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Abstract Metabolites are small molecules produced by enzy-
matic reactions in a given organism. Metabolomics or meta-
bolic phenotyping is a well-established omics aimed at com-
prehensively assessing metabolites in biological systems.
These comprehensive analyses use analytical platforms, main-
ly nuclear magnetic resonance spectroscopy and mass spec-
trometry, along with associated separation methods to gather
qualitative and quantitative data. Metabolomics holistically
evaluates biological systems in an unbiased, data-driven ap-
proach that may ultimately support generation of hypotheses.
The approach inherently allows the molecular characterization
of a biological sample with regard to both internal (genetics)
and environmental (exosome, microbiome) influences.
Metabolomics workflows are based on whether the investiga-
tor knows a priori what kind of metabolites to assess. Thus, a
targeted metabolomics approach is defined as a quantitative
analysis (absolute concentrations are determined) or a semi-
quantitative analysis (relative intensities are determined) of a
set of metabolites that are possibly linked to common chemi-
cal classes or a selected metabolic pathway. An untargeted
metabolomics approach is a semiquantitative analysis of the

largest possible number of metabolites contained in a biolog-
ical sample. This is part I of a review intending to give an
overview of the state of the art of major metabolic phenotyp-
ing technologies. Furthermore, their inherent analytical ad-
vantages and limits regarding experimental design, sample
handling, standardization and workflow challenges are
discussed.

Introduction: A historical perspective

Systems biology is a new scientific paradigm aimed at
unveiling the systemic function of biology and bridging the
gap between biological information and its context. Systems
biology can be defined as a global and systemic analysis of
complex system interconnections and their functional
interrelationships (Kitano 2002a, b; Kitano 2002a, b;
Ehrenberg et al 2003; Weston and Hood 2004). Two seminal
inputs have facilitated the emergence of systems biology: data
generation and data modeling. High-throughput omics tech-
nologies allowed the recovery of a holistic and comprehensive
biological information, but the development of computational
capabilities have allowed sophisticated systems modeling and
convenient visualization tools (Ritchie et al 2015; McMurry
et al 2016; Tenenbaum et al 2016). Omics strategies aim at a
comprehensive assessment of entire classes of biomolecules
(genes, proteins, metabolites, etc.) of a biological tissue, cell,
fluid, or organism. Conceptually, metabolomics has its roots
in the practices of ancient Greek doctors who used the organ-
oleptic characteristics of urine for diagnosis; for example,
urine sweetness reveals the high glucose levels in diabetes.
Such organoleptic chemical features are, of course, linked to
metabolism. Olivier et al coined the metabolome in 1998 and
defined it as the set of metabolites synthesized by an organism
(Oliver et al 1998). Metabolome refers to all metabolites
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present in a given biological system, fluid, cell, or tissue
(Nicholson et al 1999). Other terms have been used, including
metabolic fingerprinting, metabolic footprinting,
metabotyping, and metabolic phenotyping, with the latter be-
ing increasingly accepted. Metabolites can be defined as or-
ganic small molecules produced by enzymatic reactions.
Thus, metabolomics is one of the Bomic^ technologies. It is
based on biochemical and molecular characterizations of the
metabolome and the changes in metabolites related to genetic,
environmental, drug, or dietary variables in addition to other
factors (Fiehn 2002; Holmes et al 2008; Dunn et al 2011a,
2011b; Benton et al 2012). Metabolomics has found different
applications in many disease studies and in complex diseases,
with promising perspectives in screening, diagnosis, progno-
sis, patient stratification, and treatment follow-up (Bekri 2016;
Tebani et al 2016a, b). Metabolomics is the study of the com-
plete biochemical profile, and the main analytical platforms
are nuclear magnetic resonance (NMR) spectroscopy and
mass spectrometry (MS) paired with separation methods such
a high-performance liquid chromatography (HPLC).
Metabolomics holistically investigates biological systems
using an unbiased, data-driven approach that may ultimately
lead to generation of hypotheses. In this review, major meta-
bolic phenotyping technologies and their characteristics will
be presented along with the challenges associated with data
analysis. A discussion on current trends and the requirements
for biomarker discovery will also be presented. Finally, we
address the current state of the art with respect to standardiza-
tion and workflow challenges and the gaps in preclinical and
clinical environments that hinder translation of metabolic sig-
natures into clinically useful tools.

Analytical strategies and chemical information
extraction

A few highly reliable metabolites could be sufficient to a cer-
tain extent for diagnostic or monitoring purposes. However,
the use of more metabolites for a broader overview is more
appropriate for assessing, for example, a biochemical path-
way. Thus, metabolomics is obviously an interesting tool to
support answering biological questions, especially in bio-
marker discovery. By definition, a metabolic signature con-
tains a set of disrupted metabolites rather than just a single
metabolite, which is plausible because of the relevance of
affected metabolic pathways and the network theory under-
pinning biological systems (Ravasz et al 2002; Bekri 2016).
Thus, analytical technologies need to be reliable and robust for
high-throughput routine analyses (Zampieri et al 2017).
Furthermore, metabolites have qualitatively and quantitatively
heterogenic characteristics. Therefore, no single methodology
can separate, detect, and quantify the whole metabolome.
Thus, multiple analytical techniques and sample preparation

strategies are necessary to recover most of the metabolome
(Dunn et al 2011a, 2011b). Metabolomics workflows are
based on whether the investigator knows a priori what kind
of metabolites to assess. A targeted metabolomics approach is
defined as a quantitative analysis (absolute concentrations are
determined) or a semiquantitative analysis (relative intensities
are determined) of a set of metabolites that might be linked to
common chemical classes or a selected metabolic pathway.
An untargeted metabolomics approach is primarily based on
the qualitative or semiquantitative analysis of the largest pos-
sible number of metabolites from diverse chemical and bio-
logical classes contained in a biological sample. The metabo-
lomics workflow (Fig. 1) comprises the comparative sequen-
tial steps of both targeted and untargeted metabolomics anal-
yses. Typical metabolomics experiments aim to analyze as
many metabolites as possible in a biological specimen.
Several established analytical platforms can enable the semi-
quantitative assessment (relative intensities) of metabolites.
However, the field of metabolomics is increasingly embracing
the absolute quantitation of metabolites. The acquired data are
extensive and need to be processed and mined to extract in-
sightful biological interpretations. Hence, multivariate data
analyses are routinely used to extract information from large
metabolomics data sets (Alonso et al 2015). The data can be
used to build hypotheses or to explain observations. The iden-
tified metabolites associated with an observation provide a
holistic overview about the interrogated biological system.
The metabolomics workflow generally includes biological
problem formulation and experimental design, sample prepa-
ration, data acquisition, data preprocessing, data pretreatment,
data analysis, network and pathway analysis, and finally bio-
logical interpretation (cf. Fig. 1).

Experimental design

The design of a metabolomics experiment requires consider-
ation of various aspects including sample type, number of
samples, replication, data analysis strategy, cost, and time,
along with the allocation of human and technical resources.
The decisions will lead to answers to different questions.
Therefore, a well-defined strategy regarding the tools that will
be used for data analysis and interpretation is fundamental, and
it should set objective questions and recover appropriate an-
swers. Experimental design and data analysis are tightly relat-
ed, and the first step in anymetabolomics workflow is the clear
formulation of the biological problem to be addressed.
Depending on the biological problem, the investigator must
define the metabolomics approach (targeted vs. untargeted),
biological samples (biofluids, tissues, cells, and/or intact or-
ganisms), sample size, pooling, experimental conditions (i.e.,
observational studies, exploratory studies, time series), sam-
pling conditions (frequency of sample collection, quenching to
stop enzymatic activity, storage), analytical platforms, and
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sample preparation protocols. It should be noted that most
metabolomics studies are intrinsically comparative; therefore,
a group of control samples (samples that did not undergo the
investigated condition) and test samples (samples exposed to
the investigated condition) are rigorously defined in the exper-
imental design with clear inclusion and exclusion criteria
(Broadhurst and Kell 2006). Indeed, subjects are heteroge-
neous with respect to demographic and lifestyle factors, and
this factor is especially important in defining healthy controls.

Sample randomization along with sample analysis order and
instrument conditions are means to reduce the correlation of
confounders. Moreover, advanced statistical experimental de-
sign strategies can be used to handle these issues (Dunn et al
2012; Jonsson et al 2015; Boccard and Rudaz 2016).

Biological samples

Sample collection (time and type), storage, and handling have
important impacts on the retrieved metabolic profile (Prentice
et al 2013; Burton et al 2014; Yin et al 2015). Thus, these
factors have to be standardized to avoid spurious biomarker
discovery interpretation (Dunn et al 2011a, 2011b; Emwas
et al 2013). Therefore, careful consideration of sampling con-
ditions and handling is needed to provide a reliable metabolic
snapshot of the sample at the time it is collected. The primary
objective should be to ensure qualitatively and quantitatively
consistent and representative samples prior to their collection.
Samples can be separated into two general classes: (i) meta-
bolically active samples (intracellular metabolome) and (ii)
metabolically inactive samples (extracellular metabolome)
(Chetwynd et al 2017). The sample type is chosen based on
the biological question being investigated. However, in some
studies, the preferred sample type cannot be collected, and a
surrogate sample type, such as urine or blood (serum or plas-
ma), has to be used. Compared with intact or extracted tissues,
urine and serum or plasma are the most commonly studied
biofluids in clinical practice because they are easily obtained
and prepared. However, other specialized fluids can be used,
including cerebrospinal fluid (Wuolikainen et al 2009;
Graham et al 2013), saliva (Dame et al 2015; Kawasaki et al
2015; Mikkonen et al 2015), sweat (Mena-Bravo and Luque
de Castro 2014), and even breath (Bach et al 2015; Pijls et al
2016). Dried blood (and other biofluid) spots have also been
investigated (Michopoulos et al 2011; Wilson 2011; Prentice
et al 2013; Koulman et al 2014) and offer an interesting alter-
native to conventional liquid samples for generating metabo-
lite profiles. Given their very practical advantages, including
low volume, low cost, and handling convenience, dried blood
spots are drawing interest as a sampling option for metabolic
profiling (Denes et al 2012; Koulman et al 2014; Oliveira et al
2014; Wagner et al 2014). However, DBS exhibit specific
challenges due to some disadvantages mainly regarding stabil-
ity (Adam et al 2011; Michopoulos et al 2011). Several studies
showed that DBS storage at a temperature higher than −20 °C
leads to metabolite degradation (Fingerhut et al 2009; Prentice
et al 2013). Hematocrit and blood volume effects may signif-
icantly impact quantitative results (Timmerman et al 2013).

Of note, most metabolomics studies, particularly in clinical
metabolomics, include data from a single biofluid, most often
blood or urine. However, the biochemical signature in a
biofluid denotes complex interactions with different organs,
which adds to the interpretative complexity of metabolomics

Fig. 1 General metabolomics workflow. Metabolomics is divided into
two main strategies. A targeted metabolomics is a quantitative analysis or
a semiquantitative analysis of a set of metabolites that might be linked to
common chemical classes or a selected metabolic pathway. An untargeted
metabolomics approach is primarily based on the qualitative or
semiquantitative analysis of the largest possible number of metabolites
from diverse chemical and biological classes contained in a biological
sample. The generated data undergo data analysis step (univariate and
multivariate) and functional analysis to get actionable biological insight
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data. This complexity can only be understood by investigating
pathophysiological states from a metabolic network perspec-
tive, taking into account the local metabolome and its contri-
bution to the systemic metabolome. Different data-driven ap-
proaches have been described for handling these issues by
using metabolomics data modeling (Do et al 2015; Torell
et al 2015).

Sample preparation

For untargeted metabolomics, minimal sample preparation is
generally recommended to avoid metabolite loss. Tissues are
often homogenized using manual techniques such as a mortar
and pestle or ball grinding with silica particles or stainless
steel. The homogenization process is often performed with
an extraction solvent, which leads to cell lysis and extraction
of the metabolites. Monophasic (water/methanol, water/aceto-
nitrile) or biphasic (water and methanol often along with a
nonpolar solvent such as chloroform, dichloromethane, or
methyl tert-butyl ether) solvent can be used in extraction sys-
tems depending on the planned analysis (Sitnikov et al 2016).
The choice of solvent systems depends on whether polar or
nonpolar molecules are to be investigated. For cell metabolo-
mics, a quenching step is required before extraction to mini-
mize metabolite modifications. Extraction from cells must be
performed as quickly as possible to avoid enzymatic reactions
and to improve reproducibility (Ser et al 2015). Sample prep-
aration in cell lines face different challenges. These include
growth medium formulation variability and influence of num-
ber of passages (Dettmer et al 2011; Bi et al 2013; Martano
et al 2015). Using stable isotope dilution and normalization
methods may handle recovery issues to achieve reproducible
data. For blood samples, the effects of different anticoagulants
on plasma profiles are evident as ion suppression or enhance-
ment on metabolite intensity. This affects mainly polar metab-
olites in EDTA and citrate plasma (Barri and Dragsted 2013).
Heparin has been recommended as the anticoagulant in MS-
based metabolomics. Other important issues regarding sample
handling should be dealt with such as extraction pH, storage
time, temperature (Vuckovic 2012; Siegel et al 2014).

The preparation and analysis may be costly in terms of
time, which may be quite limiting in the clinical environment.
The ability to collect data without sample preparation com-
bined with real-time data analysis would allow rapid clinical
decision-making, which would place metabolomics at a
higher clinically actionable level (i.e., surgery, pathology).
For example, the intelligent knife (iKnife) represents a signif-
icant advance in in vivo sampling and real-time metabolomics
technology. This process vaporizes tissue and the resultant
smoke is transferred into a mass spectrometer to provide
real-time clinical decision-making in the operating room
(Balog et al 2013).

Analytical platforms

The analysis of the metabolome raises different challenges
compared with other omics analyses, which are based on pro-
filing large molecules built with a simple and limited set of
subunits, such as nucleotides for genomics and transcripto-
mics and amino acids for proteomics. For identification and
functional analysis of DNA, RNAs, and proteins, subunit or-
der is what matters; it represents the observed biological com-
plexity. Hence, analytical strategies based on sequencing es-
sentially rely on the incremental detection of the subunits
(Athersuch 2016). However, a sequencing concept cannot be
applied to metabolites in complex biofluids because the ana-
lytical challenge does not lie in cracking any order code; there
is no order. The metabolome requires a more complex analyt-
ical strategy that allows individual and selective differentia-
tion of metabolites across a wide qualitative and quantitative
chemical space. The physicochemical heterogeneity of metab-
olites adds another layer of complexity to metabolomics stud-
ies. In an early scientific paper in the field, Pauling and col-
leagues described a method using gas chromatographic sepa-
ration with flame ionization detection to analyze the breath
(Pauling et al 1971). Impressive analytical developments have
occurred since then. The metabolic profiling technologies that
are mainly used now include NMR spectroscopy and MS,
sometimes in combination with a gas phase or liquid phase
separation method (Alonso et al 2015). These technologies
retrieve global, unbiased, and comprehensive chemical infor-
mation from complex mixtures. For information translation,
the resultant high-dimensional spectral data are typically ana-
lyzed using chemometric techniques to identify informative
metabolic combinations that can be used for either global bio-
marker discovery or sample classification.

Nuclear magnetic resonance spectroscopy

NMR spectroscopy is rapid and nondestructive, and it has the
advantage of being highly reproducible and robust. It is based
on the absorption and re-emission of energy by the atom nu-
clei due to variations in an external magnetic field. Different
types of metabolomics data can be generated depending on the
targeted atom nuclei. However, in the analysis of biological
samples, hydrogen is the most commonly used type of nuclei
(1H–NMR) because of its naturally high abundance in these
samples. Other nuclei, such as carbon-13 (13C–NMR) and
phosphorus-31 (31P NMR), can also be used to provide addi-
tional information on specific metabolite types. 31P NMR is
useful for studies of cellular energy states in vivo and ex vivo,
but a limitation is the overlapping of 31P signals from phos-
phorylated compounds. NMR spectroscopy is a powerful
technology that offers atom-centered information that is cru-
cial for elucidating molecular structures (Emwas et al 2013).
The resulting spectral data allow quantification and
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identification of the metabolites. Peak areas are used for quan-
tification, whereas the spectral patterns permit metabolite
identification. The spectral data generated by NMR tech-
niques can be divided into two NMR strategies regarding the
frequency axis used. Frequency axes are referenced by the
chemical shift expressed in parts per million (ppm). The
chemical shift is calculated as the difference between the me-
tabolite resonance frequency and that of a reference substance
(Nagana Gowda and Raftery 2017). One-dimensional NMR
(1D–NMR) spectra are based on a single frequency axis,
where the peaks of each molecule occur within the resonant
frequencies of that axis. This method is the most used in high-
throughput metabolomics. Two-dimensional NMR (2D–
NMR), which is based on two frequency axes, can be used
to complement 1D–NMR. Signals are either binned and then
analyzed or fitted to patterns of signals corresponding to the
metabolites expected to be present in the mixture. 13C NMR
signals are better resolved, but they exhibit low sensitivity due
to a low natural abundance of 13C (Markley et al 2017). In
2D–NMR, the second dimension allows separation of over-
lapping spectral peaks and therefore provides additional and
orthogonal chemical information on the investigated metabo-
lites within the analyzed matrix (Larive et al 2015). 2D–NMR
methods include 1H-1H COZY (correlated spectroscopy),
1H–1H TOCSY (total correlation spectroscopy), and 1H–13C
HSQC (heteronuclear single-quantum correlation) (Emwas
et al 2013). Of note, nuclei with low natural abundance, in-
cluding 2H (deuteron), 13C, and 15N, may serve as excellent
metabolic tracers (Fan et al 2016). Despite its relatively low
sensitivity, often at the μM level, NMR spectroscopy offers
many advantages because it allows rigorous quantification of
highly abundant metabolites present in biological fluids, cell
extracts, and tissues with minimal or no sample preparation
(Fan and Lane 2016). NMR spectroscopy is useful for mole-
cules that are difficult to ionize or require derivatization for
MS analysis. NMR spectroscopy also allows the identification
of isomeric molecules, and it is the gold standard for deter-
mining structures of unknown compounds. Using stable iso-
tope labels, NMR spectroscopy can be used for dynamic as-
sessment of compartmentalization of metabolic pathways,
such as metabolite transformations and drug metabolism.
Finally, intact tissue NMR imaging and spectroscopy are very
appealing for in vivo metabolic investigations (Verma et al
2016). The main drawback of NMR methods is its low sensi-
tivity and resolution compared with MS-based methods
(Emwas 2015).

Mass spectrometry

Mass spectrometry is an analytical technique that retrieves
chemical data from the gas-phase ions produced from a sam-
ple. The ions generate different peak patterns that define the
fingerprint of the original molecule in the form of a mass-to-

charge ratio (m/z) and a relative intensity of the measured
chemical features (e.g., metabolites). The sample is introduced
into the mass spectrometer via the sample inlet, an ion source
generates gas-phase ions, a mass analyzer separates the ions
according to their m/z, and a detector generates an electric
current from the incident ions that is proportional to their
abundances (Murray et al 2013). A sample can be directly
injected into a mass spectrometer such as in direct infusion
mass spectrometry (DIMS) (González-Domínguez et al
2017). The major drawback is the ion suppression effect,
which leads to metabolite information loss and prohibits sep-
aration of isomers. Mass analyzers can be used alone or in
combination with the same type of mass analyzer or with
different mass analyzers (hybrid instruments). Such combina-
tions are the foundation for the analytical mode of tandem
mass spectrometry (MS/MS). In MS/MS, the ions that arrive
at the first mass analyzer (precursor ions) are selected, then
fragmented in a collision cell. The fragmented ions are sepa-
rated according to theirm/z in a secondmass analyzer and then
detected. Different operation modes are possible, including
data dependent analysis (DDA) and data independent analysis
(DIA). In DDA, a fixed number of precursor ions whose m/z
values were recorded in a survey scan are selected using
predetermined rules and are subjected to a second stage of
mass selection in an MS/MS analysis (Mann et al 2001).
Modes include single reaction monitoring (SRM) or multiple
reaction monitoring (MRM), which is the application of SRM
with parallel detection of all transitions in a single analysis. In
DIA, all precursor ions within a defined m/z window undergo
fragmentation. The analysis is repeated as the high resolution
mass spectrometer progresses through the full selected m/z
range (Plumb et al 2006). This process yields accurate metab-
olite quantification without being limited to profiling
predefined metabolites of interest (Zhou et al 2017). One ca-
veat of applying this to metabolomics, is that in a complex
sample it may exhibit co-eluting compounds with similar frag-
ments. Therefore, MS/MS acquisition on a wider range of
masses may lead to specificity issues related to fragment ions
from multiple parent ions. To handle this, the MSE technique
alternates between Bhigh energy^ and Blow energy^ scans on
a Q-TOF instrument. MSE has a fast duty cycle (~0.3 s) which
makes the technique compatible with ultra-high performance
liquid chromatography (UHPLC). Furthermore, the use of ion
mobility separation prior to metabolite fragmentation may im-
prove precursor selectivity. For some mass analyzers, such as
quadrupole ion traps, several steps of MS/MS can be per-
formed. For example, the fragmented ions can be further
fragmented and detected. The experiment is called multiple-
stage mass spectrometry (MSn, n refers to the number of MS
steps). MS/MS and MSn improve structural identification,
combining information from both molecular and fragmented
ions generated from precursor ions. The main performance
characteristics of mass analyzers are (1) mass accuracy, or
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mass resolving power, which is related to the ability of an MS
analyzer to generate distinct signals for two ions with a small
m/z difference; (2) mass range, which is the range of m/z over
which a mass spectrometer can detect ions to record a mass
spectrum; (3) sensitivity; (4) scan speed; and (5) duty cycle
time, which is the fraction of ions that effectively reach the
detector in the mass spectrometer. The mass analyzer choice is
mainly based on the type of metabolomics approach to be
carried out, targeted or untargeted. Single quadrupole (Q),
triple quadrupole (QqQ), quadrupole ion trap (QIT), and
Orbitrap (OT) are suitable for targeted metabolomics because
of their sensitivity and duty cycle characteristics. In compari-
son, dynamic range, mass accuracy, and resolution power are
the main characteristics of a mass analyzer to be used in
untargeted metabolomics studies. Time of flight (TOF), quad-
rupole time of flight (QTOF), Fourier transform ion cyclotron
resonance (FTICR), and OT are the most used mass analyzers
for this purpose. The principle underlying TOF and QToF
involves the time required for ions to travel a flight tube.
Ions are accelerated in an electric field, reaching a linear ve-
locity that depends on their m/z ratio. The velocity can reach
10,000 per second scan speed, with a mass error of 5 ppm. A
QTOF mass analyzer is a hybrid instrument that can generate
high-resolution MS/MS spectra (Forcisi et al 2013). FTICR is
an ultra-high-resolution (105–107 depending on the detection
time and magnetic field) mass analyzer that uses cyclotron
frequency in a fixed magnetic field to measure m/z ions at
the cost of relatively slow acquisition rates (typically 1 Hz).
In the same way, the OT is also an FTMS instrument, which is
based on harmonic ion oscillations in an electrostatic field.
Ions are trapped around a central electrode, and ion oscillation
frequencies are used to measure the m/z values. The OT pro-
vides high mass resolution (>100,000 FWHM), high mass
accuracy (2–5 ppm), and an acceptable dynamic range.
However, the scan speed is inversely related to mass resolu-
tion. Recently, the high-field Orbitrap has provided a resolu-
tion above 1,000,000 at m/z 300–400 with 3 s detection time,
using an absorption mode (Denisov et al 2012). Awide range
of instrumental and technical variants are currently available
for MS spectrometry. These variants are mainly characterized
by different ionization and mass selection methods (Glish and
Vachet 2003).

Because of the matrix effect limit and potential isomers,
MS is generally preceded by a separation step in metabo-
lomics. This step reduces the complexity of a biological
sample and allows sequential MS analysis of the different
molecules. Different separation methods coupled to MS
have been described, such as liquid chromatography (LC-
MS) (Want et al 2010; Want et al 2013), gas chromatogra-
phy (GC-MS) (Chan et al 2011), and capillary electropho-
resis (CE-MS) (Ramautar et al 2015). Thus, metabolites
with different chemical properties will spend different
amounts of time (retention time, tR) in the separation

dimension. These different separation methods enhance
the sensitivity and the dynamic range of MS and provide
complementary and orthogonal molecular information.

– Liquid chromatography

LC-MS is widely used in metabolomics because of its an-
alytical versatility, covering separation performance of differ-
ent classes of molecules, from very polar to very lipophilic
compounds. This high versatility is achieved through the va-
riety of chromatographic columns along with stationary
phases (Kuehnbaum and Britz-McKibbin 2013). The LC sep-
aration basics depend on physico-chemical properties, such as
hydrophobicity, molecular size, and polarity. The separation
of compounds occurs in a chromatographic column composed
of a stationary phase with polar or lipophilic properties. When
polar stationary phase columns are used, the method is re-
ferred to as normal-phase liquid chromatography (NPLC);
when nonpolar stationary phase columns are used, the method
is called reversed-phase liquid chromatography (RPLC). The
choice of LC columns depends on the polarity of the metab-
olites and the analytical scope. To analyze nonpolar and/or
weakly polar metabolites, nonpolar C18 and C8 columns are
mostly used for untargeted metabolomics (Forcisi et al 2013).
However, for hydrophilic, ionic, and polar compounds, hydro-
philic interaction liquid chromatography (HILIC) is recom-
mended. HILIC is similar to NPLC, but it differs because of
the mobile phase, which is composed of a polar and/or aprotic
organic solvent miscible in water that is easier to use with
electrospray-mass spectrometry (Tang et al 2014). Recently,
Prinsen et al reported a HILIC tandem MS-based method for
the analysis of 36 underivatized plasma aminoacids in an
18 min run (Prinsen et al 2016). Sowell et al developed a
HILIC tandemMS-basedmethod for the quantification of free
and total carnitine avoiding the derivatization step (Sowell
et al 2011). For further details on HILIC-based metabolomic
strategies, the reader may refer to a recent comprehensive
review (Tang et al 2014). Multiple-column strategies could
be used for more extensive metabolome coverage (Haggarty
and Burgess 2017). Recently, RPLC and HILIC columns with
a smaller internal diameter (e.g., 1 mm) and shorter length
have drawn interest in metabolomics. These columns allow
the use of regular LC flow rates with very high back pressure.
Thus, instruments that can operate at very high pressure—
ultra-performance liquid chromatography (UHPLC)—
coupled to mass spectrometry have been introduced to im-
prove metabolite coverage and detection. UHPLC methods
allow increased resolution, better sensitivity, and lower ion
suppression. As a result, better metabolome coverage is ob-
tained in comparison with conventional HPLC. Moreover,
lower solvent consumption is observed because of the low
flow rate (150–250 μL/min) (Kaufmann 2014). It is to be
noted that chromatographic conditions are crucial in regarding
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metabolome coverage and the unbiased proprieties of
untargeted metabolomics studies (Boudah et al 2014).

– Gas chromatography

GC-MS is often used for analysis of volatile compounds
and molecules with low vapor pressure, such as lipids, long-
chain alcohols, amides, alkaloids, sugar alcohols, and organic
acids. In addition, using derivative techniques widens the cov-
erage of GC-MS. GC-MS has been accepted as a robust meta-
bolomics platform because of its selective separation, repro-
ducibility, and robustness. The greatest advantage of GC-MS
is that its ionization mode is highly reproducible and standard-
ized (based on electron ionization at 70 eV) across GC-MS
systems worldwide and across different vendors (Kopka et al
2005), which has allowed comprehensive GC-MS mass spec-
tral libraries such as NIST and FiehnLab to be established
(Vinaixa et al 2016). As a result, GC-MS has been a set and
reliable platform for MS-based metabolomics. The main lim-
itation of GC-MS is the necessary derivatization step for some
metabolite classes. In metabolomics, derivatization usually
uses oximation and a silylation/chloroformate reagent. This
step is time consuming, hampers the throughput, and can in-
troduce error by adding analytical variability (Moros et al
2017). Moreover, GC-MS metabolome coverage is limited
by the stationary phase stability as well as the thermal stability
of metabolites and their derivatives (Kaal and Janssen 2008).

– Capillary electrophoresis

Capillary electrophoresis (CE) offers an orthogonal separa-
tion mechanism. CE-specific characteristics, such as high effi-
ciency and resolution, high throughput, and, importantly, the
ability to assess the most polar compounds without derivatiza-
tion, have made CE an attractive method for metabolomics
(García et al 2016). CE-MS was the last pre-ionization sepa-
ration technique to be paired with MS in metabolomics.
Capillary zone electrophoresis (CZE) is the simplest and most
commonly usedCEmode because of its principle of separation
and its broad application to the analysis of diverse samples,
spanning small to large biomolecules. In CZE, analytes are
separated according to their intrinsic differential electrophoret-
ic mobility in a capillary filled with separation buffer under the
influence of an electric field. The mobilities depend on the ion
m/z and the viscosity of the medium (García et al 2016). The
main drawback of CZE is that neutral molecules are not sepa-
rated. To overcome this disadvantage, other CE modes have
been developed, such as micellar electrokinetic chromatogra-
phy, capillary isotachophoresis, capillary isoelectric focusing
based on pH gradient, capillary electrochromatography, capil-
lary gel electrophoresis, and affinity capillary electrophoresis.
Because of its simplicity, CZE is the preferred CE mode in
metabolomics. Recently, DiBattista et al described an elegant

high throughput multiplexed separation platform based on CE-
MS combined with temporal signal pattern recognition for
screening of different inherited metabolic diseases (IMD).
Their result showed comparable performances with flow injec-
tion analysis. Furthermore, the authors described new bio-
markers for galactosemia screening N-galactated amino acids
(DiBattista et al 2017). Despite the recent technical advances
of CE-MS, its use in metabolomics is still limited compared
with NMR spectroscopy and chromatography-based methods.
For more details about CE-MS applications in metabolomics,
the reader may refer to a recent review (Rodrigues et al 2017).

– Ion mobility and multidimensional strategies

Another gas phase separation, ion mobility spectrometry
(IMS), (Hill et al 1990), is drawing interest in metabolomics
(Dwivedi et al 2010; Wickramasekara et al 2013; Paglia et al
2014; Smolinska et al 2014; Hauschild et al 2015; Maldini
et al 2015; Paglia et al 2015). In general, the multidimensional
coupling of different separation techniques requires that the
resolution obtained from each anterior separation must be
largely preserved as the analytes pass to the following dimen-
sions. This preservation is particularly difficult when all
analytes travel along the same path during the analysis, as is
the case for tempo-dispersive techniques. Thus, the solution is
to incrementally increase the sampling frequency of each sub-
sequent time dimension so that multiple measurements are
obtained within a fixed time interval. In this way, the arrival
time in each anterior dimension can be reassembled based on
the integrated signal of subsequent dimensions. This strategy
is commonly used when coupling condensed phase separa-
tions such as GC, LC, or CE to MS. IMS is an appealing
post-ionization separation method that is based on molecular
size, shape, and charge. It is typically performed on a milli-
second timescale, which can be perfectly nested between
chromatography (seconds) and high-resolution MS detection
(microseconds) timescales. Hence, coupling IMS with high-
resolution mass spectrometry and chromatography (LC-IMS-
MS) provides additional analytic selectivity without signifi-
cantly compromising the speed of MS-based measurements.
As a result, the MS dimension affords accurate mass informa-
tion, while the IMS dimension provides molecular, structural,
and conformational information through the determination of
the ion collision cross-section (CCS), which is a valuable and
predictable chemical descriptor. Indeed, ion mobility spec-
trometry adds a separation dimension to the hybrid MS instru-
ments, allowing a higher analytical coverage of complex bio-
logical mixtures (Fenn and McLean 2008; Fenn et al 2009;
Kliman et al 2011; Paglia et al 2014; Tebani et al 2016a, b).
One important feature of IMS is its ability to separate isomers
(Domalain et al 2013); the predictability of the CCS and peak
width for one isomer mainly depend on ion diffusion (Jeanne
Dit Fouque et al 2015; Harper et al 2016; Zhou et al 2016).
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Furthermore, exploring a multivectorial space containing re-
tention time, accurate mass, and CCS obtained by the combi-
nation of multiple separation methods with MS allows valu-
able measurement integration, which enhances molecular
identification and consequently biomarker discovery (May
et al 2015; Sherrod and McLean 2015).

– Toward real-time MS-based metabolomics

Recent introduction of ambient ionization sources has sig-
nificantly increased the high throughput of global metabolic
profiling analysis. These techniques permit direct sampling of
complex matrices under ambient conditions, and they include
atmospheric solids analysis probe (Twohig et al 2010), de-
sorption electrospray ionization (Eberlin et al 2013; Ferreira
et al 2015; Kerian et al 2015), and rapid evaporative ionization
MS methods (Balog et al 2013; Balog et al 2015). These
techniques can provide real-time, interpretable MS data on
biofluids and tissues, in vivo and ex vivo, and they are
reshaping high-throughput real-time metabolome analysis in
different areas (Arentz et al 2017; Dunham et al 2017). For
example, in many surgeries, visually distinguishing between
healthy and diseased tissues is often difficult. It requires time-
consuming biopsies and immuno-staining procedures to be
performed by experienced trained histopathologists during
surgery. By eliminating this need for external tissue
histotyping, techniques such as the iKnife could open the
way to true real-time precision surgery. For more details about
the use of ambient MS in clinical diagnosis, refer to a recent
and detailed review by Ifa and Eberlin (Ifa and Eberlin 2016).
Table 1 presents a comparison between different analytical
strategies used in metabolomics.

Quality control management

Quality control (QC) is defined as the set of procedures that a
laboratory performs during or immediately after the analysis to
demonstrate the quality of the data. Validation of an analytical
strategy is key in QC strategies. Method validation procedures
are used to confirm that a given analytical procedure is suitable
for its intended use and give an overview about the method
and the produced data quality (Kadian et al 2016). In targeted
metabolomics, data integrity and analytical quality assessment
is tightly regulated and different guidelines have been issued
by regulatory bodies regarding bioanalytical method valida-
tion criteria (Kadian et al 2016). These criteria may include
accuracy, precision, specificity, limit of detection, limit of
quantitation, and linearity. Furthermore, external QC schemes
are well established for interlaboratory assessment such
ERNDIM scheme used by biochemical genetics laboratories
(Fowler et al 2008). However, regarding untargeted metabo-
lomics, no regulatory guidelines have been published. Hence,

the metabolomics community is willing to propose QC
methods to assess untargeted metabolomics data and enhance
data integrity (Dunn et al 2017). The QC rational is often
purpose-driven. Since, the purpose of untargeted metabolo-
mics is to find statistically significant metabolites retrieved
from as many as possible of detected chemical features in a
given biological sample through differential analysis. Hence,
this purpose will determine the validation parameters since
absolute quantification is not the primary objective in
untargeted metabolomics. Comparisons are considered valid
provided all the samples are assessed under the same condi-
tions using a precise analytical method. The signal change
should be related to the abundance of the chemical features
and should be as independent as possible from other instru-
mental and analytical variations. Different metrics are used to
clean, assess, and filter the initial data using QC samples. In
metabolomics, it is often recommended to analyze QC sam-
ples at regular intervals across an entire run in order to monitor
the experimental data (Dunn et al 2012). The QC samples are
prepared by pooling the study samples to represent all includ-
ed samples. Using QC, it is possible to assess each feature in
the data regarding its presence in the QCs. The percentage
detection rate defines how consistently the feature is detected
across the samples. Thus, features that are not present in a
defined minimum number of QC can be filtered out from the
data. Often, 50% cut-off is applied (Dunn et al 2012).
Response drifts can also be monitored using QC throughout
the data acquisition. As data acquisition often takes a long
time, it is common to observe response drifts, which lead to
intra- and inter-batch variation. Several methods are available
to remove intensity drifts using feature intensities of the QC
along with the experimental run order (Shen et al 2016).
Correction factors are used to remove intensity drifts in each
feature by dividing the intensity by the correction factor.
Repeatability is another quality criterion than can be assessed
using QC. To have a good repeatability and be retained in final
dataset, each feature in the QCs should exhibit low relative
standard deviation (RSD) across all the QC samples. RSD
for each feature is calculated by dividing the sample standard
deviation by the sample mean. Features with high RSD values
should be cleaned from the data. Thresholds have been sug-
gested ranging from 20% to 30% (Dunn et al 2012). However,
this may be flexible depending on the experimental design.
Finally, a series of QC samples with varying dilutions can be
prepared and analyzed within the experimental run, could be
used to assess features quality. The dilution factors can be
regressed against the corresponding intensities of each feature
in the data. Features intensity must be correlated to the matrix
concentration of the diluted QC samples in order to be retained
for further analysis. The features with low correlation coeffi-
cient (R2) are thus removed. Thresholds ranging from 50%
and 70% are often suggested (Lewis et al 2016). However,
inspecting the distribution of the R2 values may help in setting
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the threshold. This filter being independent of the study design
is, therefore, applicable in both small and large-scale studies.
Recently, the dilution strategy has been elegantly illustrated by
DiBattista et al in a CE-MS based method with integrated QC
strategy that allows inter-sample comparisons and inter-batch
signal drift (DiBattista et al 2017).

Applications in inherited metabolic diseases

With the multi-metabolite quantitative abilities of metabolo-
mics, the future of IMD diagnosis may be found in the devel-
oping area of metabolomics. Targeted MS-based metabolo-
mics is already widely used and implemented in IMD new-
born screening national programs worldwide (Therrell et al
2015). Several IMD are routinely screened using targeted
MS-based metabolomics methods such as organic acidurias,
aminoacidopathies, and fatty acid oxidation disorders (Pitt
et al 2002; Pitt 2009; Pitt 2010; Spacil et al 2013; Auray-
Blais et al 2014). However, combining the already existing
tools with actionable data analysis strategies, metabolomics
is very appealing for better and effective diagnosis. For exam-
ple, an integrated strategy for IMD screening, using both
targeted and untargeted approaches, have been recently pro-
posed by Miller et al. The method provides actionable diag-
nostic information for IMD. The authors have successfully
diagnosed 21 IMD disorders using plasma metabolite mea-
surements throughmetabolomics (Miller et al 2015). For more
details on metabolomics potential in IMD, the reader may
refer to recent comprehensive reviews (Piras et al 2016;
Tebani et al 2016a, b).

Conclusion

Metabolomics is intrinsically a multidisciplinary field that re-
quires different analytical, biological, and bioinformatics skills.
Substantial advances have occurred in analytical chemistry for
metabolomics strategies for better chemical data extraction
from biological samples. These advances have had a substan-
tial impact on metabolomics workflows by simplifying analyt-
ical protocols and introducing more robust systems. However,
to go a step further to translate metabolomics into an actionable
exploratory and ultimately a diagnostic tool, issues that need to
be addressed include streamlining and automating sample
preparation, improving analytical throughput by using faster
separation (or no separation, if using DIMS), and introducing
orthogonal analytical dimensions such as IMS-MS in metabo-
lomics. NMR and chromatography-based platforms are still
the well-established technologies for metabolomics studies.
LC-MS and GC-MS are the most adopted analytical platforms
in clinical metabolomics. Still, for a more comprehensive me-
tabolome coverage, implementation of multiplatform

approaches is necessary. To reach next-generation metabolo-
mics, further advances are urgently needed in analytical strat-
egies for reliable identification and absolute quantification.
Finally, standardization regarding sample handling and analyt-
ical procedures is a big issue for larger clinical studies and wide
adoption of metabolomics, particularly, in clinical environ-
ments. The choice of the technology to implement depends
mainly on the scope of the laboratory, the financial constraints,
and the preexisting resources and expertise.
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