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Background: To identify a computed tomography (CT) derived radiomic signature for the
options of concurrent chemo-radiotherapy (CCR) in patients with non-small cell lung
cancer (NSCLC).

Methods: A total of 226 patients with NSCLC receiving CCR were enrolled from public
dataset, and allocated to discovery and validation sets based on patient identification
number. Using CT images of 153 patients in the discovery dataset, we pre-selected a list
of radiomic features significantly associated with 5-year survival rate and adopted the least
absolute shrinkage and selection operator regression to establish a predictive radiomic
signature for CCR treatment. We performed transcriptomic analyzes of the signature, and
evaluated its association with molecular lesions and immune landscapes in a dataset with
matched CT images and transcriptome data. Furthermore, we identified CCR resistant
genes positively correlated with resistant scores of radiomic signature and screened
essential resistant genes for NSCLC using genome-scale CRIPSR data. Finally, we
combined DrugBank and Genomics of Drug Sensitivity in Cancer databases to
excavate candidate therapeutic agents for patients with CCR resistance, and validated
them using the Connectivity Map dataset.

Results: The radiomic signature consisting of nine features was established, and then
validated in the dataset of 73 patients receiving CCR log-rank P = 0.0005, which could
distinguish patients into resistance and sensitivity groups, respectively, with significantly
different 5-year survival rate. Furthermore, the novel proposed radiomic nomogram
significantly improved the predictive performance (concordance indexes) of
clinicopathological factors. Transcriptomic analyzes linked our signature with important
tumor biological processes (e.g. glycolysis/glucoseogenesis, ribosome). Then, we
identified 36 essential resistant genes, and constructed a gene-agent network including
10 essential resistant genes and 35 candidate therapeutic agents, and excavated AT-
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7519 as the therapeutic agent for patients with CCR resistance. The therapeutic efficacy
of AT-7519 was validated that significantly more resistant genes were down-regulated
induced by AT-7519, and the degree gradually increased with the enhanced doses.

Conclusions: This study illustrated that radiomic signature could non-invasively predict
therapeutic efficacy of patients with NSCLC receiving CCR, and indicated that patients with
CCR resistance might benefit from AT-7519 or CCR treatment combined with AT-7519.
Keywords: computed tomography, non-small cell lung cancer, concurrent chemo-radiotherapy, radiomic
signature, candidate therapeutic agents
INTRODUCTION

Lung cancer was the first most commonly diagnosed cancer (1),
with non-small cell lung cancer (NSCLC) accounting for 80% to
85% of cases (2). More than 30% of patients with NSCLC have
locally advanced and unresectable disease, and the 5-year survival
rate is less than 15% (3). International guidelines recommend
concurrent chemo-radiotherapy (CCR) as a standard first-line
treatment option for locally advanced stage NSCLC patients (4).
However, the prognosis achieved with CCR remains unsatisfactory
with the 5-year survival rate of less than 25% (5, 6). Therefore, it is
imperative to develop a clinically feasible signature to stratify
patients who might benefit from CCR treatment, avoiding these
side effects of unnecessary treatment.

Currently, most predictive signatures for CCR therapeutic
efficacy were constructed based on molecular characterization
using genomic and proteomic technologies (7–9). However,
these techniques are limited due to tumors are spatially and
temporally heterogeneous, which could not provide a complete
characterization of the tumor (10). In contrast, medical imaging
can be used to non-invasively and cost-effectively visualize the
characteristics of entire tumor, providing dynamic information
that can be used to monitor the occurrence and development of
tumors (11, 12). Currently, computed tomography (CT), which
is the most commonly used imaging modality in oncology,
especially lung cancer, allows non-invasive detection of tissue
density and describes tumor spatial heterogeneity (12).

Radiomics converts medical images into high-throughput
quantitative features; this is a new field that could be the vanguard
ofprecisionmedicine(10,13),whichoffers thepossibility tominimize
adverse effects and optimize the efficacy of treatments (14). Current,
most researchers firstly developed prognostic signatures (15–17) for
patientsnot receivingCCRandthendemonstratedthatonly thehigh-
risk patients predicted by the signatures showed significantly survival
benefit after CCR treatment. Obviously, such prognostic signatures
were just able to identify patientswith poor prognosiswhoneedCCR
treatment, but unable to identify patients who might be sensitive to
treatment. In order to provide support in patient management and
achieve maximum clinical benefit, the development of CT derived
radiomicsignatureforpredictingthepatientssensitive toCCRneedto
be assessed to predict the therapeutic efficacy of CCR treatment.

In this study, using CT images of patients, we develop a non-
invasive radiomic signature for patients with locally advanced
stage NSCLC receiving CCR, which might help to accurately
2

predict therapeutic efficacy for CCR treatment with improved 5-
year survival rate. Subsequently, based on the dataset with
matched CT images and gene expression profiles, we
characterized the underlying functional pathways reflected by
the radiomic features in the signature and tentatively captured
the potentially beneficial agents required for the treatment of
patients with CCR resistance based on cancer cell lines dataset.
MATERIALS AND METHODS

Data Sources
In this study, the NSCLC-Radiomics (NR) dataset (10) with
DICOM CT scans was downloaded from The Cancer Imaging
Archive (TCIA, https://www.cancerimagingarchive.net/, 2020),
including 422 patients previously treated with CCR or
radiotherapy. The inclusion criteria of the samples for CCR
treatment planning were as follows: 1) available treatment-naive
CT scans; 2) confirmed NSCLC; 3) patients treated with CCR; 4)
available survival information. Finally, 226 patients with locally
advanced stage NSCLC receiving CCR were preselected and
divided into discovery (n = 153) and validation (n = 73)
datasets based on patient identification number (pid), that is,
the 153 patients whose pid wasn’t divisible by 3 were used as a
discovery dataset to develop a radiomic signature for CCR
treatment, and the remaining 73 patients were assigned to the
validation dataset. These details and applications of the analyzed
datasets are displayed in Table 1 and Supplementary Figure S1.

NSCLC-Radiogenomics (NRG) dataset (18) with DICOM CT
scans and matched gene expression profiles were downloaded
from TCIA, including 67 NSCLC patients treated with different
therapeutic strategies, which was used to understand the
biological processes linked to the radiomic signature.

Genome-wide CRISPR screening of NSCLC cells (n = 87) was
downloaded from the DepMap portal (https://depmap.org/
portal/download/; 2019). Dependency scores for around 17,000
candidate genes were calculated using the CERES algorithm (19).
Essential genes for NSCLC were defined as the genes with a
CERES score of <−1 across 75% of NSCLC cell lines. The
DrugBank database (https://go.drugbank.com/) was used to
identify therapeutic agents targeting essential genes.

Genomics of Drug Sensitivity in Cancer dataset (20) (GDSC,
https://www.cancerrxgene.org, release-8.2), which contains
responses to 345 anticancer agents across 917 cancer cell lines,
June 2022 | Volume 12 | Article 832343
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with gene expression profiles and half-maximal inhibitory
concentrations (IC50) values of cell lines were used to identify
potential therapeutic agents.

Gene expression profiles of 27 samples treated with different
concentrations (0.01 - 10 µM) of AT-7519 for 24 hours and the
corresponding 124 untreated control samples were downloaded
from Connectivity Map dataset (21) (CMap, https://clue.io/data/
CMap2020#LINCS2020), including 12,328 genes. These samples
were derived from A549 and HCC515 NSCLC cell lines. The
samples treated with AT-7519 were divided into three dose
groups: Low (dose < 1 µM), Middle (1 < dose < 10 µM) and
High (dose = 10 µM), which was used to validate therapeutic
efficacy of AT-7519.

Image Segmentation and Radiomic
Feature Extraction
The regions of interest (ROI) of CT scans in the NR and NRG
datasets were publicly available. In general, the three-
dimensional radiomic features that enabled quantification of
the tumor characteristics were divided into ten groups
according to the following: I) Tumor intensity, II) Shape, III)
Texture, IV) wavelet filters, V) Laplacian of Gaussian filters, VI)
Logarithm filters, VII) Square filters, VIII) Exponential filters,
IX) Gradient filters and X) Squareroot filters features. For the NR
and NRG datasets, radiomic feature extraction was performed
for each CT scan with ROIs using free and open-source
PyRadiomics (v2.2.0) libraries. An extraction intensity bin
width was set at 25 HU and the slice thicknesses of all scans
were interpolated to a voxel size of 1×1×1 mm3. The quantitative
values of 1781 radiomic features (Supplementary Table S1) were
Frontiers in Oncology | www.frontiersin.org 3
calculated according to feature definitions in the PyRadiomics
documentation (https://pyradiomics.readthedocs.io/en/latest/
index.html) by the Imaging Biomarker Standardization
Initiative (22).

Construction of the Radiomic Signature
for CCR Treatment
In the discovery dataset, radiomic features whose quantitative
values were significantly associated with the 5-year survival rate
were identified as CCR-associated features. Based on the CCR-
associated features, we adopted the least absolute shrinkage and
selection operator (LASSO) regression (23) using “glmnet” R
package to establish an optimal predictive model, and defined it
as a predictive radiomic signature for CCR treatment. “Cox” was
set as the family in the model. Ten-fold cross-validation was
performed using cv.glmnet function to select lambda minimum
to give the minimum cross-validated error. The resistant score of
the signature for each patient was calculated via a linear
combination of features in the signature that were weighted by
their respective coefficients as follows:

Risk score =o
n

i=1
wiFeatureValuei i ∈  n

where i represents the i-th feature in the signature; wi represents
the weight of the i-th feature derived from LASSO model;
FeatureValuei represents the quantitative value of the i-th
feature; and n represents the number of features contained in
the signature.

The median value of resistant scores of the radiomic signature
in the discovery dataset was used as the cut-off value for dividing
TABLE 1 | Baseline clinical characteristics of patients in the analyzed datasets.

Discovery dataset (n = 153) Validation dataset (n = 73)

Age (years)
≤ 65 78 (51.0%) 35 (47.9%)
> 65 70 (45.8%) 34 (46.6%)

Gender
Female 54 (35.3%) 28 (38.4%)
Male 99 (64.7%) 45 (61.6%)

TNM stage
I – –

II – –

III 153 (100%) 73 (100%)
T stage
T1 20 (13.1%) 20 (27.4%)
T2 68 (44.4%) 24 (32.9%)
T3 21 (13.7%) 10 (13.7%)
T4 41 (26.8%) 19 (26.0%)

N stage
N0 – –

N1 – –

N2 97 (63.4%) 44 (60.3%)
N3 56 (36.6%) 29 (39.7%)

Histologic subtype
ADC 18 (11.8%) 11 (15.1%)
SCC 53 (34.6%) 22 (30.1%)
LCC 53 (34.6%) 23 (31.5%)
NOS 22 (14.4%) 13 (17.8%)

Average survival (Month) 28.65 34.78
June 2022 |
ADC, Adenocarcinoma; SCC, Squamous cell carcinoma; LCC, Large-cell lung carcinoma; NOS, Not otherwise specified subtype.
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patients into the resistance (≧ Median) and sensitivity (<
Median) groups.

Statistics Analyzes
The 5-year survival rate of the patients was used as the end point
of interest. Patients with more than 5 years follow-up were
censored at 5 years because deaths occurring past five years
were not likely to be related to CCR treatment. Survival curves
were estimated using the Kaplan-Meier method and statistically
compared using the log-rank test (24). To analyze the
associations between the different influencing factors and the
5-year survival rate of the patients, a univariate Cox regression
model was used, and to test the independent association of the
radiomic signature with the 5-year survival rate after adjusting
for the clinical parameters recorded in the data, a multivariate
Cox regression model was used. Hazard ratio (HR) and 95%
confidence interval (CI) were generated using the Cox
proportional hazards models, and the concordance index (C-
index) (25) was also used to estimate the predictive performance
of clinical factors. Time-dependent receiver operating
characteristic curve (ROC) analysis (26) and the area under the
curve (AUC) were performed to evaluate the radiomic
signature’s performance in predicting the 1-, 3- and 5-year
survival rates.

To assess the complementary effect of the radiomic signature
on the clinical model in predicting the therapeutic efficacy in
patients with NSCLC receiving CCR treatment, a radiomic
nomogram was constructed using multivariate linear
regression analysis (“rms” R package). Additionally, the
predictive performance of the radiomic nomogram was
evaluated based on C-index, calibration curve, and the decision
curve analysis. The net reclassification improvement (NRI) (27)
index was determined to quantify the radiomic signature’s
incremental improvement using the “nricens” R package.

Spearman’s rank correlation was applied to investigate the
association between the radiomic signature and clinical
parameters. The “clusterProfiler” R package was used to
conduct the functional enrichment analysis of the genes that
were correlated with the radiomic features based on the current
Kyoto Encyclopaedia of Genes and Genomes (KEGG) database,
wherein a hypergeometric test was employed.

ESTIMATE (28) was introduced to estimate the immune
score for a given sample by performing ssGSEA (29), based on its
mRNA expression profiles using an “estimate” R package. The
ssGSEA was also utilized to quantify the relative infiltration
levels of 28 immune cell types in the tumor microenvironment
by using a “GSVA” R package. The relative infiltration levels of
each immune cell type were represented by an enrichment score
in the ssGSEA analysis.

Student’s t-test was used to examine the intergroup difference
by comparing samples treated with potential therapeutic agents
and the corresponding untreated control samples. Binomial
distribution was used to examine the difference in the
distribution of the down-regulated and up-regulated resistance
genes induced by the potential therapeutic agents.

Statistical analyzes were performed using R, version 3.5.3; P
values were adjusted using the Benjamini-Hochberg procedure
Frontiers in Oncology | www.frontiersin.org 4
for multiple tests to control the false discovery rate (FDR).
Statistical significance was defined as two-sided P<0.05 or
FDR<0.05 for multiple tests.
RESULT

Construction and Validation of a Radiomic
Signature for CCR Treatment
Figure 1 describes the flowchart of this study. In the discovery
dataset, comprising 153 patients with NSCLC receiving CCR, we
extracted 398 CCR-associated radiomic features which were
potentially significantly associated with 5-year survival rate
(Univariate Cox regression, P < 0.05). The CCR-associated
features were selected as inputs for LASSO regression to
generate a radiomic signature consisting of nine weighted
features (denoted as CCR-9RS, Figure 2A and Table 2). The
weighted sum of these nine radiomic features gave a resistant score
for each sample (Supplementary Table S2). Using the median
value (0.6241) of the 153 samples as the cut-off value, the patients
were divided into resistance and sensitivity groups, respectively,
with significantly 5-year survival rate differences (resistance vs.
sensitivity = 77: 76, log-rank P = 2.38E-06, HR = 2.33, 95% CI:
1.63-3.34, C-index = 0.61, Figure 2B) in the discovery dataset. The
time-dependent ROC curve of CCR-9RS in predicting the 1-, 3-,
and 5-year survival rates were shown in Figure 2C, and the area
under the curve (AUC) was 0.69, 0.73, and 0.74, respectively. In
the multivariate Cox regression model, CCR-9RS remained
significantly associated with the 5-year survival rate (P = 7.40E-
06, HR = 2.45, 95% CI: 1.66-3.62, Figure 2D) after adjusting for
TNM stage, age, gender and histologic subtype.

The predictive performance of CCR-9RS was validated in the
validation dataset, consisting of 73 patients with NSCLC receiving
CCR. According to the trained cut-off (0.6241) of CCR-9RS, the 35
patients were classified into the resistance group, and exhibited
significantly shorter 5-year survival rate than the 38 patients
classified into the sensitivity group (log-rank P = 0.0005, HR =
2.52, 95% CIs: 1.47-4.30, C-index = 0.61, Figure 3A). The time-
dependent ROC curve confirmed that CCR-9RS had a good
performance for predicting 1-, 3- and 5-year survival rates in
the validation dataset (Figure 3B). Multivariate Cox analysis
revealed that 5-year survival rate was independently predicted
by CCR-9RS after adjusting for the clinical factors in validation
dataset (Figure 3C). Additionally, in order to exclude the influence
of the not otherwise specified (NOS) subtype of NSCLC, CCR-9RS
was also validated in the patients with clarifying histologic
subtypes (Adenocarcinoma, Squamous cell carcinoma and
Large-cell lung carcinoma) in the discovery dataset (n = 131,
log-rank P = 4.81E-05, HR = 2.19, 95% CI: 1.49-3.22, C-index =
0.60, Supplementary Figure S2A) and validation dataset (n = 60,
log-rank P = 0.0013, HR = 2.55, 95% CI: 1.42-4.61, C-index = 0.62,
Supplementary Figure S2B), respectively.

Incremental Value of CCR-9RS
To further investigate whether CCR-9RS could provide
incremental value for therapeutic evaluation of patients with
June 2022 | Volume 12 | Article 832343
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NSCLC receiving CCR, we generated a radiomic nomogram
(Figure 4A) that incorporated clinical factors (TNM stage, age,
gender and histologic subtype) and CCR-9RS. The radiomic
nomogram showed a significantly higher C-index relative to that
of the clinical nomogram (Supplementary Figure S3A) and
CCR-9RS alone based on the NRI index (P < 0.05,
Supplementary Figures S3B, C) in the discovery dataset (C-
index = 0.65, Table 3) and validation dataset (C-index = 0.66,
Table 3). The calibration curves corresponding to the radiomic
nomogram at 1-, 3-, and 5-year survival rates 7 showed good
agreement between the estimations and the clinical outcomes in
the discovery (Figure 4B) and validation datasets (Figure 4C).
Furthermore, the decision curve analysis showed that the
radiomic nomogram exhibited superior performance compared
with the clinical nomogram across the majority of the range of
reasonable threshold probabilities in the discovery (Figure 4D)
and validation datasets (Figure 4E).
Biological Function of CCR-9RS
The biological basis of CCR-9RS was evaluated in the independent
NRG dataset (n = 67) with matched CT images and gene
expression profiles. Using Spearman’s rank correlation analysis,
Frontiers in Oncology | www.frontiersin.org 5
we identified the significantly correlated genes of each feature in
CCR-9RS (P < 0.05) and performed functional enrichment
analysis for these correlated genes. It was observed that 6 of
the 9 features were significantly enriched in 20 functional
pathways (hypergeometric test, FDR < 0.05; Figure 5A and
Supplementary Table S3) , inc lud ing “g lyco lys i s /
glucoseogenesis” (30), “ribosome” (31) and other functional
pathways related to CCR treatment resistance. For example, we
observed tha t “wave le t_HHL_g l szm_SizeZoneNon
UniformityNormalized” showed a strong positive correlation
with genes enriched in “ribosome”, “glycolysis/glucoseogenesis”
(Supplementary Table S3). The feature measures the variability of
size zone volumes throughout the image, and a higher value of this
feature represents a higher level of tumor heterogeneity, which
might reflect the high glycolysis ability of a tumor with high CCR
resistant capability (30, 32).

We also investigated the association of CCR-9RS with the
molecular lesions (EGFR mutation, KRAS mutation and ALK
translocation) and immune landscapes based on Spearman’s
rank correlation analysis (Figure 5B). The resistant scores of
CCR-9RS were not observed to be significantly associated with
EGFR mutation (P = 0.3685), KRAS mutation (P = 0.8272) and
ALK translocation (P = 0.6256). The result indicated that
FIGURE 1 | Flowchart of developing and validating of a radiomic signature derived from computer tomography (CT) for the patients with NSCLC receiving CCR
treatment.
June 2022 | Volume 12 | Article 832343
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patients with CCR resistance might not benefit from the
currently molecular-targeted therapies. Furthermore, we
observed that patients with CCR resistance exhibited
marginally significantly negatively correlated with immune
scores (29) (Rho = -0.2222, P = 0.0707), and significantly
negatively correlated with some immune cells (28), such as
Activated dendritic cell (Rho = -0.2488, P = 0.0423), Activated
B cells (Rho = -0.2387, P = 0.0517) and Central memory CD4 T
cell (Rho = -0.2968, P = 0.0147). The result suggested that
Frontiers in Oncology | www.frontiersin.org 6
patients with CCR resistance had lower infiltration levels
predicted by CCR-9RS, who might also not benefit
from immunotherapy.

Identification of Potential Therapeutic
Agents for Patients Resistant to
CCR Treatment
To further screen candidate therapeutic agents for patients
resistant to CCR treatment, we first identified 470 resistant
A B

C D

FIGURE 2 | Feature selection and survival analyzes for patients with NSCLC receiving CCR in the discovery dataset. (A) Tuning parameter (l) selection in the least
absolute shrinkage and selection operator (LASSO) Cox model used a 10-fold cross-validation via minimum criteria. The area under the receiver operating
characteristic (AUC) curve was plotted versus log(l). (B) Kaplan–Meier curves of the 5-year survival rate for 153 patients. (C) Time-dependent receiver operating
characteristic curve (ROC) of CCR-9RS in predicting the 1-, 3- and 5-year survival rates. (D) Multivariate Cox analyzes of CCR-9RS after adjusting for clinical factors.
TABLE 2 | Composition of CCR-9RS.

Radiomic feature name HR P-value C-index

squareroot_gldm_DependenceVariance 1.06 0.0011 0.58
wavelet_LHH_glcm_JointAverage 1.10 0.0067 0.55
wavelet_LHH_glcm_SumAverage 1.05 0.0067 0.55
wavelet_LHH_firstorder_Range 1.01 0.0053 0.55
wavelet_LHH_glszm_ZoneEntropy 1.67 0.0051 0.56
wavelet_LLH_glrlm_LongRunHighGrayLevelEmphasis 1.01 0.0005 0.57
wavelet_LLH_glszm_SizeZoneNonUniformity 1.01 0.0002 0.58
wavelet_HHH_glszm_SizeZoneNonUniformity 1.02 2.91E-05 0.56
wavelet_HHL_glszm_SizeZoneNonUniformityNormalized 5370.36 0.0042 0.57
June 2022 | Volume 12 | Articl
HR and P-value are the statistics calculated using a univariate Cox regression model. HR represents the risk coefficient of the quantitative values for the feature; P-value represents the
significance of the quantitative values for radiomic feature.
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genes responsible for their resistance, whose expression values
were significantly positively associated with the resistant scores
of CCR-9RS in the NRG dataset (Spearman’s rank correlation,
Rho > 0 and P < 0.05, Figure 6A). Second, we investigated
genome-wide CRISPR-based loss-of-function screens derived
from DepMap to pinpoint 689 essential genes for maintaining
survival in 87 NSCLC cell lines and found 36 resistant genes to be
essential genes for NSCLC. The correlations among ;the 36
resistant genes is displayed in Supplementary Figure S4.
Frontiers in Oncology | www.frontiersin.org 7
Therefore, the 36 essential resistant genes could be the
potential targets of patients with CCR resistance. Third, taking
advantage of the DrugBank database, we extracted 35 candidate
therapeutic agents targeting 10 essential resistant genes and
constructed a gene-agent network (Figure 6B). Finally, we
input the 35 candidate therapeutic agents of gene-agent
network into the GDSC cancer cell line dataset, and searched
for 4 overlapped therapeutic agents (Seliciclib, AT-7519,
Vinorelbine and Vinblastine) with completely IC50 values
A B C

FIGURE 3 | Validation of CCR-9RS. (A) Kaplan–Meier curves of 5-year survival rate for patients in the validation dataset (n = 73). (B) Time-dependent receiver
operating characteristic curve (ROC) of CCR-9RS in predicting 1-, 3- and 5-year survival rates in the validation dataset. (C) Multivariate Cox analyzes of CCR-9RS
after adjusting for clinical factors in the validation dataset.
A B C

D E

FIGURE 4 | Radiomic nomogram and its performance for patients with NSCLC receiving CCR treatment. (A) Survival radiomic nomogram that incorporated with
CCR-9RS and the clinical factors trained in the discovery cohort (n=153). The points of CCR-9RS and the clinical factors were obtained based on the top ‘points’
bar (scale: 0–100). The total point was calculated by summing the two points, and a line was drawn downward to the survival axes to determine the likelihood of 1-,
3-, or 5-year survival rate. (B, C) Calibration curves for the radiomic nomogram in the discovery and validation datasets; the diagonal gray line represents an ideal
evaluation. (D, E) Decision curves for the radiomic nomogram in the discovery and validation datasets.
June 2022 | Volume 12 | Article 832343
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corresponding to two essential resistant genes (CDK1 and
TUBB). Using Spearman’s rank correlation analysis, we found
that only the IC50 value of AT-7519 therapeutic agent was
significantly negatively associated with the mRNA expression
of the target gene (CDK1) in the GDSC dataset (Rho = -0.1548,
P = 5.86E-06, Figure 6C). Therefore, AT-7519 was selected as a
candidate therapeutic agent for the patients resistant to
CCR treatment.

Finally, using the CMap dataset, we collected 27 samples
treated with AT-7519 and the corresponding 124 untreated
control samples to tentatively validate the therapeutic efficacy of
AT-7519 for samples with CCR resistance. The detailed
information of cell line samples treated with AT-7519 have been
described in the Supplementary Table S4. Among the 341
resistant genes measured in the CMap dataset, we found that
183 resistant genes were significantly differently expressed between
the AT-7519-treated and control groups (Student’s t-test, FDR <
0.05). Herein, 124 of the 183 resistance genes were significantly
down-regulated induced by AT-7519, including the targeted
CDK1 gene of AT-7519 (Student’s t-test, P = 0.0046,
Supplementary Figure S5), and showed a significant difference
in the resistance genes distribution of the down-regulated induced
(67.76%) and up-regulated induced (32.24%) by binomial
Frontiers in Oncology | www.frontiersin.org 8
distribution (P = 1.76E-06, Figure 6D). Furthermore, we
divided the samples treated with AT-7519 into three dose
groups: Low (n = 15), Middle (n = 8) and High (n = 4), and
found that significantly more resistant genes (Low, 59; Middle, 93;
High, 118, Figure 6E) were down-regulated induced by AT-7519,
and the degree was gradually increased with the enhanced doses.
DISCUSSION

Radiomics is an emerging technique that converts traditional
medical images into high-dimensional features, and has been
widely applied in early diagnosis, prognosis and therapeutic
efficacy evaluation, guiding clinicians develop individualized
treatment plans for patients. In this study, we established a CT
derived radiomic signature (CCR-9RS), which is the predictor of
the therapeutic efficacy in patients with locally advanced stage
NSCLC receiving CCR treatment. The radiomic signature
successfully stratified NSCLC patients into the resistance and
sensitivity groups with significantly different 5-year survival rate
when they receiving CCR treatment. The combination of clinical
factors with the radiomic signature in a radiomic nomogram
could significantly improve the predictive performance of the
clinical evaluation system in the discovery and validation
datasets. These results indicated that CCR-9RS could provide
additional predictive information for patients within the same
clinical factors, and it will be worthwhile to develop this signature
as a non-invasive predictive tool for clinical application.

Additionally, we tentatively estimated the predictive
performance of CCR-9RS in early stage (stage I-II) NSCLC
patients receiving radiotherapy, which is a guideline-
TABLE 3 | Performances of different models.

C-index (95% CIs)

Discovery dataset Validation dataset

Radomic nomogram 0.65 (0.60 - 0.71) 0.66 (0.59 - 0.74)
CCR-9RS 0.61 (0.57 - 0.65) 0.61 (0.55 - 0.68)
Clinical nomogram 0.57 (0.51 - 0.63) 0.58 (0.50 - 0.66)
A B

FIGURE 5 | Molecular characteristics associated with CCR-9RS in NSCLC. (A) Gene-enrichment analysis of correlated genes with 6 radiomic features in CCR-9RS
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database in the NRG (NSCLC-Radiogenomics) dataset. (B) Molecular lesions and immune
landscapes along with the resistant scores calculated by CCR-9RS. The correlation was estimated by Spearman rank correlation. The histogram on the right
represents the significantly correlation with the resistant scores of CCR-9RS; the orange-dotted line represents P = 0.05.
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recommended treatment for some early stage patients, based on
the hypothesis that patients who were resistant to CCR should be
resistant to both chemotherapy and radiotherapy. Here, we
collected 93 stage I and 40 stage II NSCLC patients receiving
radiotherapy in the NR dataset, and found that the resistance
patients predicted by CCR-9RS also had significantly shorter 5-
year survival rate than the predicted sensitivity patients (resistance
vs. sensitivity = 55 vs. 78, log-rank P = 0.0138, HR = 1.61, 95% CI:
1.10-2.35, C-index = 0.57, Supplementary Figure S6A) when they
receiving radiotherapy only. The time-dependent ROC curve
confirmed the good performance of CCR-9RS in predicting 1-,
3- and 5-year survival rates of patients receiving radiotherapy
(Supplementary Figure S6B). Multivariate Cox analysis revealed
that 5-year survival rate was independently predicted by CCR-9RS
after adjusting for the clinical factors in the radiotherapy dataset
(Supplementary Figure S6C). This result indicated that CCR-9RS
might also predict the efficacy of radiotherapy for early stage
NSCLC patients, which needs further validation.

The underlying biological progression of the radiomic signature
for CCR treatment is favorable for clinical application. Therefore,
we first revealed that several known cancer-related functional
processes, including “glycolysis/glucoseogenesis”, “ribosome” and
other functional pathways related to CCR resistance, might be
reflected by radiomic features in CCR-9RS. Next, we found that
Frontiers in Oncology | www.frontiersin.org 9
patients with CCR sensitivity were characterized by a higher
immune score and levels of some immune cell infiltration (such
as Activated dendritic cell and Activated B cells), providing evidence
that patients sensitive to CCR treatment with higher infiltration
levels might benefit from CCR treatment in the molecular
mechanism. In contrast, patients with CCR resistance might not
benefit from targeted therapy or immunotherapy, which requires
further analysis of the benefit from other therapeutic agents.

In order to further screen potential therapeutic agents for the
patients with CCR resistance, we first identified resistant genes
significantly positively associated with the resistant scores of CCR-
9RS in the tumor tissues (NRG dataset). Thereafter, via the
leveraging the genome-scale CRIPSR data, we pre-selected a set
of essential resistant genes, which could be the potential targets of
the patients with CCR resistance. Then, we extracted candidate
therapeutic agents targeting essential resistant genes and
constructed a gene-agent network using the DrugBank database.
Finally, we identified AT-7519 as a therapeutic agent for samples
with CCR resistance in GDSC dataset. Furthermore, we tentatively
validated the therapeutic efficacy of AT-7519 for samples with
CCR resistance using the CMap dataset that significantly more
resistant genes, positively correlated with the resistant scores of
CCR-9RS, were down-regulated induced by AT-7519, and the
degree was gradually increased with the enhanced doses of AT-
A B

C D E

FIGURE 6 | Identification of potential therapeutic agents for the patients resistant to CCR treatment. (A) Venn diagram of the resistant genes identified in tumor
tissues (NSCLC-Radiogenomics dataset) and essential genes identified by CRISPR dataset. The blue circle represents the essential genes screened by CRISPR
dataset and the red circle represents the resistant genes significantly positively associated with the resistant scores of the CCR-9RS in the NSCLC-Radiogenomics
dataset. (B) A gene-agent network of essential resistant genes and candidate therapeutic agents using DrugBank database. The blue dotted line represents the
significantly correlated essential resistant genes (Pearson correlation, FDR < 0.05, Figure S4) and the red dotted line represents the candidate therapeutic agents
targeting essential resistant genes in DrugBank database. (C) The correlation analysis of four overlapped therapeutic agents corresponding to two essential resistant
genes using GDSC cancer cell line dataset. (D) Binomial distribution for the down-regulated and up-regulated resistance genes induced by AT-7519. (E) The number
of down-regulated resistance genes induced by AT-7519 in three dose groups (left to right: Low, Middle and High).
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7519. The results suggest that the patients with CCR resistance
might benefit from AT-7519 or CCR treatment combined with
AT-7519. We additionally explored the underlying correlation of
AT-7519 and immunetherapy, and found that AT-7519 induced
significant increases in the expression levels of 17 immune
inhibitor/checkpoint genes (33) in CMap dataset (Student’s t-
test, P < 0.05, Supplementary Figure S7), such as CTLA4 (P =
0.0002), PDCD1 (P = 0.0298) and IDO1 (P = 6.61E-06). The
correlation between AT-7519 and immunotherapy has not been
mentioned yet, which merits further exploration. AT-7519 is an
ATP competitive CDK inhibitor with effective anti-proliferative
activity and has been undertaken or are undergoing the phase I
and II clinical trials in a variety of solid tumors, including
colorectal cancer (34), cervical cancer (35) and ovarian cancer
(36). Therefore, AT-7519 would be a practical therapeutic agent
for NSCLC patients with CCR resistance, because the
conventional drug in new use can avoid the time-consuming
and expensive procedure of new drug development (37).

This study still had some limitations. First, as a single-center
retrospective study, the predictive estimation of CCR-9RS still
need to be further validated in multicenter clinical trial studies.
Second, our study indicated that the NSCLC patients with CCR
resistance might benefit from AT-7519 or CCR treatment
combined with AT-7519, which should be further validated in
the phase of clinical development for cancer treatment.

In conclusion, the radiomic signature developed in this study
could be applied to identify patients withNSCLC, whomight benefit
from CCR treatment prior to treatment, thus allowing clinicians to
monitor the progress of patients. Furthermore, AT-7519 was
captured as a potentially therapeutic agent for NSCLC patients
with CCR resistance, which is worth exploring in future studies.
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