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A B S T R A C T

In light of the outbreak of the 2019 novel coronavirus disease (COVID-19), the international scientific com-
munity has joined forces to develop effective treatment strategies. The Angiotensin-Converting Enzyme (ACE) 2,
is an essential receptor for cell fusion and engulfs the SARS coronavirus infections. ACE2 plays an important
physiological role, practically in all the organs and systems. Also, ACE2 exerts protective functions in various
models of pathologies with acute and chronic inflammation. While ACE2 downregulation by SARS-CoV-2 spike
protein leads to an overactivation of Angiotensin (Ang) II/AT1R axis and the deleterious effects of Ang II may
explain the multiorgan dysfunction seen in patients. Specifically, the role of Ang II leading to the appearance of
Macrophage Activation Syndrome (MAS) and the cytokine storm in COVID-19 is discussed below. In this review,
we summarized the latest research progress in the strategies of treatments that mainly focus on reducing the Ang
II-induced deleterious effects rather than attenuating the virus replication.

1. Introduction

As of early April, the death toll of Coronavirus Disease 2019
(COVID-19) pandemic caused by a coronavirus SARS-CoV-2 exceeds
thousands of people. Angiotensin-Converting Enzyme 2 (ACE2) that is
recognized as a protective molecule against kidney, heart, liver, and
respiratory diseases [1] in the context of negative regulation of the
Renin-Angiotensin System (RAS), is now also recognized as a functional
receptor for SARS-CoV-2 [2,3]. The virus- ACE2 recognition is too ef-
ficient and the SARS-CoV-2 spike protein has a strong binding affinity
to human ACE2 [4,5]. This virus uses ACE2 not only for its cellular
entry to the host cell but also downregulates ACE2 expression [6,7],
contributing to the pathogenesis of the severe acute respiratory distress
syndrome (ARDS) or severe acute respiratory syndrome (SARS), see
Fig. 1 [8]. The epidemiologic data suggests that there is an elevated
level of ACE2 expression in young adults as compared to aged groups
[9]. The less ACE2 content in aged groups may contribute to the pre-
dominance of complications in aging.

The RAS system includes angiotensinogen (ANG), angiotensin (Ang)
I, Ang II, renin, and the Angiotensin-Converting Enzyme (ACE). The
substrate ANG is degraded to inactive Ang I by the enzyme renin, which
is then cleaved by ACE to generate an octapeptide Ang II [10]. The

ACE2, a recently identified member of RAS is an 805 amino-acid type-I
transmembrane protein that degrades Ang II to Ang-(1–7) [ [11]], see
Fig. 1. The two isotypes of Ang II receptors that belong to the G-protein
coupled receptor superfamily, Ang II type 1 receptor (AT1R) and Ang II
type 2 receptor (AT2R) have been identified [12]. Ang II exerts its
biological functions mainly through the AT1R [13], but in some
harmful pathological conditions, Ang II/AT1R is overactive, see Fig. 2
[10]. Also, Ang II may be implicated in the impairment of nitric oxide
bioavailability, cell oxidative stress, and increases the retention of so-
dium and water by the release of aldosterone and vasopressin, see Fig. 2
[14]. ACE2 counteracts the deleterious effect of Ang II by maintaining
the balance between the two axes ACE2/Ang-(1–7)/Mas receptor and
ACE/Ang II/AT1R of the RAS. Thereby, reducing the bioavailability of
Ang II and increasing Ang-(1–7) expression [15].

ACE2 also limits the macrophage expression of several proin-
flammatory cytokines in vitro, including Tumor Necrosis Factor (TNF-
α) and Interleukin-6 (IL-6) [16]. But in the case of COVID-19, this virus
tends to downregulate ACE2 thus enhancing macrophage expression
[17], as observed in the Macrophage Activation Syndrome (MAS), see
Fig. 1. Severe SARS-CoV-2 patients show similar symptoms than MAS
patients like persistent fever, multiple organ failure, and the same
sustained cytokine pattern [18]. ACE2 is abundantly expressed in the
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luminal surface of tubular epithelial cells in the kidney [19], and car-
diomyocytes in the heart [20]. Some level of ACE2 is also seen in the
gut and lungs [21]. This wide distribution pattern of ACE2 expression
explains the multiple organ dysfunction with COVID-19 and MAS pa-
tients. Thus, we hypothesized that the infection with SARS-CoV-2 may
lead to MAS through the downregulation of ACE2 and the involvement
of Ang II.

Regarding the above, in this review, we have discussed the

protective role of ACE2 in different organs and the deleterious effect
caused by the downregulation of ACE2 in SARS-CoV-2 infection and
MAS. Based on this discussion we have also suggested possible treat-
ments for the better outcome of severe COVID-19 patients.

Fig. 1. Illustration of ACE2 Downregulation in COVID-19 patient and appearance of MAS. The virus enters the host cell by interacting with the ACE2 receptor
through its spike protein. Later, the virus downregulates the ACE2 expression that in turn upregulates Ang II. Ang II is a product of the RAS system obtained by the
cleavage of Ang I by enzyme ACE. The upregulated Ang II interacts with its receptor AT1R and modulates the gene expression of several inflammatory cytokines via
NF-κB signaling. This Ang II/AT1R interaction also influences the macrophage activation that in turn produces the inflammatory cytokines Thereby, inducing ARDS
or MAS. Also, some metalloproteases like ADAM17 shed these proinflammatory cytokines and ACE2 receptors to the soluble form which aids in loss of the protective
function of surface ACE2 and may increase SARS pathogenesis. The treatment with Glucocorticoids, AT1R inhibitor, and All-trans retinoic acid tends to inhibit NF-κB
signaling thus reducing the cytokine storms thereby improving the severity of SARS-CoV2 infection.

Fig. 2. Schematic representation of Angiotensin II effects. The interaction of Ang II with AT1R mediates the harmful effects leading to multi-organ failure.
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2. Protective role of ACE2 in different organs and system

2.1. ACE2 in different settings of pathologies in the lungs

It has been demonstrated the capacity for local Ang II generation
within the parenchyma of the lungs [22]. After an acute injury, the
expression of AGT mRNA, AGT protein, and the Ang II derived from it
had increased [23]. Ang II is known to be proapoptotic for epithelial
cells including the lung [24] and significant in vivo evidence suggests
that Ang II plays a very important role in lung inflammation and fi-
brogenesis [25]. Thus, blocking Ang II synthesis or its functions ame-
liorates lung damage. In contrast, ACE2 has been positively correlated
with the differentiation state of epithelia [26]. The abundant expression
of ACE2 is seen in differentiated cells than in the undifferentiated cells
[27]. In the respiratory tract, ACE2 is predominantly expressed in the
alveolar and bronchiolar epithelium, endothelium, and smooth muscle
cells of pulmonary vessels [26]. The state of cell differentiation and
ACE2 expression levels are important determinants of the susceptibility
of human airway epithelia to infection [28]. Kuba et al. discovered that
the injection of the SARS-CoV Spike protein could decrease the ex-
pression of ACE2 in the lungs and cause acute lung injury [29].

Animal models prove ACE2 protective effects in the different set-
tings of infections and no infections pathologies of the lungs
[7,8,29–31]. In mice, ACE2 protects against acute lung injury triggered
by acid aspiration and sepsis [29]. In this model which mimics human
acute lung injury, the loss of ACE2 resulted in worsened oxygenation,
massive lung edema, and increased inflammatory cell infiltration [29].
Similarly in Bleomycin-induced lung injury, ACE2 knockout mice ex-
hibited poorer exercise capacity, worse lung function, and exacerbated
lung inflammation and fibrosis compared with age-matched wild-type
[32]. The genetic inactivation of ACE2 causes severe lung injury in
H5N1-challenged mice [31].

A soluble and catalytically active form of ACE2 has also been de-
scribed in the lung [26]. ACE2 is released from the surface of epithelia
into the airway surface liquid via cleavage by TACE (ADAM17) and
other sheddases [33,34]. In response to stimuli, many membrane pro-
teins undergo either shedding or internalization [33] Haga et al. re-
ported that the SARS-CoV Spike protein once binds to ACE2, induces
ACE2 shedding by further activating cellular ADAM17 [35,36]. While
some authors suggested that increasing soluble ACE2 may be a negative
feedback mechanism to control viral infection [26,33], enhanced ACE2
shedding resulting from RAS overactivation, and subsequent ADAM17
upregulation drives pathogenesis in several models of cardiovascular
diseases [37,38]. Ang II accumulation by the loss of membrane ACE2,
also activates ADAM17, creating a vicious circle of membrane shedding
of ACE2, RAS overactivation, and inflammation [39].

In the respiratory system, the administration of recombinant ACE2
has been shown to have a beneficial effect on improving lung pathol-
ogies and patient's survival rate in ARDS and SARS induced by viruses
[30,40,41]. Importantly, the depletion of ACE2 at the cell surface with
a loss of ACE2-mediated tissue protection is a critical pathological
outcome of SARS-CoV-2 infection. As ACE2 also has nuclear effects
[42,43], the efficacy of the recombinant human ACE2 administration in
patients with COVID-19 will require careful experimentation in ap-
propriate models together with well-controlled clinical trials. For ex-
ample, ACE2 regulates alveolar epithelial cell's survival by inhibiting
both JNK phosphorylation and apoptosis [44]. On the other hand, the
use of ACE inhibitors or AT1R-selective antagonists exerted inhibitory
effects on bleomycin-, γ irradiation-, amiodarone- and paraquat-in-
duced pulmonary damage in rats, and hyperoxia-induced chronic lung
disease in neonatal rats [45–48].

Moreover, the lung epithelial stem/progenitor cell express ACE2
[49]. A subset of putative stem/progenitor cells has been reported as
the major target for SARS coronavirus in the human lung [28,50]. The
effects of the infection of these cells may result in cell death, infiltration
of the immune cells, including macrophages and the production of

proinflammatory cytokines. Recently, an antitrypanosomal drug that
enhances the enzymatic activity of ACE2 improved the angiogenic
progenitor cell functions in the lung [51]. The exogenous administra-
tion of ACE2 could induce MSCs proliferation and differentiation and
participate in healing injured lung from inflammatory lung disease
[26,52]. Thus, the downregulation of ACE2 during SARS-CoV-2 infec-
tion decreases the lung's ability to recover from the acute injury and
may cause severe pneumonia lung failure, as clinically observed, see
Fig. 2.

2.2. ACE2 protects the liver from acute and chronic inflammation

Normal liver tissue expresses a low amount of ACE2 [53] but in the
case of a liver injury, ACE2 is upregulated at the gene and protein level,
accompanied by an increase in ACE2 activity, possibly in response to
increasing hepatocellular hypoxia [54]. In a chronic liver injury model,
the loss of ACE2 activity worsens liver fibrosis [55] and liver steatosis
[56]. In Multiple Drug-Resistant Gene 2-Knockout Mice, ACE2 therapy
was seen to inhibit the Chronic Biliary Fibrosis [57]. ACE2 mice
knockout study demonstrated that the marker genes for oxidative stress
signaling (Gpx1, catalase, and SOD2) and pro-inflammatory cytokines
like TNF-α, monocyte chemotactic protein-1 (MCP-1) and Interleukin-8
(IL-8) were significantly increased resulting in aggravation of oxidative
stress and inflammation in the liver, see Fig. 2 [56]. ACE2/Ang-(1–7)/
Mas axis acts through the Akt/PI3K/IRS-1/JNK insulin signaling
pathway leading to improved liver insulin resistance [58]. All these
researches suggest that ACE2 may play a role in liver disease patho-
genesis.

2.3. ACE2 is physiologically renoprotective

In humans, kidneys exhibit ACE and ACE2 colocalization in apical
brush borders of the proximal tubules and glomeruli [59]. In renal
endothelial cells, Ang II can increase TNF-α expression and produce
kidney injury in immune-complex nephritis, lupus nephritis, anti-glo-
merular basement membrane, and puromycin nephrosis [60]. TNF-α
from endothelial cells also has paracrine effects in target cells on the
endothelial surface and other neighboring cells [60]. Also, different in
vitro and in vivo models have been shown that Ang II increases IL-6,
Transforming Growth Factor Beta (TGF-β), connective tissue growth
factor (CTGF), parathyroid hormone-related protein (PTHrP) and other
growth factors [61,62]. Several chemokines induced by Ang II have
been associated with the high inflammatory cell recruitment observed
in renal pathologies, see Fig. 2 [63–66]. In contrast, ACE2 protects
against inflammation and fibrosis by limiting the induction of renal
TGF-β expression [64]. Thus, counteracting the ACE action and protects
the renal system [65].

2.4. ACE2 in cardiovascular function

ACE2 is widely distributed in cardiovascular tissue and various
cellular compartments including the coronary microcirculation, cardi-
ofibroblasts, and cardiomyocytes [66]. The upregulation of ACE2 is
seen in the case of heart failure and ischemic cardiomyopathy [67]
where it depends on Ang II as the substrate for Ang-(1–7) generation
[68]. The deletion of the ACE2 gene in mice resulted in abnormal heart
function [69,70], increased Ang II levels, upregulation of hypoxia-in-
duced gene, leading to severe cardiac contractility defect [71]. Also,
ACE2 negatively regulates RAS to control blood pressure [71] and
confers endothelial protection [72]. Moreover, ACE2 tends to di-
minishes Ang II-induced oxidative stress and inflammation through
AT1R downstream phosphatidylinositol-3-kinase (PI3K) signaling [73].
Overexpression of ACE2 protects the heart against myocardial injuries
induced by Ang II infusion in rats [74]. The vascular endothelial dys-
function observed in aortic rings from rats with myocardial infarction
was also reversed by the chronic infusion of Ang-(1–7) [75]. Relatively,
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a study revealed that ACE2 shedding contributes to the development of
neurogenic hypertension [76]. Suggesting that ACE2 is an essential
regulator of heart function.

2.5. ACE2 in the central nervous system

ACE2 tends to be localized in the cytoplasm of neuronal cells in the
brain where its expression is involved in the control of cardiovascular
function [77]. ACE2/Ang-(1–7)/Mas exerts neuroprotective functions
in endothelin-1-induced ischaemic stroke in rodent models [78].
Moreover, an in vivo study with Mas receptor deficiency showed an
increase in the macrophage infiltration and proinflammatory genes
expression in the spleen and spinal cord, worsening the experimental
course of autoimmune encephalomyelitis [79]. ACE2 tends to drive
neoantigen-specific immune responses by effecting dendritic cell func-
tion to enhance their ability to induce FoxP3+ and IL-17A+ effector T
cell thereby, controlling the immune response [80]. Furthermore, ACE2
overexpression in the brain attenuates neurogenic hypertension by in-
hibiting cyclooxygenase mediated inflammation [81,82]. Some re-
search also proved that ACE2 mediates the reduction of oxidative stress
in the brain and improve the autonomic function [83]. Besides, ACE
may be detrimental to Alzheimer's disease and the use of an AT1R in-
hibitor ameliorates the cognitive impairment thus showing a beneficial
effect on Alzheimer's disease [15,84].

2.6. ACE2 in intestinal immunity

ACE2 regulates intestinal epithelial immunity by controlling amino
acid homeostasis, prevents the alteration of antimicrobial peptide ex-
pression, and maintains the ecology of the gut microbiome [85]. ACE2
expression in colonic epithelial cells is positively associated with Nat-
ural Killer (NK) cells and T cell-mediated cytotoxicity along with type I
immunity and negatively associated with phagocytosis and complement
activation [86]. In ACE2 knockout mice, Dextran Sodium Sulphate
(DSS) and Trinitrobenzene Sulphonic Acid (TNBS)-induced colitis
challenges resulted in infiltration of inflammatory cells, significant
shortening of the colon length, intestinal bleeding, crypt damage,
weight loss, and severe diarrhea [87]. Also, ACE2 is a key regulator of
dietary amino acid homeostasis in colitis [85]. Amino acids and nico-
tinamide can activate the mammalian target of rapamycin (mTOR),
which is involved in cell proliferation, survival, redox sensor, longevity,
and cellular senescence, protein synthesis and transcription [85]. The
deficiency of ACE2 causes a critical impairment of nicotinamide and
tryptophan which increases the susceptibility to intestinal inflammation
and decreases the regenerative responses [85,88].

2.7. ACE2 in the endocrine system

Recent evidence suggests that enhanced circulating levels of Ang II
are involved in the development of insulin resistance, type 2 Diabetes
Mellitus (DM), and metabolic syndrome, see Fig. 2 [89,90]. In a rat
model of DM, the expressions of ACE2, Mas receptor, and Ang-(1–7)
levels in enterocytes are considerably higher compared with controls,
and Ang-(1–7) decreased the glucose uptake [91]. Moreover, the evi-
dence showed that ACE2 can attenuate fibrosis, increase islet insulin
content, and stimulate beta-cell proliferation in the pancreas probably
by increasing the intracellular calcium influx and restored impaired
mitochondrial oxidation [92]. The involvement of Ang II/AT1R sig-
naling leads to cell apoptosis and ROS generation due to hyperglycemia
[93].

A high grade of inflammation is also important in DM pathogenesis.
Ang II-induced CXCL16 endothelial expression is through the AT1R and
RhoA/p38-MAPK/NF-κB activation [94]. Ang II activates the Rho/Rho-
associated protein kinase (ROCK) pathway more than in NF-κB acti-
vation and subsequent IL-6 expression [95]. The circulating CXCR6-
expressing platelets, neutrophil, monocyte, and CD8T lymphocytes are

elevated in patients with metabolic syndrome [94]. Interestingly, the
ATIR blockade improved the CXCL16 angiogenic properties and de-
creased the monocyte and lymphocyte cellularity along with its acti-
vation [94]. Thus, the downregulation of ACE2 may have important
metabolic repercussions in patients who suffered from DM and SARS-
CoV-2 and may explain why these patients are more susceptible to
develop complications.

2.8. Role of ACE2 in bone marrow

Transcriptomic molecular studies demonstrated that the hemato-
poietic bone marrow (BM) stromal niche contains local RAS, AT1R,
AT2R, and the inhibitory natural stem cell regulator tetrapeptide N-
Acetyl-Ser-Asp-Lys-Pro (AcSDKP) [96]. Many biological functions like
proliferation, migration, angiogenesis, and fibrosis in BM cells are
mediated by RAS [97]. ACE is a regulator of hematopoiesis, especially,
the role of Ang II in the proliferation of all lineages in BM has been
extensively proven [98]. Ang II/AT1R is also involved in Myeloid dif-
ferentiation and development. Importantly, neutrophils level decreased
by more than 30% in ACE-knockout mice [99]. Also, acute ACE in-
hibition showed an increase in the AcSDKP level in plasma [100]
AcSDKP substantially inhibits cell cycle entry of normal hematopoietic
stem cells (HSCs) and protects hemopoiesis against damage caused by
cycle-active cytotoxic agents [101] AcSDKP can also inhibit the pro-
liferation of lymphocytes, stimulate angiogenesis and have antifibrotic
effects in vivo [15].

Ang II Receptor-Associated Protein amplifies the thrombopoietin
receptor Mpl which is involved in megakaryocyte growth and throm-
bocyte development, controls the hematopoietic stem cells homeostasis
and self-renewal [102]. Ang II/AT1R induce platelet activation and
production indicators developing more thrombotic and inflammatory
effects, see Fig. 2 [103]. Studies demonstrated that Ang II increases
rolling thrombocytes, adhered thrombocytes on the leukocytes and the
endothelial cells, rolling leukocytes, and adhered leukocytes, as well as
an escalation in thrombocyte-leukocyte-endothelial cell relations
[98,103]. Therefore, in pathological conditions, Ang II/AT1R over-
activation may lead to thrombotic complications.

Ang II was found to control the CD115 in HSCs. CD115 influences
the differentiation and function of macrophage [104]. Ang II also
controls monocytic cells over BM stromal cell-derived TNF-α to increase
macrophage colony-stimulating factor (M-CSF)-induced management of
monocytic cells [98,105]. Similar to these findings, another study de-
monstrated that the deficiency of ACE2 in BM-Derived Cells increases
the expression of TNF-α in Adipose Stromal Cells [106]. It suggested
that ACE2 expression in BM cells control the inflammation in adipose
tissue. ACE2 deficiency in BM-derived cells also promotes athero-
sclerosis through the regulation of Ang II/Ang-(1–7) peptides, [107].

3. An excessive inflammatory response is deleterious: Macrophage
Activation Syndrome

MAS or secondary Hemophagocytic lymphohistiocytosis (HLH) is a
poorly recognized syndrome characterized by a fulminant cytokine
storm, multiple organ dysfunction, and a high mortality rate [108].
MAS can occur during an autoimmune, tumor, and even an infectious
disease [109,110]. Viral infections have especially been linked to this
syndrome in adults [111,112]. An inappropriate immune stimulation
and a self-perpetuating excessive inflammatory response are key facts
within the pathogenesis of MAS [110,113], and the over-activation of
tissue macrophages for the release of a storm of cytokines is a dominant
feature observed both in MAS and severe COVID-19 patients
[114–117].

Persistent fever is the most common clinical manifestation seen in
MAS [118]. Hepatobiliary dysfunction with hepatosplenomegaly, fi-
brinolytic consumptive coagulopathy, hyperferritinemia, and hemo-
phagocytosis in the BM, are other common clinical and laboratory
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features [119]. Neurological dysfunction and acute kidney injury may
also be present and could be considered as poor prognostic indicators
[120,121]. The early detection of MAS with the laboratory tests in-
cluding soluble interleukin 2 receptor alpha chain (sCD25) and soluble
CD163 (sCD163) [122] has a profound impact on a patient's outcome.

4. Downregulation of ACE2 in COVID-19 and MAS

A direct link between ACE2 in the progression of MAS and COVID-
19 has not been described yet. However, the excess of Ang II associated
with ACE2 dysregulation in COVID-19 [123] leading to the cytokine
storm, also seen in MAS [119] could explain the appearance of MAS in
the course of SARS-CoV-2 viral infection, see Fig. 1. The rationale for
this concept stems from the following evidence: (1) we have previously
described how the overexpression of Ang II exert deleterious effects in
almost all organs and system. Ang II is a well-established pro-in-
flammatory peptide that closely interacts with the immune system and
can modulate the regional cytokine milieu [124–127]. (2) Macrophages
expressed almost all components of the RAS system [23,128,129]. (3)
Furthermore, the monocyte mediated inflammation is directed by Ang
II-induced cytoskeleton rearrangement and monocyte migration to the
inflammation site [130,131]. (4) Macrophage maturation and differ-
entiation also require Ang II/AT1R signaling [128]. (5) Ang II plays a
role in macrophage function per se and the neighboring cells through
autocrine/paracrine mechanisms [23,131,132]. (6) An excessive in-
flammatory response by the over-activation of tissue macrophages is
involved both in MAS [110,113] and severe COVID-19 patients
[114–117]. The regulation of these cytokines along with monocyte/
macrophage with Ang II is discussed below. Also, the role of the me-
tallopeptidase domain 17 (ADAM17) in Ang II-macrophage inflamma-
tion will be analyzed.

The increased oxidative stress, inflammation, and apoptosis seem to
be a common mechanism of Ang II worsening the course of several
inflammatory diseases [69,79,133]. In COVID-19 patients, the in-
creased serum levels of several cytokines and chemokines have been
associated with the disease severity and death [134–137]. In vitro stu-
dies showed the involvement of macrophages, T cells, NK cells pro-
liferation [138], dendritic cell migration, CCR7 expression in Ang II-
induced renal damage [139]. Ang II also triggers vascular damage via
AT1R by upregulating the connective tissue growth factor (CTGF), a
mediator of TGF-β [140], inducing adhesion molecules, recruiting in-
flammatory cells, and modulating the IL-1β, IL-18, IFNγ, TNF-α, and IL-
6 cytokine expression [60,63,119,141], see Fig. 1. The TNF-α induces
macrophage polarization toward the M1 phenotype creating a vicious
circle [142]. Although TNF-α is produced by various cell types, the
primary source of this cytokine is monocytes/macrophages [143], and
in these cells, Ang II upregulates IL-6 and TNF-α gene expression being
NF-κB the potential mediator of these Ang II-induced inflammatory
process [63,144,145]. Moreover, TNF-α and IFNγ induce the expression
of CXCL16 on dendritic cells, B cells, and macrophages [146,147].
Thus, in both the cases with MAS and COVID-19, Ang II may initiate
events leading to innate and acquired immune response.

It has been described that a pool of monocytes resides in clusters of
~50 cells in the resting spleen [124,130]. Upon Ang II-AT1R interac-
tion, splenic monocytes increase their motility and intravasate into
nearby splenic veins [124]. But in such cases, ACE2 activity is increased
suggesting their protective role during inflammation [148]. In mice,
this “emergency reservoir” releases up to 1 million monocytes within
24 h after myocardial infarction, which is subsequently recruited into
the infarct mainly via interaction of the chemokine MCP-1 with its
cognate receptor CCR2 [130,149]. Ang II can promote CCL2 generation
and release, inducing mononuclear leukocyte interactions with the
endothelium [150]. Corroborating to the above, CCL2, the most potent
chemokines at recruitment of CCR2 monocytes were seen to be upre-
gulated in the bronchoalveolar fluid in severe COVID-19 patients [151].
Besides, Ang II increases the production of IL-8, Fractalkine, RANTES,

and IP-10, among other chemotactic factors [63,152–154], and pro-
motes CXCL16 endothelial expression through AT1R via RhoA/p38-
MAPK/NFκB activation [94,155].

In animal models that are characterized by macrophage-mediated
inflammation, the deletion of the receptor Mas enhances the migratory
capacity of macrophages and induces the M1 phenotype [79]. Similar
results have been reported with the specific deletion of ACE2 [156].
Mas deficiency especially affects CD11b+ macrophages interfering
with the cytokine expression and activation capacities of different
macrophage subtypes and may drive proinflammatory M(LPS+ IFNγ)-
like responses [79]. ACE inhibitors or AT1R antagonists can modulate
cellular adhesion and chemotaxis [131,157–159]. For example, the
blockade of AT1R improve CXCL16 angiogenic properties and de-
creased the monocyte and lymphocyte cellularity and activation [94].
In addition to CXCL16, The beneficial effects of a selective AT2R ago-
nist were associated with the decreased recruitment or infiltration of
macrophages in the lungs, reduced lung inflammation [160], dimin-
ished pulmonary collagen accumulation and improved cardio-
pulmonary complications through the downregulation of CCL2, IL-6,
and TLR4 [161].

Macrophage maturation also requires Ang II/AT1R signaling. Ang II
controls the c-Fms in HSCs and monocytic cells over local TNF-α to
increase M-CSF-induced management of monocytic cells [124]. During
the process, monocytes expressed the whole components for Ang II
generation and increased the production of Ang II [162]. Moreover, T
lymphocytes contain a functional NADPH oxidase and an AT1R [163].
Ang II via NADPH oxidases stimulates T cell proliferation and activates
it to produce TNF-α, IFNγ, and TH1 generation [164]. Thus, ACE2/Mas
deficiency affects macrophage phenotypes and functions and leads to
an increase in oxidative stress and impaired endothelial function [79].

Evidence is accumulating that ADAM17 is an important regulator of
the acute inflammatory response [165–169]. In addition to ACE2, it is a
primary sheddase of relevant inflammatory factors, including TNF-α, its
two receptors TNFR-I (CD120a) and TNFR-II(CD120b), IL-6R, ligands of
ErbB (e.g. TGFα and amphiregulin), and the L-selectin (CD62L) and
ICAM-1 adhesion molecules [170–172]. ADAM17 also regulates leu-
kocyte rolling along activated endothelium and leukocyte transmigra-
tion by shedding L-selectin, CX3CL1, ICAM-1, and VCAM-1 as well as
JAM-A [173,174]. Macrophage ADAM17 is an essential component for
activation and the pro-inflammatory phenotype [175–178]. Interest-
ingly, the relationship between Ang II and ADAM17 pathogenic effects
has been well studied [34,179–181]. Ang II-mediated proteolytic loss of
ACE2 is associated with elevated ADAM17 activity prevented by AT1R
blockade [39], while Ang-(1–7)/Mas signaling inhibits LPS-induced
alveolar epithelial cell apoptosis by inhibiting LPS-induced shedding
activity of ADAM17 [182]. Loss of ADAM17 suppressed Ang II-medi-
ated migration and proliferation in VSMCs [183]. AT1R, promotes
ADAM17-mediated ACE2 shedding in the brain of hypertensive pa-
tients, leading to a loss in compensatory activity during neurogenic
hypertension [184].

5. Immune suppression therapy reduces Ang II-dependent
inflammation and MAS

The above discussion suggests that the decrease of ACE2 is a major
factor contributing to the pathogenesis of a variety of pathologies in the
course of chronic or acute inflammation by permitting Ang II accu-
mulation. In COVID-19 patients appeared to have elevated levels of
plasma Ang II, which were in turn correlated with total viral load and
degree of lung injury [185]. Accordingly, therapies aimed at increasing
ACE2 expression might attenuate inflammation and can be used as a
novel therapeutic tool. Since the downregulation of ACE2 appears to be
a shared phenomenon in ARDS during viral or bacterial infection
[7,24,25,29,32,186], the administration of the recombinant ACE2 or
AT1R blockers can ameliorate coronavirus SARS-CoV-2 lung compli-
cations as well as have been reported for syncytial virus and H5N1 virus
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infection-induced lung injury [30,31,40].
AT1R blockers are among the most common medications used for

the treatment of cardiovascular diseases with a high-security profile
[187]. As mentioned earlier, in adults AT1R is expressed in cells of the
immune system and in particular on macrophages, T, and B lympho-
cytes [141,162]. Ang II exerts pro-inflammatory responses mostly
binding to AT1R [188–191], and the treatment with one AT1R blocker
efficiently prevented Ang II-inducing inflammation [192–195]. AT1R
inhibitors suppressed the expression of Ang II, IL6, and directly blocked
AT1R, thus avoiding STAT3 activation [196]. Additionally, they sup-
press TNF-α synthesis in vitro and in vivo, see Fig. 1 [197] and are as-
sociated with a lower level of plasma TNF-α [198]. AT1R blockade
produces a significant decrease in IFN-γ producing peripheral blood
lymphocytes both a protein and IFN-γ mRNA levels [199]. Moreover,
AT1R blockade attenuated end-organ damage [200].

Accumulating evidence suggests that AT1R inhibitors have potent
anti-inflammatory actions not usually associated with the activation of
the RAS system [201–205]. These drugs also can exhibit antioxidant
effects [205–207]. Candesartan suppressed TNF-induced chemokine
expression and NFκB activation, decreased reactive oxygen generation,
and reinstated redox homeostasis [208]. redox-sensitive NF-kB-medi-
ated inflammation has been described. The same drug diminished the
TLR signaling pathway and the downstream effectors TNF-α, IL-1β, IL-
6, and NF-Kb [203]. Amelioration of renal tissue inflammation with
AT1R blockade was associated with a significant reduction of MCP-1
[189]. The peroxisome proliferator-activated receptor-gamma (PPARγ)
also is involved in the anti-inflammatory effects of AT1R antagonists
[204,209,210]. Importantly, a study demonstrated that the treatment
with one ATR1 inhibitor induced the expression of FoxP3 in
CD4+CD25+ T cells [211]. Therefore, the AT1R inhibitor adminis-
tration has a profound impact on the immune response and the in-
hibition of monocyte mobilization from their reservoirs represents a
powerful anti-inflammatory action that may have therapeutic implica-
tions [212].

With regards to the activation of pulmonary RAS influencing the
pathogenesis of ARDS and SARS, three reports recommended the use of
AT1R inhibitor or blocker to improve the quality of life and survival
outcomes [213–215]. The chronic AT1R blockade also results in ACE2
upregulation in both animal models and humans [216–221]. Unless
ACE, ACE2 activity is unaffected by these drugs [222]. The AT1R
blocker has been suggested by some researchers and reported to ame-
liorate coronavirus SARS-CoV-2 lung complications [7,223,224].
Human recombinant ACE2 also is a negative regulator of Ang II-in-
duced deleterious effects [225–227]. It increased Ang 1–7 while low-
ered Ang II levels and reduced NADPH oxidase activity [228]. ACE2
administration also suppresses pulmonary arterial pressure and re-
sistance improving lung compliance during acute hypoxia [229].
Moreover, the administration of recombinant ACE2 was well tolerated
by healthy human subjects [41]. The neutralization of the 2019 novel
coronavirus by the administration of ACE2 protein has been proposed
as a therapeutic modality [230,231]. Recombinant ACE2 also re-
markably rescued Ang II-induced hypertension, pathological hyper-
trophy, oxidant injury, and cardiac dysfunction [232,233]. Never-
theless, the efficacy of the recombinant ACE2 protein or AT1R blockers
on lung diseases should be further tested in clinical settings.

One additional potential strategy for COVID-19 could be to suppress
the rate of cleavage of ACE2 from the surface of lung epithelial cells
leading to retention of the enzymatic activity and reduced Ang II. The
evidence also suggests that the disruption of ADAM17 expression by
siRNA reduces the ACE2 shedding [34]. Furthermore, ongoing research
suggests that ADAM17 inhibitors had efficacy in some inflammatory
conditions [234–236]. Preclinical trials using inhibitors of ADAM17
showed effectivity in mouse models of arthritis [237,238]. Such stra-
tegies in COVID-19 would need to account for the fact that ACE2 is
cleaved at more than one site and that multiple enzymes appear to serve
as sheddases in this process [225]. In addition, ADAM17 is involved in

the regulation of multiple cellular processes, both pathological and
normal [239–241]. Therefore, one of the biggest challenges in devel-
oping agents inhibiting ADAM17 is to attain selective inhibition of
pathological processes or ACE2 shedding while sparing normal pro-
cesses to avoid adverse effects. A member of the rhomboid family,
iRhom2 is predominantly expressed in immune cells and iRhom2 is
needed for transport of ADAM17 to the cell surface [242–244]. The
inhibition of iRhom2 would lead to a selective deficiency of ADAM17 in
immune cells with no effects on epithelia, representing a new per-
spective of ADAM17 blockade.

Similar to the AT1R blockade, the inhibition of NF-κB markedly
attenuated the Ang II-induced inflammatory damage [245]. Upon in-
fection, the role of Glucocorticoids (GCs) is to desensitize inflammation
and to avoid an overshooting immune response, which may be detri-
mental for the organism. The GC's anti-inflammatory responses are in
part, the result of interfering with the NF-κB signaling pathway, see
Fig. 1 [246,247]. NF-kB signaling is essential for M1 macrophage po-
larization [248]. Thus, blocking such signaling can induce re-polar-
ization from M1 to M2 [ [249]]. Studies have demonstrated that Dex-
amethasone can reduce NF-κB activity [139], and can efficiently down-
regulates the TNF-α-induced IL-1β, and NF-κB -driven transcriptional
expression of matrix metalloproteinases like MMP-1 and MMP-3, TNF-
α, IL-6, IL-8, IL-1 and MCP1 [250,251]. An increasing number of GCs
receptor-induced genes are now recognized as contributing to the anti-
inflammatory effects of GCs [252,253]. Moreover, the GCs target like
airway epithelium engage in cross-talk with immune cells [254], then
they act via the GCs receptor in airway epithelial cells to repress in-
flammatory responses [255]. Taking into account that Ang II upregu-
lation may initiate events leading to innate and acquired immune re-
sponse resulting in cytokine storm in both MAS and COVID-19 patients,
the use of GCs could protect against Ang II-induced end-organ damage
in both pathologies. Central management of MAS is its early recogni-
tion, followed by prompt treatment. Interestingly, the commonest in-
itial treatment for MAS is also, corticosteroids [256]. Collectively, the
above information incriminates the use of GCs as a valuable tool in
patients complicated with SARS-CoV-2.

A problem to consider with the use of GCs would be whether they
increase CoV-2 virulence. In several infectious conditions, including
mononucleosis, pneumococcal pneumonia, tuberculosis, typhoid fever,
tetanus, and pneumocystis pneumonia, GCs administration improved
patients' survival [257]. Some studies demonstrated that the use of
these drugs did not increase the viral yield in Herpes Simplex Virus type
1 [258,259], and HIV-1 [260]. Direct repression of HIV transcription by
GCs have been described in various works [261,262]. Also, meta-ana-
lyses report lower reintubation rates in neonates, children, and adults
that received corticosteroids despite the infectious disease [263,264].
Thus, we suggest that GCs are strong candidates as a therapeutic agent
for limiting coronavirus SARS-CoV-2 inflammatory complications and
death.

Mesenchymal stem cell (MSC)-based gene therapy is a novel ther-
apeutic approach for several diseases that currently have limited
treatment options [265,266]. Importantly, MSCs can also act as a ve-
hicle for delivering a protective gene by overexpressing a transgene at
the injured site also promoting local tissue repair [267]. ACE2/Mas
receptor is expressed in MSCs and Ang-(1–7) supports migratory func-
tion and stimulates vascular repair-relevant functions [268]. In an an-
imal model of acute lung injury (ALI) and ARDS induced by lipopoly-
saccharide (LPS), MSCs treatment significantly reduced LPS-induced
pulmonary inflammation [266]. Furthermore, the administration of
MSCs overexpressing ACE2 resulted in a further improvement in the
inflammatory response and pulmonary endothelial function of LPS-in-
duced ALI mice [267] A recent in vivo study has demonstrated that
MSCs can differentiate into lung epithelial cells [269,270] Also, MSCs
may also exhibit immunosuppressive properties [266] A very recent
study shown that the intravenous injection of MSCs significantly im-
proved the inflammation situation and improves the outcome of
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patients with COVID-19 pneumonia [271]. Thus, based on its anti-in-
flammatory and repair properties we suggest implicating the MSCs
based treatment for COVID-19 patients.

Another promising therapeutic molecule could be All-trans retinoic
acid (atRA), the active metabolite of Vitamin A. It has been described
that All-trans retinoic acid (atRA) suppresses AT1R at both mRNA and
protein levels [ [272,273]]. Considering the above discussion about the
involvement of Ang II/AT1R signaling in diabetes, atRA has proved to
prevent the deleterious effects caused by hyperglycemia and Ang II
[93]. As mentioned before about the NF-κB signaling, atRA tends to
inhibit several inflammatory reactions by suppressing NF-κB-mediated
gene expression of IL-6, IL-1β, TNF-α, and MCP-1 in vitro and in vivo see
Fig. 1 [273,274]. Furthermore, Retinoic acid protects cardiomyocytes
from high glucose-induced apoptosis by inhibiting NF-κB signaling
[275]. Thus, patients with DM may have an additional benefit with the
use of this drug. Accordingly, the treatment with atRA showed an in-
crease in gene and protein expressions of ACE2 in hypertensive rats
[276]. All these results suggest that atRA could be an attractive can-
didate for the potential treatment of patients with coronavirus SARS-
CoV-2.

The other drugs to be considered to treat SARS-CoV-2 infection
would be the one that could modulate the levels of IL-1 and IL-6.
Anakinra, a recombinant interleukin-1 (IL-1) receptor antagonist, has
been used to treat a variety of autoinflammatory diseases [277]. Re-
cently, a continuous intravenous Anakinra in a rapidly escalating dose
regimen results in rapid serologic and clinical improvement in patients
with MAS [278,279]. Moreover, the data from a phase 3 randomized
controlled trial of Anakinra in sepsis, showed higher survival outcomes
in patients with hyper-inflammation, without increased adverse events
[280]. IL-6 antibody blocker and TNF-α-inhibiting agents have been
reported to be effective in some MAS patients [281]. Tocilizumab is a
recombinant humanized monoclonal antibody against the IL-6 receptor.
Currently, a small sample clinical trial in China (ID:
ChiCTR2000029765) has shown good efficacy in tocilizumab for SARS-
CoV-2 [282].

6. Conclusion

ACE2 is a RAS component, widely distributed in almost all the or-
gans. It plays a protective role mostly by counteracting the harmful
effect of Ang II-induced inflammation. ACE2 being the receptor for
SARS-CoV-2 and its wide distribution explains why some COVID-19
patients suffer from a variety of symptoms and potential complications.
Ang II has important physiological effects in the immune response,
particularly on the activation and the recruitment of monocytes/mac-
rophages. Thus, the appearance of MAS during SARS-CoV-2 infection is
an expected phenomenon that must be promptly identified and treated
appropriately. We suggest strategies of treatments that mainly focus on
reducing the Ang II-induced deleterious effects rather than attenuating
virus replication. Thus, we aim that this review will contribute to the
development of novel strategies to prevent and control the COVID-19
pandemic.
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