise score which combined CT score and T2WI score, showed the best performance 
[training dataset, AUC (95% CI) = 0.906 (0.833–0.979); testing dataset, AUC (95% CI) = 0.884 (0.761–
1.000)] and good calibration (P > 0.05 in the Hosmer–Lemeshow test for the training and testing 
datasets). Decision curve analysis showed that the multi‑modality radiomics nomogram had a higher 
clinical net benefit. The multi‑modality radiomics score could be used to preoperatively assess PNI 
status in rectal cancer.

Rectal cancer is one of the most common cancers and the leading causes of death around the  world1,2. Perineural 
invasion (PNI), malignant invasion of nervous structures and nerve sheaths that could be a source of metastatic 
spread beyond the extend of any local invasion, indicating an increased risk for poor prognosis and decreased 
survival in rectal  cancer3–6.

Although the molecular mechanisms behind PNI are obscure, nerves are also regarded as another route 
of malignant cells dissociate from the local primary tumor to deposit metastases except for vascular and lym-
phatic  channels3. PNI is a grossly underreported predictor in rectal cancer, the National Comprehensive Cancer 
Network describes PNI as an important parameter to be reported in the standard pathological  reports7. Total 
mesorectum excision (TME) is the main therapy choice for rectal cancer, and recent studies proved that PNI-
positive rectal cancer proves to experience incomplete tumor resection and local tumor  recurrence5,8. Liebig et al. 
reported that about 30–40% of rectal cancer are PNI-positive rectal cancer who with a 5-years overall survival of 
less than 16% and median survival time (MST) of 25 months after surgical  resection8. Some studies proved that 
PNI-positive patients could get potential benefits from adjuvant therapy and PNI status should be considered 
when stratifying rectal cancer patients for adjuvant treatment. Hence, there is a significant clinical implication 
to detect PNI status  preoperatively9,10.

The identification of the PNI status preoperatively is based on biopsy specimens which were reviewed by 
pathologists in photomicrographs. Efficiency and timeliness of detecting PNI status can limit the application to 
assist cancer treatment  decisions11–13. Magnetic resonance imaging (MRI) and computer tomography (CT) play 
a vital role in the rectal tumor detecting, location and the extent of disease defining, treatment planning, and 
longitudinal response monitoring, which are noninvasively compared with other procedures such as preopera-
tive biopsy and serum  test14–16. Nevertheless, the traditional radiological image fails to detect the PNI status 
preoperatively.
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Combined with artificial intelligence (AI), MRI and CT would be used to assess tumor phenotype and its 
local microenvironment which could provide additional information to determining potential treatments in the 
advanced image analysis  algorithms17. Currently, this kind of AI-based process to analyze medical imaging and 
provide more quantitative image features is referred to as "radiomics"18–20. In recent years, radiomics have shown 
effective diagnostic, prognostic, and predictive ability in the clinical decision support systems of  oncology14,21–26. 
As important components of the tumor microenvironment, Huang et al. reported that radiomics-based CT 
model status could predict PNI status in colorectal  cancer27. However, most of radiomics analyses in oncol-
ogy usually depend on the unimodality equipment such as CT, MRI, or ultrasound, et  cetera19,20. Multi-modal 
machine learning (MMML) is a process that could be used to combine information from multiple modalities 
and perform a target  prediction28,29. However, there is still a rare of multi-modality radiomics-based methods 
to predict PNI status for rectal cancer.

Thus, we aim to investigate the potential value of multi-modality radiomics derived from MRI and CE-CT 
for the preoperative prediction of PNI status in rectal cancer patients.

Results
Patient characteristics. A total of 94 patients were included. For stage I-II rectal cancer, 40 (88.9%) 
patients performed radical surgical treatment. 5 (11.1%) patients performed surgery followed by chemotherapy; 
For stage III rectal cancer, 22 (44.9%) patients performed radical surgical treatment. 24 (49.0%) patients per-
formed surgery followed by chemotherapy. 2 (4.1%) patients performed surgery followed by radiotherapy. 1 
(2.0%) patient performed surgery followed by chemoradiotherapy. Included patients were divided into the train-
ing dataset (21 PNI-positive rectal cancer and 44 PNI-negative rectal cancer) and testing dataset (10 PNI-posi-
tive rectal cancer and 19 PNI-negative rectal cancer) randomly. There was no significant difference between the 
difference of clinical characteristics between the training dataset and testing dataset (P = 0.099–1.000) (Table 1). 
In the univariable logistic regression analysis, the initially selected clinical risk predictors included CA19-9, T 
staging, and N staging diagnosed by pathology (all P < 0.05). After the multivariable logistic regression analysis, 
N staging was regarded as independent risk predictors to PNI status (P < 0.05) (Table 2). There was more T3-4 
rectal cancer (97.09% vs 55.55%) and N1-2 rectal cancer (80.65% vs 38.09%) in the PNI-positive group than in 
the PNI-negative group (both P < 0.05). However, the radiomics model was established preoperatively, N staging 
wouldn’t be contained in the radiomics model.

Radiomics scores. 128 radiomics features in the modality of T2WI, 181 radiomics features in the modality 
of DWI, 65 radiomics features in the modality of portal venous phase CE-CT, which showed stability with good 
inter-/intra observer agreement (ICCs > 0.70) had been remained. The radiomics features extracted from reader 
1’s segmentation with stable inter-/intra-observer reproducibility went through the selection process.

In the process of building radiomics score in the modality of T2WI, DWI, and portal venous phase CE-CT, 
the minimum redundancy maximum correlation (mRMR) selection was used to select the most relevant and the 
least redundant 20 radiomics features to PNI status respectively. Then the least absolute shrinkage and selection 
operator (LASSO) method was used. The lambdas were chosen as 0.051, 0.095, and 0.004 for the T2WI radiomics 
features, DWI radiomics features, and portal venous phase CE-CT radiomics features, respectively and which 
gave the minimum binominal deviance. 5 T2WI radiomics features (Supplementary Information 1: Figure S1), 1 
DWI radiomics feature (Supplementary Information 1: Figure S2), and 12 portal venous phase CE-CT radiom-
ics features (Supplementary Information 1: Figure S3) remained. The radiomics scores were calculated by the 
selected features multiplied the corresponding coefficients for each modality as follows:

T2WI score and CT score showed a significant difference between the PNI-positive group and the PNI-
negative group in the training and testing datasets (all P < 0.05) (Table 1). In the univariable logistic regression 
analysis, the initially selected radiomics risk predictors included T2WI score and CT score (all P < 0.05). After 
the multivariable logistic regression analysis, the T2WI score and CT score were regarded as independent risk 
predictors to PNI status (all P < 0.05) (Table 2). T2WI score and DWI score were combined as MR score. T2WI 
score and CT score were combined as concise score. T2WI score, DWI score, and CT score were combined as 

T2WI score = −0.761 + (− 0.258 × LongRunEmphasis_angle0_offset4 − 0.131× DifferenceVariance

− 0.102× LongRunEmphasis_angle45_offset4 − 0.087

× RunLengthNonuniformity_AllDirection_offset4_SD + 0.408×MaxIntensity)

DWI score = −0.719 − 0.144× InverseDifferenceMoment_angle0_offset1

CT score = −0.988 + (−0.436× Sphericity + 2.838×Quantile 0.975 + 0.857

× LongRunLowGreyLevelEmphasis_angle45_offset4 + 0.874× Percentile15

− 0.665× ShortRunLowGreyLevelEmphasis_AllDirection_offset7_SD + 1.25

×HaralickCorrelation_AllDirection_offset4_SD− 0.511× GLCMEnergy_angle135_offset7

+ 0.828× ClusterShade_AllDirection_offset1_SD + 2.131

× LowGreyLevelRunEmphasis_angle90_offset1

− 3.153× Percentile90 − 2.377× GLCMEnergy_angle45_offset7

− 2.067× ShortRunLowGreyLevelEmphasis_angle0_offset1)
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integrated score. The multi-modality radiomics scores were combined by the single modality radiomics score 
multiplied the corresponding coefficients as follows:

Performance of the radiomics scores. Among the single modality models, the CT score showed the best 
discrimination. The area under the curve (AUC) of CT score was 0.874 (95% CI 0.777–0.972) in the training 
dataset and 0.821 (95% CI 0.650–0.993) in the testing dataset. The discrimination performance was better than 
the DWI score in the training and testing datasets (both P < 0.05) (Fig. 1). The best discrimination performance 
of derived multi-modality radiomics models was the concise score which combined the T2WI score and the 
CT score. The AUC of the concise score was 0.906 (95% CI 0.833–0.979) in the training dataset and 0.884 (95% 
CI 0.761–1.000) in the testing dataset. The concise score was higher in the PNI-positive group than the PNI-
negative group in both training and testing datasets (Supplementary Information 1: Figure S4). AUC, specificity, 
sensitivity, and accuracy of every single modality radiomics score and derived radiomics scores were showed in 

MR score = 2.921+ 2.551 ∗ T2WI score+ 2.756 ∗ DWI score

Concise score = 2.078+ 2.400 ∗ T2WI score+ 1.842 ∗ CT score

Integrated score = 1.898+ 2.422 ∗ T2WI score− 0.298 ∗ DWI score+ 1.856 ∗ CT score

Table 1.  Clinical characteristics and radiomics scores for the perineural invasion in the training and testing 
datasets. Data are presented as mean ± SD, No. (%) or median (25%, 75%). PNI perineural invasion, CEA 
carcinoembryonic antigen, CA19-9 cancer antigen 19–9, R_T staging T staging was diagnosed based on rectal 
MR and CT images, R_N staging N staging was diagnosed based on rectal MR and CT images, P_T staging T 
staging was diagnosed by pathology, P_N staging N staging was diagnosed by pathology.

Variables All patients (N = 94) Training dataset (N = 65) Testing dataset (N = 29) P value

PNI status 1

Negative 63 (67.02) 44 (67.69) 19 (65.52)

Positive 31 (32.98) 21 (32.31) 10 (34.48)

Age 59.20 ± 12.43 59.37 ± 12.94 58.83 ± 11.41 0.846

Gender 0.707

Male 72 (76.60) 51 (78.46) 21 (72.41)

Female 22 (23.40) 14 (21.54) 8 (27.59)

CEA level 0.757

≤ 3.4 ng/ml 46 (48.94) 33 (50.77) 13 (44.83)

> 3.4 ng/ml 48 (51.06) 32 (49.23) 16 (55.17)

CA19-9 level 1

≤ 22 ng/ml 78 (82.98) 54 (83.08) 24 (82.76)

> 22 ng/ml 16 (17.02) 11 (16.92) 5 (17.24)

Tumor location 0.916

Middle and high 51 (54.26) 36 (55.38) 15 (51.72)

Low 43 (45.74) 29 (44.62) 14 (48.28)

Tumor length (cm) 5.25 (4.10, 6.78) 5.60 (4.60, 6.70) 4.70 (3.40, 7.10) 0.271

Tumor thickness(cm) 1.40 (1.10, 1.60) 1.40 (1.10, 1.60) 1.40 (1.10, 1.70) 0.908

R_T staging 0.466

T 1–2 23 (24.47) 14 (21.54) 9 (31.03)

T 3–4 71 (75.53) 51 (78.46) 20 (68.97)

R_N staging 1

N0 25 (26.60) 17 (26.15) 8 (27.59)

N1–2 69 (73.40) 48 (73.85) 21 (72.41)

P_T staging 0.443

T 1–2 32 (34.04) 20 (30.77) 12 (41.38)

T 3–4 62 (65.96) 45 (69.23) 17 (58.62)

R_N staging 0.864

N0 45 (47.87) 32 (49.23) 13 (44.83)

N1–2 49 (52.13) 33 (50.77) 16 (55.17)

T2WI score  − 0.79 (− 1.10, − 0.45)  − 0.77 (− 1.09, − 0.39)  − 0.80 (− 1.18, − 0.53) 0.697

DWI score  − 0.69 (− 0.78, − 0.59)  − 0.69 (− 0.78, − 0.60)  − 0.69 (− 0.76, − 0.59) 0.990

CT score  − 0.90 (− 1.57, − 0.41)  − 0.79 (− 1.52, − 0.40)  − 1.14 (− 1.93, − 0.76) 0.099
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Table 3, in which the Delong test was used to verify the radiomics scores were robust both in the training and 
testing datasets.

In most sections of the DCA curves, the concise score is at the top right comparing with the MR score. The 
concise score and the integrated score have a comparable net benefit, which show several overlaps within the 
full range of threshold probabilities. The concise score and the integrated score have similar clinical application 
value, both of which are higher than MR score (Fig. 2). The concise score was appointed as the final model, which 
had a better discrimination ability and clinical benefit. The calibration curve of the concise score showed good 
agreement between predicted probability value and the real value in both training and testing datasets (P > 0.05) 
(Fig. 3). In order to ensure the model to be used easily, the concise score consisting of two radiomics scores was 
presented as the nomogram (Fig. 4).

Table 2.  Univariate and multivariable logistic regression analysis for the prediction of PNI status. β regression 
coefficient, 95% CI lower–upper, the lower value to the upper value of 95% confidence interval, CEA 
carcinoembryonic antigen, CA19-9 cancer antigen 19–9, R_T staging T staging was diagnosed based on rectal 
MR and CT images, R_N staging N staging was diagnosed based on rectal MR and CT images, P_T staging T 
staging was diagnosed by pathology, P_N staging N staging was diagnosed by pathology.

Characteristics

Univariate analysis Multivariate analysis

β Odds ratio (95% CI lower–upper) P value β Odds ratio (95% CI lower–upper) P value

Age − 0.019 0.982 (0.943–1.022) 0.369 – – –

Gender 0.693 2.000 (0.493–8.109) 0.332 – – –

CEA (> 3.4 ng/ml) 0.968 2.632 (0.888–7.794) 0.081 – – –

CA19-9 (> 22 ng/ml) − 1.609 0.200 (0.051–0.788) 0.021 − 2.133 0.118 (0.009–1.514) 0.101

Tumor location 0.395 1.484 (0.514–4.287) 0.466 – – –

Tumor length 0.062 1.064 (0.817–1.386) 0.643 – – –

Tumor thickness 0.607 1.834 (0.768–4.382) 0.172 – – –

R_T staging 1.270 3.562 (0.719–17.662) 0.120 – – –

R_N staging 1.030 2.800 (0.706–11.097) 0.143 – – –

P_T staging − 1.884 0.152 (0.031–0.735) 0.019 − 0.151 0.860 (0.086–8.606) 0.898

P_N staging − 2.007 0.134 (0.039–0.469) 0.002 − 2.404 0.09 (0.009–0.950) 0.045

T2WI score 2.662 14.331 (2.955–69.488) 0.001 4.661 105.721 (3.091–3615.790) 0.010

DWI score 4.294 73.234 (0.841–6374.624) 0.060 0.454 1.575 (0.001–2063.812) 0.901

CT score 1.889 6.615 (2.182–20.055) 0.001 1.439 4.218 (1.070–16.620) 0.040

Figure 1.  Receiver operating characteristic curves analysis in training and testing datasets. Receiver operating 
characteristic curves analysis in training (a) and testing datasets (b) for each radiomics models to predict 
perineural invasion status; AUC  area under the curve, 95% CI 95% confidence interval.
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Discussion
An initial objective of our study was to develop and validate a multi-modality radiomics model for preoperative 
prediction of PNI status in rectal cancer and the multi-modality radiomics model was converted into a nomo-
gram which is easy to be used in the individual cancer treatment decision system. In the results, the concise 
score (multi-modality radiomics model integrating T2WI score and CT score) showed excellent discrimination 
and calibration ability. Nevertheless, the DWI score failed to provide additional predictive value to assess PNI 
status in rectal cancer.

Among the clinical characteristics, there was no statistically significant difference between the training dataset 
and the testing dataset. As for the clinical candidate predictor, CA19-9 showed a statistical difference between 
abnormal tumor marker-level and PNI status in the univariate logistic regression analysis, which is consistent 
with the published  study30. Some studies showed the statistical difference between normal level and abnormal 
levels of CA19-9 and CEA in the PNI-positive and PNI-negative rectal  cancer6,31. Whereas, there is no sufficient 
evidence to prove tumor markers could be regarded as an independent risk predictor for PNI status in rectal 
cancer. It is argued that nonsignificant statistical association risk factor should be kept in the model development. 
However, with a small sample size, caution must be applied in the candidate factor selection avoiding overfitting. 
Finally, it is failed to be absorbed in the multi-modality radiomics model. As for the histopathological predic-
tors, N staging diagnosed by pathology is an independent risk predictor for PNI status in rectal cancer in the 
multivariate logistic regression analysis. Following the present results, previous studies have demonstrated a 
correlation between PNI status and advanced tumor  stage5,6. However, the integration of histopathological pre-
dictors from surgical tissue may cause sampling bias and be tend to high false-negative rate. On the other hand, 
the multi-modality radiomics model was established before the surgery, the relevant postoperative pathological 
characteristics were not involved in our model. Our results confirmed that radiomics can use noninvasive CT 
and MR scans performed in the clinical diagnosis procedure to predict the PNI status in rectal  cancer20,32, which 

Table 3.  The discrimination performance of models in the training and testing datasets. When the model 
value lesser than the corresponding cut-off value means perineural invasion status is negative; AUC  the area 
under receiver operating characteristic (ROC) curves, 95% CI lower–upper the lower value to the upper value 
of 95% confidence interval, SPE specificity, SEN sensitivity, ACC  accuracy; P value was derived from Delong 
test between the training and testing datasets.

Model Cutoff

Training dataset Testing dataset P 
valueAUC (95% CI lower–upper) SPE SEN ACC AUC (95% CI lower–upper) SPE SEN ACC 

T2WI score − 0.768 0.769 (0.639–0.900) 0.659 0.810 0.708 0.758 (0.569–0.946) 0.759 0.800 0.759 0.922

DWI score − 0.578 0.634 (0.483–0.785) 0.886 0.789 0.723 0.653 (0.440–0.866) 0.789 0.200 0.586 0.890

CT score − 0.713 0.874 (0.777–0.972) 0.773 0.857 0.800 0.821 (0.650–0.993) 0.947 0.600 0.828 0.598

MR score − 0.555 0.788 (0.664–0.912) 0.795 0.714 0.769 0.805 (0.635–0.976) 0.789 0.600 0.724 0.872

Integrated score − 0.656 0.903 (0.828–0.977) 0.864 0.810 0.846 0.889 (0.770–1.000) 0.895 0.500 0.759 0.856

Concise score − 1.254 0.906 (0.833–0.979) 0.773 0.905 0.815 0.884 (0.761–1.000) 0.895 0.600 0.793 0.768

Figure 2.  Decision curve analysis of radiomics models for predicting perineural invasion status. (a) Training 
dataset; (b) Testing dataset. The y-axis measures the probability of net benefit. The x-axis measures the threshold 
probability of perineural invasion positive. The red solid curve represents concise score. The blue and yellow 
dotted curve represents MR score and integrated score, respectively. The grey curve represents the assumption 
that all perineural invasion status is positive. The black line represents the assumption that all perineural 
invasion status is negative.
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is corroborate the previous work that taking different aspects marker is the most promising way to facilitates the 
individualized clinical  management33. This main finding is based on the central concept that biomedical images 
reflect underlying pathophysiology via mineable high-dimensional and quantitative image analysis, such as tumor 
microenvironment. PNI status is regarding as an important component of the tumor  microenvironment17–19. 
To construct the radiomics score for each imaging modality of VOIs, an integrated radiomics selection was 
performed. The inter- and intra-class ICCs were used to select the stable radiomics features. This method could 
avoid the feature fluctuations caused by segmentation and accomplish the robustness of model development. 
The mRMR selection and LASSO algorithm were applied to reduce superfluous redundancy radiomics features. 
This combined method could choose the most relevant radiomics features and eliminate the most superfluous 
radiomics features to the PNI status. Completing the process of fivefold cross-validation to ensure the stability 
of the selected radiomics features and summing a panel of selected radiomics features weighted by the regression 

Figure 3.  Calibration curves of the radiomics nomogram in the training and testing datasets. (a) Training 
dataset; (b) Testing dataset. P > 0.05 in the Hosmer–Lemeshow test for the training and testing datasets, which 
indicating an appropriate agreement between the predicted perineural invasion status and actual observed 
perineural invasion status. The y-axis represents the actual perineural invasion probability. The x-axis represents 
the predicted perineural invasion probability. The grey solid line represents the best model with the perfect 
agreement. The red dotted curves have a closer fit to the grey solid line represents the radiomics nomogram has 
a better calibration.

Figure 4.  Radiomic nomogram was presented to predict Perineural Invasion status in rectal cancer. The 
nomogram was built in the training dataset with the T2 score and CT score using a multivariate logistic 
regression model. The range of T2 score and CT score are respectively − 2.4 to 0.4 and − 8 to 4. The proportional 
regression coefficients of T2 score and CT score were scaled in the points. Sum the points of T2 score and CT 
score to get the total points in points scale. The probability of perineural invasion in a rectal cancer patient is the 
corresponding numbers on the lower probability of Invasion scale.
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coefficients to construct the radiomics score. In the formula of our radiomics scores, the Energy of the Grey 
level Co-occurrence Matrix (GLCM) were selected regarding as a negative relationship with PNI-positive rectal 
cancer. It not only supports the published  research27 but also verifies the theory that higher the heterogeneity 
of tumor represents stronger the  invasiveness34,35. Comparing with the previous research, besides first-order 
statistics features and high order statistics features, morphological features were also be extracted from the VOIs 
of the rectal tumor. Sphericity was chosen as a negative element and a possible explanation for this might be that 
rectal cancer with the shape of the round may tend to be less aggressive. Most of the selected radiomics features 
in the modality of T2WI belonged to Gray Level Run-Length Matrix (GLRM), including Long Run Emphasis 
(LRE) and Run Length Nonuniformity (RLN) which also could be used to assess the homogeneity of the  tumor36.

In our results, the radiomics scores of T2WI and CT are independent risk predictors to PNI-positive rectal 
cancer, which demonstrated the significant discrimination in the training dataset, and were approved in the test-
ing dataset. CT score showed the best discrimination and calibration performance of the unimodality radiomics 
scores (training dataset, AUC = 0.874; testing dataset, AUC = 0.821). Our results confirmed that the published 
research revealed that integrated CT score and CEA level showed good calibration and discrimination perfor-
mance (training dataset, AUC = 0.817; testing dataset, AUC = 0.803)27. Our research also highlights the role of 
T2WI score for the prediction of PNI status in rectal cancer. This result is in keeping with the published paper 
that the imaging biomarkers from MRI can be used to predict the biologic  aggressiveness37. Following the present 
results, there was no statistical difference in the discrimination ability between the T2WI score and CT score 
(Supplementary Information 1: Table S2 and Table S3). Our research displayed a particular application of multi-
modality radiomics in the interpretation of rectal cancer and gives a hypothesis that every modality radiomics 
feature provides different and independent  information28,38. The concise score showed the best discrimination 
and calibration performance among the multi-modality radiomics scores that included T2WI score and CT score 
which were independent risk variables in the multivariate analysis. The discrimination ability of concise score is 
comparable in the training and testing datasets implies that radiomics score was robust for prediction and could 
be applied in the testing dataset. This is consistent with the result of clinical decision curve which showed the 
concise score and the integrated score have similar clinical application value, both of which are higher than MR 
score. Basing on the need for individual medical treatment the concise score was converted to the nomogram. It 
could generate an individual predictive probability of PNI-positive for each patient preoperatively. This easy-to-
use system could help physicians and patients perform a preoperative prediction of PNI status and individualize 
the clinical management.

Our study found DWI score didn’t have additional predictive value to estimate PNI status in rectal cancer, 
while DWI is an important preoperative examination in rectal  cancer39,40. We guessed several possible explana-
tions for this phenomenon. First, lower spatial contrast resolution of DWI contrasting with CT images and T2WI 
affects the accuracy and robustness in the tumor segmentation. Our results revealed that 54% DWI radiomics 
features were eliminated because of low inter-/intra-observer reproducibility which is consistent with the pub-
lished researches, only a small part of radiomics features from DWI remained independent and  reproducible41–43. 
Second, portal venous phase CE-CT represents the enhancement of the tumor and therefore extracted quantita-
tive features relating macroscopic blood  flow44. In our results, twelve CT radiomics features were retained in 
the feature selection, even though more CT radiomics features were eliminated by ICCs than DWI radiomics 
features. This reason may be that PNI-positive rectal cancer is more likely to develop perivascular  infiltration3. 
Furthermore, artifact-inducing influence can’t be neglected, and motion artifact is one of the most important 
causes limit DWI image  quality45,46.

Our findings may be somewhat interpreted by some limitations. First, this is a retrospective study that 
excluded a lot of patients who didn’t perform preoperative rectal MR and CE-CT within 2 weeks, and thus 
there may exist potential selection bias in the study dataset. Second, Patients included in this study from a 
single-center in China without prognostic information, which restricts the predictive value and generalizability 
of these findings. In further research, a multi-center validation dataset should be included to evaluate the real 
benefit in this stratification and verify the robustness of the multi-modality Radiomics model. Third, there is no 
image pre-processing before the segmentation and radiomics feature extraction. Recent studies only indicated 
that signal normalization and voxel size resampling could decrease radiomics features’ variability. In the future, 
we will discuss how to improve the robustness of the model through image normalization of different devices 
and  parameters47,48.

In conclusion, this research revealed the strong correlation of multi-modality radiomics features to the PNI 
status in rectal cancer. The multi-modality radiomics score may provide a valuable reference for clinicians in 
the individual clinical decision system.

Methods
Patients. This retrospective study was approved by the ethics committee of The First Hospital of Jilin Uni-
versity. The informed consent requirement was waived (IRB No. 19K060-001) and all procedures carried out 
were consistent with the ethical principles such as: International Health Organization good clinical practice 
(ICH-GCP) (showed in Supplementary Information 2 and 3). We reviewed the medical records of patients who 
underwent surgical resection for rectal cancer from June 2016 to October 2018. The inclusion criteria were as 
fellow: (I) patients who underwent surgery were diagnosed rectal cancer pathologically; (II) both rectal MRI and 
contrast-enhanced CT (CE-CT) were performed within 2 weeks before surgery; (III) PNI status was assessed by 
histopathological examination. The exclusion criteria were as follows: (I) lack of thick slices in the venous phase 
CT (n = 47); (II) patient underwent anti-tumor treatments before image examination (n = 33); (III) poor image 
quality (n = 7). The flowchart of the patient enrollment process is shown in Supplementary Information 1: Fig-
ure S5. Finally, we enrolled 94 consecutive patients, 70 (74.46%) men, and 24 (25.54%) women, with a median 
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age of 60.5 years (interquartile range 50–68 years). These patients were randomly divided into training and test-
ing datasets at a ratio of 7:3. Clinicopathologic data of eligible patients, including age, gender, carcinoembryonic 
antigen (CEA) and cancer antigen 19-9 (CA19-9), were derived from the medical records.

Histopathology evaluation and perineural invasion status analysis. Histopathology results were 
obtained from the pathological information system (PIS). The rectal cancer staging and PNI status were evalu-
ated based on the hematoxylin and eosin slides of the resected specimens according to the 8th AJCC staging 
 system49. When the nervous structures and nerve sheaths were involved or more than 1/3 perineural space occu-
pied by rectal tumor cells were defined as PNI-positive rectal cancer, otherwise were defined as PNI-negative 
rectal cancer.

MR and CT imaging acquisition. All rectal MR and CT examinations were performed at our institu-
tion.MR imaging was acquired by a 3.0-T scanner (Ingenia, Philips Medical Systems, Netherlands) by using a 
phase-array coil. The analytic protocols and parameters were as follows: (I) high-resolution axial T2-weighted 
image (T2WI) was performed using fast recovery fast spin echo, repetition time (TR) = 3500  ms, echo time 
(TE) = 100 ms, slice thickness = 3.0 mm, gap = 0.3 mm, matrix = 288 × 256, echo train length = 24, and field of 
view (FOV) = 18 cm × 18 cm; (II) Diffusion-weighted imaging (DWI) was performed on b value = 1000 s/mm2, 
TR = 2800 ms, TE = 70 ms, slice thickness = 4.0 mm, gap = 1.0 mm, matrix = 256 × 256, and FOV = 34 cm × 34 cm. 
CT imaging was acquired by one of these two CT scanners (256-detector row, Brilliance, Philips Medical Sys-
tems, Netherlands; 64 slices dual source, Definition, Siemens Medical Systems). The protocol parameters of these 
two scanners were as follows: tube current = 250 mA; tube voltage = 120 kV; slice thickness = 5 mm; rotation 
time = 0.5- or 0.4-s; detector collimation = 8 × 2.5 mm or 64 × 0.625 mm; matrix = 512 × 512; FOV = 350 × 350 mm. 
The iodinated contrast (Ultravist 370, Bayer Schering Pharma, Berlin, Germany) was injected at a rate of 2.0–
3.0 mL/s after a plain scan. The arterial and portal venous phase imaging were obtained at 25 s and 60 s after 
injecting. The final dose of iodinated contrast is 1.5 ml/kg.

Imaging analysis and segmentation. MR and CT imaging were derived from the picture archiving and 
communication system (PACS, Agfa, Belgium) in the format of digital imaging and communications in medi-
cine (DICOM). Two radiologists (Reader 1 and reader 2, respectively with 4 years’ and 10 years’ experience in 
rectal imaging) reviewed the MR and CT imaging of all included patients. Blinded to the histopathologic results, 
the radiologists had the primary tumor location and TNM staging according to the 8th AJCC staging  system50. 
The thickness and length were respectively measured in the largest axial and sagittal plane. After daily readout 
sessions, consensus results were reached for all the patients.

Two radiologists (Reader 1 and reader 3, respectively with 3 years’ and 10 years’ experience in rectal imag-
ing) manually segmented primary tumors using an open-source software package (ITK-SNAP version 3.4.0, 
http:// www. itksn ap. org) for each tumor slice in the modality of T2WI, DWI and portal venous phase of CE-CT. 
Either radiologist was blinded to the clinicopathological results. The volumes of interest (VOIs) segmented were 
defined as follows: (I) high-resolution T2WI images: manually drawn along the contour of the primary tumor 
lesion, which is slightly high signal; (II) DWI (b = 1000): manually drawn along the contour of the primary 
tumor lesion, which is high signal; (III) Portal venous phase of CE-CT: manually drawn along the primary tumor 
region enhanced heterogeneously which is could be differentiated from normal bowel structure. All VOIs were 
segmented on each primary tumor slice containing the circumambient chords and burrs, excluding the fluid in 
the intestinal lumen.

Radiomics features extraction and selection. All VOIs in the modality of T2WI, DWI, portal venous 
phase of CE-CT were loaded to the A.K. software (Artificial Intelligence Kit, AK, version V3.0.0.R, GE Health-
care, China). 396 radiomics features (including 42 first-order statistics features, 345 high order statistics features, 
9 Morphological Features) were extracted from every primary lesion VOI. Extraction and standardization of 
radiomics features was provided in the Supplementary Information 1: Figure S6.

30 VOIs were randomly selected to assess the inter-/intra-observer reproducibility of the Radiomics features 
extraction from each modality. Reader 1 is one of the two radiologists who performed tumor segmentation 
repeated this procedure after 2 weeks. Inter- and intra-class correlation coefficients (ICCs) were used to assess 
the reproducibility between the features which were extracted by reader 1 twice, as well as the features extracted 
by the two radiologists in the first-time. To ensure the robustness of the radiomics model, the features with ICCs 
more than 0.70 for both inter-observer and intra-observer were selected for subsequent  analysis50. The mRMR 
algorithm and the LASSO algorithm were conducted to select the features with the best correlation to PNI status 
in the training dataset.

Radiomics scores building and evaluation. The radiomics score was built via a linear combination of 
the selected features weighted by their respective coefficients based on the single modality alone. The radiomics 
score of T2WI, DWI, portal venous phase of CE-CT respectively present as T2WI score, DWI score, and CT 
score. Univariate logistic regression analysis was conducted to determine the Odd Ratio of the radiomics scores. 
Then multivariate logistic regression analysis with a backward stepwise elimination method was used to com-
bine the radiomics scores using the Akaike information criterion (AIC).

Accuracy, specificity, sensitivity, positive predictive value, negative predictive value, and the area under the 
receiver operating characteristic (ROC) curve (AUC) was used to evaluate the prediction performance of the 
models in both training and testing datasets. Decision curve analysis (DCA) was used to estimate the clinical 
value of the prediction models by contrasting the standardized net benefit at different risk threshold probabilities. 

http://www.itksnap.org
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The final model was selected which had a better discrimination ability and clinical benefit. The calibration curve 
depicted the consistency between the predicted probability value and the real value in the final model. A radiom-
ics nomogram from the final model to ensure it is easy to use. All procedures building and validating radiomics 
models were shown in Fig. 5.

Statistical analysis. All the statistical analyses were performed with R software (version 3.5.1, http:// 
www.r- proje ct. org). Age regarding as a continuous variable was expressed as mean ± standard deviation (SD). 
Sex was considered as a binary variable. CEA and CA19-9 were handled as binary variables cause the thresholds 
were set at 3.4 ng/ml and 22 ng/ml according to the clinical consensuses. The radiomics scores were expressed 
as a continuous variable and expressed as median (25% quantile, 75% quantile). The t test or Mann–Whitney U 
tests was performed to compare the continuous variables as appropriate. Fisher’s exact test or chi-squared test 
was applied to assess the distribution differences between the training and testing datasets in binary variables. 
Univariate and multivariate logistic regression analyses were respectively used to select the significant predictors 
from relevant clinicopathologic characteristics and radiomics scores to build prediction models. Delong tests 
were performed to assess the differences in AUC values between different radiomics models. Hosmer–Leme-
show goodness-of-fit test was applied in the calibration plot via bootstrapping resamples. In the statistical analy-
sis P < 0.05 presented significant statistically. All packages used were listed in the supplementary Information 1: 
Table S1.

Ethical statement. All the authors are responsible for guaranteeing the integrity and accuracy of the data 
collection and analysis process. This retrospective study was approved by the first hospital institutional ethics 
committee of Jilin University (IRB No. 19K060-001).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
authors on reasonable request.
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