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Alternative paths to realize 
Majorana Fermions in 
superconductor-Ferromagnet 
Heterostructures
G. Livanas1, M. sigrist2 & G. Varelogiannis1

A fundamental obstacle for achieving quantum computation is local decoherence. one way to 
circumvent this problem rests on the concepts of topological quantum computation using non-local 
information storage, for example on pairs of Majorana fermions (MFs). the arguably most promising 
way to generate MFs relies at present on spin-triplet p-wave states of superconductors (sC), which 
are not abundant in nature, unfortunately. thus, proposals for their engineering in devices, usually 
via proximity effect from a conventional SC into materials with strong spin-orbit coupling (SOC), 
are intensively investigated nowadays. Here we take an alternative path, exploiting the different 
connections between fields based on a quartet coupling rule for fields introduced by one of us, we 
demonstrate that, for instance, coexisting Zeeman field with a charge current would provide the 
conditions to induce p-wave pairing in the presence of singlet superconductivity. this opens new 
avenues for the engineering of robust MFs in various, not necessarily (quasi-)one-dimensional, 
superconductor-ferromagnet heterostructures, including such motivated by recent pioneering 
experiments that report MFs, in particular, without the need of any exotic materials or special 
structures of intrinsic soC.

Majorana particles are their own anti-particles1,2 each comprising half of a fermion such that widely separated 
pairs of Majorana states constitute nonlocal fermionic states, immune to local decoherence ideal for building 
hardware elements for topological quantum computation3–6. Spin-triplet p-wave states of superconductors 
(SC) are known to be potential hosts of MFs although these are rarely intrinsic states of materials7–9. In fact, 
zero-energy Majorana states have been shown on toy models, to emerge at the edges of spinless one-dimensional 
p-wave SC wires9 and in vortex cores of certain two-dimensional chiral px + ipy SC states8,10,11.

Given the rarity of convenient p-wave SC in nature, numerous proposals have been put forward for their 
quantum engineering in devices involving conventional SC instead12–22. Especially, quantum engineering proce-
dures of relevant for MF generation effective p-wave SC fields from conventional SC in combination with strong 
SOC materials like Rashba semiconductors16–18 or topologic insulators12,15, have been implemented with impres-
sive progress23,24. In another proposal are not involved strong SOC materials but instead nanowires with special 
rotating magnetic structures21 that are equivalent to nanowires with Rashba SOC.

The most striking and direct experimental evidence of MFs was, however, reported by scanning tunneling 
microscopy at the edges of ferromagnetic (FM) Fe wires placed on the [110] surface of SC Pb25. A convincing 
explanation of this remarkable phenomenon in terms of a FM atomic chain in proximity with a SC that exhibits 
strong intrinsic Rashba SOC has been proposed25–27. If intrinsic Rashba SOC is so strong on the SC Pb surface 
then an eventual isolated SC Pb wire with an in-wire field could exhibit at the edges MFs as well, the same could 
be true at the cores of vortices on eventual SC Pb films.

Here we take an alternative path. Exploring the different connections between the relevant fields based on the 
quartet coupling rule for fields introduced by one of us28, we show that appropriate p-wave SC fields and robust 
MFs may be induced from singlet SC states in the presence of FM and supercurrents, without the need to assume 
any intrinsic Rashba SOC. Our findings not only provide a groundbreaking perspective on these experiments25, 
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they unlock potentially a plethora of related unexplored paths for the quantum engineering of MFs in SC/FM 
devices in which intelligent combinations of currents and fields play the key role. As a typical example, we pro-
pose a versatile trilayer SC/FM/SC device structure that can produce MFs through the same quartets mechanism, 
illustrating thus how our approach opens new avenues for the controllable quantum engineering of robust MFs 
in SC/FM heterostructures that may involve trivial materials and may not even need to be quasi-one-dimensional 
thanks to the directionality of currents.

Inspired by the experiments we start with the presentation of an alternative device setup (see Fig. 1a) to induce 
p-wave superconductivity and MFs using a Zeeman field (FM) and a perimetric supercurrent without relying on 
intrinsic Rashba SOC. In order to demonstrate the functioning of our design, we introduce here a simple model 
of a one-dimensional FM nano-wire embedded in the surface of a conventional SC, described by the 2D 
Hamiltonian = ∑ Ψ Ψ†Hi j i i j j, ,  with the necessary and sufficient ingredients depicted in Fig. 1a,

στ μ τ τ τ σ δ= + − ⋅ + Δ + ⋅∼h J gH tf ( ) , (1)i j i j i i i i j i i j, , 3 3 3 2 2 , ,

where the Nambu spinor ψ ψ ψ ψΨ = ↑ ↓ ↑ ↓
† † †( , , , )i i i i i, , , ,  is referring to the electronic states on lattice site i. The Pauli 

matrices τ and σ act on particle-hole and spin space, respectively. The electrons move via nearest-neighbour 
hopping described by the connection matrix fi,j = δj,i±x + δj,i±y where x and y are in-plane unit vectors, with a 
hopping integral t. The local chemical potential is denoted by μi, hi the local vector Zeeman field whereby in our 
Nambu spinor representation the spin operator is expressed through στ τ σ τ σ σ=∼ ( , , )3 3 1 3 2 3 . Moreover, we intro-
duce the pairing field Δi for the conventional SC phase. A further key element is the current =J J J( , )i i

x
i
y  with the 

corresponding connection matrices given by δ δ= = ± ±± ±g g g i i( , ) ( , )i j i j i j j i x j i y
x y

, , , , , . This is the screening super-
current due to the magnetization of the ferromagnetic wire.

The setup of our device, as depicted schematically in Fig. 1a, requires that the Zeeman field (magnetic 
moment) on the FM points along the z-axis (perpendicular to the SC surface) and tilts on adjacent sites per-
pendicular to the wire (y-direction). The onsite pairing field Δi is constant over the SC region. The supercurrent 
flows adjacent to FM wire perimetrically to screen the magnetization of the FM wire. We use a different chemical 
potential for the FM wire (μFM) and the SC region (μSC).

The straightforward numerical calculations of this model yield a quasiparticle (QP) spectrum as presented in 
Fig. 1b. We observe that a pair of zero energy QP states appear in the range of μFM− < μFM < μFM + with 
μ ≈ .



h t1 2FM z , respectively, for the parameters used (see caption of Fig. 1) and indicate the range in which 
the FM wire would be metallic in the normal state.

The boundaries μ
FM  correspond to topological transitions signalled by the closing of the QP gap as seen in 

Fig. 1b. Thus, the topological transitions at μFM± coincide essentially with Lifshitz transitions in the electronic 

Figure 1. Heterostructure inspired by the experiment25. (a) One-dimensional FM wire with perpendicular 
polarization (green arrows) embedded on the surface of a singlet SC, a screening supercurrent in the proximity of 
the wire flowing around it due to the magnetization of the wire (black arrow) and a small unscreened in plane field 
component (yellow arrows) in the proximity of the wire. Results remain identical if the sign of the supercurrent 
and/or the sign of the perpendicular field and/or the sign of all in plane fields is flipped. (b) Typical low energy 
excitation spectrum of Hamiltonian Eq. 1 that contains only the ingredients depicted in (a) with Δ = 1 and μSC 
= 0 for the SC region, hz = 4 in the FM wire, |hy| = 0.4 and |J| = 0.2 (all in t units), as a function of the chemical 
potential in the FM wire μFM. With red line is highlighted the lowest eigenenergy of the system which pins to zero 
in the non-trivial topological phase emerging approximately for hz−1.2t < μFM < hz + 1.2t. (c) The spin down 
(left panel) and spin up (right panel) parts of the wave function |Ψ|2 corresponding to the zero eigenenergy of the 
system in the topologically non-trivial phase for μFM = hz = 4. The white rectangle defines the FM wire. (d) The 
same wave function expressed in the Majorana basis (Supplement II) reveals the two Majorana fermions localized 
respectively on each edge of the FM wire. The white rectangle defines the FM wire.
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bands of the FM wire. Note that the parameters in our numerical treatment imply no overlap of the up and down 
spin bands. The QP wave function of the particle-hole symmetric eigenstates at zero energy is displayed in Fig. 1c 
for μFM = hz. We observe that these zero energy states are localized at the two edges of the FM wire (the white 
rectangle defines the wire), whereby the left (right) panel depicts the spin down (up) component. These bound 
states clearly correspond to a pair of MFs localized on each edge of the wire as confirmed by Fig. 1d which depicts 
the same zero energy eigenstate projected in the Majorana basis (see Supplementary Material). Since this is the 
only zero energy eigenstate separated by a finite energy gap from the continuum and the FM polarization is 
assumed to be up by convention here, the right panel of Fig. 1c may correspond to the zero-bias normalized con-
ductance maps revealed by STM measurements in which FM and STM tip polarizations are the same25 or to those 
in which the STM tip is not polarized29 and both spin orientations contribute. On the other hand, the peculiar 
“double-eye” structure at the edges in the left panel of Fig. 1c may also be observable in some zero bias normalized 
conductance maps of spin polarized STM with sufficiently high resolution30 identifying the wires supporting MFs 
that have FM polarization opposite to that of the STM tip.

The origin of this behavior lies in the interplay between the different fields cooperating in the Hamiltonian and 
can be understood with the scheme of the quartet rules put forward by one of the authors28. According to these 
rules four fields (operators) form a quartet, if their matrix representations ˆ ˆ ˆA B C, ,  and D̂ obey the relation: 

= ±ˆ ˆ ˆ ˆ ˆABCD 1 28. As a consequence, the presence of any set of three members of a quartet implies that the missing 
fourth member is intrinsically generated, a phenomenon named the quartet rule coupling between the fields28. For 
example, the combination of charge and spin density wave (CDW and SDW) together with a chemical potential 
ensuring electron-hole asymmetry can give rise to a ferromagnetic spin polarization, important in the context of 
colossal magnetoresistance31. Another quartet case has been considered for unconventional superconductors 
with d-wave pairing combined with a SDW state which in conjunction with electron-hole asymmetry yields a 
so-called staggered π-triplet superconducting phase32, as might be realized in the puzzling high-field 
low-temperature Q-phase of CeCoIn5

33.
Two such quartets are relevant in our model, and are specially suitable for engineering of MFs: quartet A com-

posed of charge current, Zeeman field, electron-hole asymmetry and antisymmetric SOC and quartet B with 
charge current, Zeeman field, conventional singlet SC and p-wave triplet SC. Both quartets share the first two 
fields, but differ in the other two. We use the basic symmetries inversion  , time reversal   and their combination 
R IT=  to characterize the fields of the quartets as being even (+) or odd (−) (see table). In terms of these sym-
metries electron-hole asymmetry and conventional SC behave equivalently as well as the pair SOC and triplet SC. 
In case A the quartet rule implies that in a system with electron-hole asymmetry the presence of a charge current 
J and a Zeeman field h induces SOC of the kind σ⋅ ⋅ ∼ˆ ˆJ g h( )( )i j,  with ˆ ˆJ h,  unitary vectors along J, h, as is verified 
within our model and displayed in Fig. 2a. In the very same way we see that charge current, Zeeman field and 

Figure 2. Quartet rule coupling28 for quartets A and B. (a) Induced spin-orbit-coupling (SOC) normalized to 
its maximal value as a function of the charge current and the Zeeman field in the presence of finite chemical 
potential producing particle-hole asymmetry. (b) The same for induced p-wave superconductor (SC) in the 
presence of conventional s-wave superconductor. Note that only when both the current and the Zeeman field 
are non zero, the quartet rule coupling applies and we have the induced SOC and p-wave SC fields confirming 
quartets A and B respectively (see Table 1 and Supplement I).

Quartet A    Quartet B   

charge current − − + charge current − − +

Zeeman field + − − Zeeman field + − −

electron-hole asymmetry + + + conventional SC + + +

spin-orbit coupling − + − triplet p-wave SC − + −

Table 1. The quartets A and B and the parity of each of the involved fields under the basic symmetry operations 
of inversion  , time reversal   and their combination R IT= . Whenever three members of a quartet are 
present the fourth member is induced28.
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conventional SC drives a spin triplet p-wave component with the real-space structure στ σ⋅ ⋅ ∼ˆ ˆJ g hi( )( )i j, 1 2  
(Fig. 2b).

A detailed analysis of the numerical results on Hamiltonian (1) provides insight into the key role of quartet 
rule coupling between fields. Besides the creation of the spin triplet component τΔ ⋅ ˆg xi jy

p
, 2 through the presence 

of charge current, Zeeman field = ⋅ ˆh yhy  and the spin-singlet pairing component, the Zeeman field component 
= ⋅ ˆh zhz  combines with the spin-triplet pairing field τΔ ⋅ ˆg xi jy

p
, 2 and particle-hole asymmetry to induce 

τ σΔ ⋅ ˆI g xi jx
p

, 2 3 where Δy
p ( ΔI x

p) are even(odd) under time-reversal. This results from the quartet D discussed in 
Supplement I.

This combination of triplet pairing fields eventually constitutes the basis of the Kitaev spinless model9. Based 
on this it is also possible now to establish qualitatively the character of the topological phase transition (TPT) 
suggested by Fig. 1b, using an effective 1D Hamiltonian for the FM wire that contains all the fields induced by the 
quartet rule,

∑ μ δ τ δ τ σ

δ τ σ α τ σ τ τ σ

= Ψ 


′ + −

+ Δ′ + + Δ + Δ 

Ψ .

†

I

( )
( )

H t f h

g (2)

FM
eff

i
i i j

x
FM i j z i j

i j i j
x

y y
p

x
p

j

, , 3 , 3 3

, 2 2 , 3 2 2 2 3

with t′ the renormalized hopping matrix element34 with δ= ±fi j
x

j i, , 1, Δ′ the singlet pairing component induced 
by proximity and αy the effective SOC appearing through the quartet rule combining charge current, Zeeman 
field and electron-hole asymmetry28.

Hamiltonian Eq. 2 belongs to the chiral BDI symmetry class (details are in the Supplement III) which for 1D 
accepts a strong integer  topological invariant35. The system is in a non-trivial topological phase with a single 
pair of zero energy Majorana modes, when ∆ μ ∆| ′ − − | < | | < | ′ + − |′ ′t h t h2 ( ) 2 ( )z FM z

2 2 2 2  (see 
Supplement III) that identifies the chemical potential range for which a single energy band is partially occupied. 
We conclude that the non-trivial topological region in Fig. 1b indicates t′ ≈ 0.6t and is almost symmetric with 
respect to μFM = hz = 4 because Δ′ is rather small.

To illustrate the robustness of these Majorana modes, we extend our discussion to a FM wire of finite width 
W, still small compared to the length L, incorporating a possible tilting of the magnetic moment in the wire as 
indicated in Fig. 3a. The results of our numerical analysis are shown in Fig. 3b,c where the finite W corresponds 
to 3 lattice sites introducing three bands in the FM wire which are spin split. In Fig. 3c are shown only one of the 

Figure 3. Quasi-one dimensional wire. (a) The finite width W quasi-1D FM wire with eventual tilting of the 
magnetization. Here as well flipping the sign of the perpendicular field and/or of the supercurrent and/or that of 
all in plane fields leaves the results invariant. (b) Typical low-energy quasiparticle spectrum for Δ = 1, μSC = 0, 
hz = 6, |hy| = 0.8, |J| = 0.2, (all in t units) and magnetization = +ˆ ˆ ˆh h hz y1 , =ˆ ˆh hz2  and = −ˆ ˆ ˆh h hz y3  for the 
first, second and third row respectively of this W = 3 wire. We observe that a single near zero eigenenergy (red 
line) emerges when odd numbers of transverse sub-bands in the wire are partially occupied e.g. near μFM/t = 4 
(1 sub-band) and near μFM/t = 6 (three sub-bands) as anticipated36. Near μFM/t = 5 two transverse sub-bands 
cross the Fermi level and the two pairs of MFs interfere acquiring finite energy (green line). (c) One Majorana 
mode for μFM/t = 4 (left panel) and one for μFM/t = 6 (right panel). The μFM/t = 6 Majorana mode is less 
localized because it is protected by a smaller energy gap from the lowest eigenenergy of the continuum (purple 
lines) than the μFM/t = 4 mode. The white rectangle defines the FM wire.
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two MF modes obtained for each of the two topological regimes reached for μFM = 4 (left panel) and μFM = 6 
(right panel) respectively.

The multiple TPTs in Fig. 3b yield topologically non-trivial phase in the range of μFM, where the FM wire has 
an odd number of partially filled bands that could host Cooper pairing, which again is connected with Lifshitz 
transitions. Additionally we notice that the finite width W allows now for transverse spin triplet pairing, i.e. a field 
of the type τgi j

y
, 1 which combines with the component τgi j

x
, 2 to a Cooper pair with chiral symmetry (“px ± ipy”) 

(quartet D in Supplement I). This phase belongs, thus, to the symmetry class D with a 2 topological invariant35. 
As elaborated in refs36,37, for  ξW , where ξ ∝

∆
t
py

 is the coherence length of the transverse SC component py, the 

D symmetry class yields a pair of zero-energy MFs, if an odd number of transverse sub-bands are partially occu-
pied. This is the case in our model calculations with W = 3 (see Fig. 3), where indeed the coherence length of the 
emergent transverse py SC is greater than the transverse dimension W.

After the discussion of MFs in the embedded FM wire we turn to a further related design which might be 
more suitable for practical MF engineering. It is important to note that the structure of the device needs not to be 
one-dimensional, as in the above device, but that applied currents are sufficient to establish the necessary direc-
tionality. As an example of this kind of device we present here a three-layer structure (see Fig. 4a) which consists 
of a FM layer sandwiched between two conventional SCs. The FM magnetization (green arrows) here points per-
pendicular to the layer and the adjacent SC layers carry supercurrents in opposite directions (black arrows) and 
in-plane Zeeman fields in opposite directions as well (yellow arrows). The corresponding model Hamiltonian for 
our numerical analysis is given by

∑ σμ τ τ τ σ δ

τ δ τ

= Ψ 
 − ⋅ + Δ

+ + ⋅ + 

Ψ

∼
′

′ ′ ′

† h

J gt f t

[( )

] , (3)

i j
i i j

i j i j j

l l
l l l l

l l l l l l l

, , ,
, 3 3 2 2 ,

, 3 , , , 3 ,



where l is a layer index and tl,l′ the interlayer hopping term. The numerical results for such a system of three layers 
are shown in Fig. 4b–d.

Figure 4. Layered heterostructure for controllable generation of Majorana fermions. (a) SC/FM/SC trilayer 
with antiparallel supercurrents (black arrows) and Zeeman fields (yellow arrows), perpendicular to the FM 
magnetization. Provided supercurrents and in-plane fields in the adjacent SC layers remain antiparallel, the 
signs of fields and currents has no influence on the results. Moreover, provided green and yellow Zeeman fields 
are in perpendicular directions, the exact direction of these fields is irrelevant. (b) Typical low-energy 
quasiparticle spectrum for Δ = 4, μSC = 0, hz = 8, |hy| = 2, |J| = 0.6 and tc = 0.8 for the interlayer hopping term 
all in units normalized to the in-plane hopping term t. Here we have Nx = 120, Ny = 10 and periodic boundary 
conditions along y-axis. With red lines we denote the branches which pin to zero energy for some μFM values. 
Dashed lines indicate the topological phase transitions while the numbers on top correspond to the value of the 
topological invariant   (see Supplements II and III). (c) The five pairs of Majorana fermions for μFM/t = 6 
corresponding to the  = 5 regime in (b). (d) One Majorana fermion from each of the five Majorana fermion 
pairs that we obtain for the same parameters but with open boundary conditions along y-axis. The system 
remains manifestly in a BDI symmetry class for both types of boundary conditions.

https://doi.org/10.1038/s41598-019-42558-3


6Scientific RepoRts |          (2019) 9:6259  | https://doi.org/10.1038/s41598-019-42558-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Again we see a sequence of TPTs between states involving different number of MF pairs upon changing the 
chemical potential μFM in the FM layer (Fig. 4b). Although in the particular case demonstrated in Fig. 4b only 
odd number of MFs pairs emerge, in general, also topological phases with even topological invariant can also be 
reached (Supplement II).

The TPTs of Fig. 4b are understood qualitatively from an effective Hamiltonian for the FM layer correspond-
ing to our numerical findings that should exhibit a parallel rows structure:

 ∑ δ τ σ δ δ= Ψ + ′ Ψ
ν ν

ν ν ν ν ν ν ν
′

′ ⊥ ′ ± ′
† H t[ ]

(4)
FM
eff

i j
i i j

D
i j j

, , ,
, , ,

1
, 3 0 , 1 , ,

Each row along the x-axis of the FM layer is indexed with ν and t′⊥ is the renormalized transverse inter-row 
hopping term along the y-axis. The 1D Hamiltonian νHi j

D
, ,
1  has exactly the same form as Eq. 2.

The system is translationally symmetric along the transverse direction when periodic boundary condi-
tions apply while for open boundary conditions it only maintains the reflection symmetry. In either case, the 
Hamiltonian Eq. 4 takes a block diagonal form (Supplement II)

∑ τ σ λ δ= Ψ + Ψ† H[ ] ,
(5)

FM
eff

i j n
i n i j n

D
n i j j n

, ,
, , ,

1
3 0 , ,

where λn are the eigenvalues of matrix H⊥ = t′⊥δν′,ν±1. Therefore, the system belongs to the ⊕BDI Ny class with the 
integer topological invariant  = ∑n n. Since λn act as an effective chemical potential which breaks the degen-
eracy of the 1D sub-systems38, the topological criteria for Wn =  1 are modified accordingly : 

μ λ| ′ − − Δ | < | + ′ |<| ′ + − Δ |′
⊥

′t h t t h2 2z n z
2 2 2 2 . For periodic boundary conditions when t′ ≈ t′⊥ and Ny is 

even, only odd values of W are observed as presented in Fig. 4b corresponding to Majorana multiplets obeying 
non-Abelian statistics. For open boundary conditions the residual degeneracy of the transverse bands is lifted and 
transitions among topological phases with odd and even number of MFs pairs are observed (Supplement II). We 
note that the results and discussions presented here are based on a single FM layer, however this is not a necessary 
condition as will be discussed in a future work.

To conclude, we have identified quartets of fields that are opening novel extraordinary paths for the quan-
tum engineering of MFs in conventional SC/FM heterostructures. No exotic materials with special structures of 
intrinsic Rashba SOC are needed. These quartets of fields have been deliberately discussed here only in the con-
text of MF engineering in FM/SC heterostructures. Their broader implications in a variety of other phenomena 
will be explored elsewhere.
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