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The prompt identification of chemical molecules with potential effects on liver may help

in drug discovery and in raising the levels of protection for human health. Besides in

vitro approaches, computational methods in toxicology are drawing attention. We built a

structure-activity relationship (SAR) model for evaluating hepatotoxicity. After compiling a

data set of 950 compounds using data from the literature, we randomly split it into training

(80%) and test sets (20%). We also compiled an external validation set (101 compounds)

for evaluating the performance of the model. To extract structural alerts (SAs) related

to hepatotoxicity and non-hepatotoxicity we used SARpy, a statistical application that

automatically identifies and extracts chemical fragments related to a specific activity.

We also applied the chemical grouping approach for manually identifying other SAs. We

calculated accuracy, specificity, sensitivity and Matthews correlation coefficient (MCC) on

the training, test and external validation sets. Considering the complexity of the endpoint,

the model performed well. In the training, test and external validation sets the accuracy

was respectively 81, 63, and 68%, specificity 89, 33, and 33%, sensitivity 93, 88, and

80% and MCC 0.63, 0.27, and 0.13. Since it is preferable to overestimate hepatotoxicity

rather than not to recognize unsafe compounds, the model’s architecture followed a

conservative approach. As it was built using human data, it might be applied without any

need for extrapolation from other species. This model will be freely available in the VEGA

platform.

Keywords: hepatotoxicity, structural alerts, chemical clustering, structure-activity relationship, drugs

INTRODUCTION

Drug-induced liver injury (DILI) are detrimental adverse effects caused by marketed drugs toward
patients’ liver (Przybylak and Cronin, 2012). DILI is a major challenge to the pharmaceutical
industry, regulatory bodies and physicians (Chen et al., 2014a). Despite pre-clinical and clinical
safety assessment of drug candidates, DILI is often the reason for drug failure and consequently for
post-approval withdrawal from the market (Egan et al., 2004). The in vivo studies during the drug
development process are probably able to detect only half of all the human hepatotoxic compounds
and in vitro studies correctly identify no more than 60% (Ozer et al., 2008; Blomme et al., 2009;
Laverty et al., 2010). Besides the economic costs, the late discovery of hepatotoxicity of drugs may
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have serious health consequences for humans (Howell et al.,
2012). DILI is a matter of concern since it is the main cause of
acute liver injury (Vinken, 2015). It was calculated that DILI was
responsible for half the cases of acute liver failure in the United
States (Holt and Ju, 2005).

The liver is the most important organ involved in drug
toxicity since functionally it lies between the site of absorption
and the systemic circulation (Russmann et al., 2009). This
unique position in the body means it receives blood from
the gastrointestinal tract and the abdominal space before it
is pumped into the general circulation. Thus, when a drug
enters the body orally, it is totally or partially absorbed in the
gastrointestinal tract and then reaches the liver. In addition,
when a drug reaches the general circulation, it is extracted and
metabolized by the liver (Roberts et al., 2010), which is the main
site for the metabolic activity and elimination of xenobiotics
(Russmann et al., 2009). Generally, metabolic transformation
leads to the formation of molecules that are no longer—or are
less—biologically active, so they are excreted more easily from
the body; however, in some cases the metabolic activity of the
liver produces substances that are more toxic and reactive than
their parent compound (Williams and Park, 2003).

DILI is commonly classified as intrinsic or idiosyncratic. In the
first case the hepatotoxicity is caused by the parent compound
and/or indirectly by its metabolites. This toxicity is generally
dose-dependent and can often be foreseen. Idiosyncratic
hepatotoxicity, however, is related to an abnormal reaction to
a drug that is not dose-dependent. It generally damages only
a limited numbers of people who are hyper-sensitive to a
substance, with no specific connection to its pharmacological
toxicity. Individual variability and susceptibility to injury make
it hard to predict (Cheng and Dixon, 2003; Russmann et al.,
2009).

Hepatotoxicity may occur in several ways depending on
the different mechanisms of action. For example liver steatosis
is caused by abnormal synthesis and elimination of lipids
that accumulate in the liver cells interfering with the normal
cell activity (Tolman and Dalpiaz, 2007); cholestasis reflects
the accumulation of bile acids in the hepatocytes (Padda
et al., 2011); liver fibrosis is the excessive accumulation of
extracellular matrix proteins including collagen (Bataller and
Brenner, 2005).

The hepatic transaminase levels offer a valuable indicator
of liver injury. Alanine and aspartate aminotransferase (ALT
and AST), alkaline phosphatase (ALP), total bilirubin (TBIL)
and γ-glutamyltransferase (GGT) are considered the reference
biomarkers and are widely employed for the detection of DILI,
providing supporting information in pre-clinical and clinical
toxicity studies for drug development (US FDA, 2009; Tonomura
et al., 2015). However, they are not always specific and sensitive
in recognizing liver diseases provoked by DILI or other causes
such as viruses (Przybylak and Cronin, 2012). Gene-expression
profiling has now been proposed for more accurate evaluation of
DILI (Blomme et al., 2009).

The absence of well-defined specific diagnostic biomarkers
for the evaluation of hepatotoxicity (Padda et al., 2011) helps
explaining the limited availability of homogeneous data needed

for modeling (Cronin and Schultz, 2003). Furthermore, DILI is
affected by individual factors such as sex, age, race, health, genetic
polymorphism and environment (Pirmohamed, 2006; Greene
et al., 2010) which make the few data uncertain. DILI is therefore
poorly understood and hard to predict. Early identification of
DILI is essential in order primarily to increase drug safety but
also to reduce the costs of drug development. Besides in vitro
techniques which anyway are expensive and time-consuming,
interest is rising in computational tools for predicting toxicity
that can evaluate and screen large numbers of compounds in a
limited time and affect the attrition rates of compounds in drug
discovery and development phases (Muster et al., 2008; Valerio,
2009).

Commercial software exists for the prediction of human toxic
endpoints such as mutagenicity, carcinogenicity, developmental
and reproductive toxicity, skin and eye irritation. However, the
prediction of toxicity at organ level is still a challenge on account
of the complex intrinsic nature of mechanisms of toxicity and
the paucity of reliable in vivo and in vitro data (Cheng and
Dixon, 2003). Despite the objective hurdles to modeling DILI,
some in silico tools for the prediction of hepatotoxicity have been
developed through most of them are commercial. The models for
in silico assessment of hepatotoxicity have been recently reviewed
by Przybylak and Cronin (2012) and Chen et al. (2014b).

Among computational models, quantitative structure-activity
relationship (QSAR) and structure-activity relationship (SAR)
are the most used ones. QSARmodels quantitatively examine the
toxicological activity of a compound starting from its chemical
structure, on the principle that similar chemical substances
should have similar biological behavior. SAR focuses on the
rule determining the relationship, as a classifier (Pery et al.,
2009; Lombardo et al., 2014). Considering the model structure,
in silico models can be divided in two main groups: statistical
and expert-based. In the first case the models are built on
the basis of an automated algorithm; in the second case the
human expert, exploiting his/her understanding of toxicological
mechanisms, outlines the relationship between the chemical
structure and the biological activity (Przybylak and Cronin,
2012). The commercial software Derek for Windows (Lhasa
Limited) and CASE Ultra (MultiCASE Inc) contain modules for
the prediction of hepatotoxicity. Derek for Windows is based on
sub-structure related to a toxicological activity (structural alerts,
SAs) and CASE Ultra is a statistical model. Besides software,
other in silicomodels based on SAs have been recently described
in the literature (Egan et al., 2004; Marchant et al., 2009; Greene
et al., 2010; Hewitt et al., 2013).

Here we describe a new SAR model for the prediction of
hepatotoxicity based on DILI human data. This model was built
by developing automatically and manually-extracted SAs, which
are chemical sub-structures linked to a particular activity or
toxicity. The use of human data for building the model means the
information provided can be used without the need to extrapolate
the results from different species, reducing the uncertainty linked
to inter-species variability. Furthermore, this in silico model can
be used as alternative to animal testing for screening purposes
and will be implemented in the VEGA platform (http://www.
vega-qsar.eu/) and will be freely available to users.
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MATERIALS AND METHODS

Hepatotoxicity Data Collection
The first step was to collect data formodeling. Few public datasets
on DILI are available. We focused on the following data sources
since they were easily detectable and downloadable from the web
and they were reliable since already used by other authors (Chen
et al., 2013; Hewitt et al., 2013; Zhang et al., 2016).

The first was Fourches et al. (2010), which contains 950
hepatotoxicity data (drugs) on humans, rodents and non-rodent
species. These were extracted through a data mining approach
based on a combination of lexical and linguistic methods
and ontological rules in order to link substances to a series
of liver diseases, searching the open literature. This database
contains data from in vitro and in vivo studies and follows a
simple classification approach: if DILI effects are reported for a
compound it is labeled as toxic, otherwise as non-toxic. More
details can be found in Fourches et al. (2010). We selected only
data referring to humans (650 data) and eliminated the rest.

The second source was the United States Food and
Drug Administration (US FDA) Human Liver Adverse Effects
Database. This contains 631 unique pharmaceuticals, 491 of
which (non-proprietary data) have adverse drug reaction data for
one or more of the 47 liver effects Coding Symbols for Thesaurus
of Adverse Reaction (COSTAR) term endpoints (Matthews et al.,
2004). For each compound there is an overall activity category
(A for active, I for inactive and M for marginally active) referring
to five hepatic endpoints: ALP, AST, ALT, lactate dehydrogenase
(LDH) and GGT increase. Since only two compounds were
labeled as M we eliminated them in order to reduce the
uncertainty of the data set.

We merged the two data sets comparing the chemical
structures of the compounds by using the software described
in Floris et al. (2014). This tool uses multiple combinations
of binary fingerprints and similarity metrics for computing
the chemical similarity between compounds. In our combined
dataset (950 compounds from (Fourches et al., 2010) and 491
fromUS FDA), we identified 191 duplicated compounds (16.7%).
Among these we eliminated and excluded from further analysis
those compounds with contrasting experimental values (100
chemicals, 52.4%) and we considered once those chemical with
concordant experimental activity (91 compounds, 47.6%, 59
labeled as hepatotoxic, 65%). After concordance analysis we
obtained a unique list of 950 compounds. The final data set was
fairly balanced, with 510 compounds labeled as hepatotoxic and
440 non-hepatotoxic.We randomly split the data set into training
(760 compounds, 80%) and test sets (190 compounds, 20%).

To compile the external validation set, we used the Liver
Toxicity Knowledge Base (LTKB) Benchmark Dataset developed
by the US FDA. This dataset contains 137 drugs labeled as
most-DILI-concern since severe adverse effects are reported
for them; 85 less-DILI-concern drugs whose DILI events are
mild and 65 compounds labeled as no-DILI-concern since
they do not contain any DILI indication (Chen et al., 2011).
We considered only those compounds labeled as most-DILI-
concern (hepatotoxic) or no-DILI-concern (non-hepatotoxic).
We eliminated those compounds already present in the training

or test set and we finally obtained a dataset of 101 chemicals, 69
of which were labeled as hepatotoxic and 32 as non-hepatotoxic
that we used for testing the performance of the model.

The complete list of compounds used in this work is provided
in the supporting information (Data Sheet 1).

Manual Extraction of SAs
Unsupervised Chemical Similarity-based Clustering
To identify SAs for hepatotoxicity we created clusters of
substances sharing similar chemical structure. This enabled us to
hypothesize the presence of toxicity based on common structural
features and to group all compounds with the same scaffold but
different substituent groups.

We used the similarity index (SI) developed within the VEGA
platform (http://www.vega-qsar.eu/). This SI, described in Floris
et al. (2014), provides a quantitative measurement ranging from
zero to one (where one means that compounds have the same
structure) and takes into account all structural features of a
molecule. For its calculation, a fingerprint and three molecular
descriptors based on structural keys are combined with different
weights of importance. Thus, this SI mixes a classical fingerprint
approach with additional information such as the size of the
molecule, the presence/absence of heteroatoms and of particular
functional groups. It provides a “generic” measurement of
structural similarity, taking into account all possible chemical
features of the molecules. Here we used an in-house software
that employs the SI and can split the molecules of a given
data set into chemical similarity-based clusters, in this way the
similarity values between molecules inside a cluster is minimized
and the similarity values between molecules of different clusters
is maximized. The clusters are further grouped into super-
clusters, containing all clusters whose average similarity between
their corresponding molecules is higher than a given threshold.
This further step allows verifying if some produced clusters can
be related between themselves for some chemical/toxicological
reason. This similarity algorithm relies on a K-means approach
(in the first step), where an iterative procedure is applied in order
to build the most suitable clusters: starting from the initial setting
(where each compound represent a cluster for itself) compounds
are iteratively moved to the cluster that best maximize the intra-
cluster similarity and minimize the similarity between cluster,
until no further optimization step is possible. In the second step,
the algorithm exploits a hierarchical approach, where clusters
are grouped on the basis of a given threshold, to support
human expert reasoning (i.e., finding chemical/toxicological
issues common to different clusters).

We applied this clustering approach to the positive
(hepatotoxic) compounds in the training set (408 compounds)
in order to identify SAs only for positive substances. The
compounds were automatically divided into 78 clusters with
average similarity ranging from 0.677 to 0.980. We checked each
cluster and eliminated those with average similarity below 0.7.
For each cluster we manually identified a common chemical
structure. However, this last step was not possible for every
single cluster since the chemicals in the cluster did not always
share an unambiguous, unique chemical core. In this case we
disregarded the cluster. The chemical cores for each cluster were
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written as SMARTS (http://www.daylight.com/dayhtml/doc/
theory/theory.smarts.html), which is the language that enables
to describe the chemical patterns in a more general way than the
Simplified Molecular Input Line Entry System (SMILES) (http://
www.daylight.com/dayhtml/doc/theory/theory.smiles.html).

The next step was to assign the pharmacological category
to each compound (antibiotics, antipsychotic agents, antiviral
etc.) using the PubChem database (https://pubchem.ncbi.nlm.
nih.gov/)1, to clarify whether the chemical similarity is also
related to common uses of the drugs. When we considered a
matchingmore appropriate than the one generated automatically
by the software, we moved some substances from one cluster
to another. Then we tested the SAs identified for the remaining
clusters on the negative (non-hepatotoxic) compounds in the
training set (352). Finally, we discarded SAs whose percentage
of correctly predicted compounds (in terms of true positive,
TP or true negative, TN) was below the arbitrarily threshold
of 60, in the training set. For each cluster we provided also
a mechanistic explanation and/or supporting information in
the literature. Figure 1 illustrates the scheme developed for the
manual identification of SAs.

Automatic Extraction of SAs
For the automatic extraction of SAs we used the SARpy software,
described in Ferrari et al. (2013). Briefly, SARpy extracts sets
of rules by automatically generating and selecting substructures
without any a priori knowledge, solely on the basis of their
prediction performance on a training set used as input. In the
first step the input chemicals (training set) are fragmented in
order to extract all the substructures within a customizable size
range. Then, the software analyses the correlation between the
occurrence of each molecular substructure and the experimental
activity of the compounds that contain it in the training set. This
is a validation step aimed at assessing the predictive power of each
fragment. Finally, a subset of fragments is selected and provided
to the user in the form of rules “IF fragment THEN activity”
(Lombardo et al., 2014). The input and the output of SARpy are
chemical structures and sub-structures expressed as SMILES. The
statistical parameter used for defining the precision of a fragment
to predict the activity under investigation is the likelihood ratio
(LR), calculated for each SA as:

LR =
TP

FP
x
negatives

positives

Where TP are experimentally positive (toxic) compounds
correctly predicted as positive, false positives (FP) are
experimentally negative but wrongly predicted as positive
and negatives and positives are the number of non-toxic and
toxic compounds present in the dataset, respectively.

We ran SARpy on the training set (760 compounds) using
different settings (max, min, optimal) as previously described
(Lombardo et al., 2014; Pizzo et al., 2015) in order to extract
SAs for hepatotoxicity and non-hepatotoxicity. After identifying
SAs using manual and automatic approaches, we graphically

1PubChem database, last access: 1 February 2016, https://pubchem.ncbi.nlm.nih.
gov/.

FIGURE 1 | Identification and validation of SAs for hepatotoxicity.

compared the list of SMARTS of the manually identified SAs and
the list of SMILES produced by SARpy. In case of similar SAs that
matched the same compounds in the training set, we considered
only the manually extracted one and eliminated the other.

Performance
Since hepatotoxicity is expressed as a binary classification
(hepatotoxic and non-hepatotoxic) we adopted statistical
parameters to evaluate the performance such as accuracy,
sensitivity, specificity and Matthews correlation coefficient
(MCC). To standardize the statistical results, we used the term
“positive” to refer to hepatotoxic compounds and “negative” for
non-hepatotoxic ones.

Accuracy: this measurement, also known as concordance,
gives a general picture of the errors made by the model. It is
defined as the ratio of the compounds correctly predicted to
the total number of compounds. The result spreads from 0 (no
accuracy) and 1 (maximum accuracy).

accuracy =
(TP+ TN)

(P+N)

Sensitivity: a model is sensitive when it has good ability to identify
true-positives (TP, hepatotoxic compounds correctly classified as
hepatotoxic) so few false-negatives (FN, hepatotoxic compounds
wrongly classified as non-hepatotoxic) are predicted. It is defined
as the ratio of the TP to the total number of positives. The result
spreads from 0 (no sensitivity) and 1 (maximum sensitivity).

sensitivity =
TP

(TP+ FN)
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Specificity: a model is specific when it has good ability to identify
TN, (non-hepatotoxic compounds correctly classified as non-
hepatotoxic) so it gives few false positives (FP, non-hepatotoxic
compounds wrongly classified as hepatotoxic). It is defined as
the ratio of the TN to the total number of negative compounds.
The result spreads from 0 (no specificity) and 1 (maximum
specificity).

specificity =
TN

(FP+ TN)

MCC: this is a measure of the quality of a binary classification. It
considers TN, TP, FN, and FP. The result should be between +1
and −1. If the result is +1, the prediction is perfect, and if it
is 0 the result can be considered a random prediction; if the
result is−1 there is total disagreement between the predicted and
experimental values (Dao et al., 2011).

MCC =
(TP ∗ TN) − (FP ∗ FN)

√
(TP+ FP) ∗ (TP+ FN) ∗ (TN+ FP) ∗ (TN+ FN)

RESULTS

Manually Extracted SAs
Table 1 illustrates the manually-identified SAs with the total
number of occurrences, the number and the percentage of TP in
the training set. Performance in test and external validation sets
are reported in Supplementary Table 1.

Totally, we identified 13 SAs, 11 of them considered
hepatotoxic.

SA identified with ID 1 (N-containing heterocycles aromatic
compounds (pyridine, pyrazine, pyrimidine)matched the highest
number of compounds in the training (57), test (19) and external
validation (9) sets. Its performance in the training and in the test
sets was high (71.4 and 88.9 respectively).

SA with ID 2 (sulphonamides) performed well in all three sets
of compounds reporting TP% of 70.96, 75, and 83 in the training,
test and external validation sets respectively.

SA identified by ID 3 (β-lactam antibiotics, penicillin)
reported TP% of 66.66 in the training set and of 100 in the test
set. It did not match any chemicals in the external validation set.

SAs with ID 4 (nucleoside analogs) and 5 (tricyclic
antidepressants, TCAs) reported both TP% of 81.8% in the
training set. SA with ID 4 did not perform well in the test set
(TP% 50) but had good performance in the external validation
set (TP% 100), on the contrary SA with ID 5 reported TP% of
100% in the test set, but it did not match any compound in the
external validation set.

SA with ID 6 (aromatic amines) had poor performance in the
training set (TP% 60) however, in test and external validation sets
it reported 100% of TP.

SA with ID 7 (macrolide antibiotics) had good performance in
training and test sets (TP% 71.4 and 100 respectively), however in
the external validation set it did not match any compound.

SA with ID 8 (anti-bacterial agents, fluorquinolone) had poor
performance in the training set (TP% 66) however, in both test
and external validation sets it reported TP% of 100.

SA identified with ID 9 (cationic amphiphilic drugs, CADs),
reported good performance in the training set (TP% 83.33). In the
test and external validation sets it did not match any compounds.

SA identified with ID 10 (retinoids) had good performance in
the training and test sets (TP% 75 and 100 respectively), and it
did not match any compound in the external validation set.

Similarly, SAs identified with ID 11 (nitrosourea compounds)
reported good performance in the training set with TP% of 100,
however in the test and external validation sets they did not
match any compounds.

Although we only used positive compounds to extract SAs,
we labeled the SAs identified by ID 12 and 13 as non-
hepatotoxic since they matched more experimentally non-
hepatotoxic compounds than hepatotoxic ones (Figure 1, step 5).
Both SAs gave TN% close to 70 in the training set.

SA with ID 12 (steroids) had bad performance in the test
(TN% 33), but in the validation set it identified correctly negative
compounds (TN% 100). On the contrary,

SA identified with ID 13 (β-lactam antibiotics,
cephalosporins) performed well in the test set reporting
TN% of 75, but it did not match any compounds in the external
validation set.

Automatically Extracted SAs
Using SARpy software, we were able to identify 75 SAs, 40 of
them related to hepatotoxicity. Once generated by SARpy, each
SA was carefully checked. In order to keep only the reliable SAs,
we deleted those with percentages of TP below the arbitrary
threshold of 70. For SA with ID 40 we generalized the original
SMARTS in order to get a new one that correctly matched more
compounds than the original one.

The complete list of SAs for hepatotoxicity and non-
hepatotoxicity is available in Supplementary Table 2; the
statistical performance of each SA, in terms of total number
of occurrences and the number and percentage of TP in the
training, test and external validation sets are also provided. Due
to the relative high number of SAs extracted with SARpy software
compared to the number of molecules available for the test
and external validation sets, the total occurrences of 34 and 37
out of 75 SAs were null in the test and external validation set,
respectively.

SAs related to hepatotoxicity with ID 7, 8, 9, and 29 reported
100% of TP in training, test and external validation sets. On
the contrary SA with ID 3 and ID 6 had good performance in
training set (TP % 100), but in the test and external validation
sets they did not match any compound. SA with ID 36 and 38
had good performances in the training set (TP % of 71.42 and
70.96, respectively) while their performance increased in the test
(100 and 75.00% of TP, respectively) and external validation set
(TP % of 100 and 83.33, respectively).

SA with ID 41 identified correctly negative compounds (TN
% of 100) in the training, test and external validation sets. SAs
with ID 44, 47, and 57 had good performance in the training and
test sets (TN % of 100); unfortunately their performance in the
external validation set was not evaluated since their occurrences
were null. SA with ID 66 performed well in the training set
(TN % of 83.33) and in the test and external validation sets it

Frontiers in Pharmacology | www.frontiersin.org 5 November 2016 | Volume 7 | Article 442

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Pizzo et al. SAR Model for the Prediction of DILI

TABLE 1 | Manually extracted structural alerts (SAs) with the total number of occurrences and the number and percentage of true positive (TP) in the

training set.

ID SMARTS Activity Chemical structures Pharmacological

class

Total occurrences in

the training set

N. of TP (%TP) N. FP (%FP)

1 [n,c]1ccn[n,c]c1 Hepatotoxic N-containing

heterocycles aromatic

compounds (pyridine,

pyrazine, pyrimidine)

57 41 (71.40) 16 (28.60)

2 NS(=O)(=O)c1ccccc1 Hepatotoxic Sulphonamides 31 22 (70.96) 9 (29.04)

3 OC(=O)C1[C,S]

[S,O,C]C2CC(=O)N12

Hepatotoxic β-lactam antibiotics

(penicillin)

12 8 (66.66) 4 (33.34)

4 O=C1N∼CC=C[N,C]

1C2C∼[S,C]CO2

Hepatotoxic Nucleoside analogs 11 9 (81.80) 2 (18.20)

5 C1[S,C,N,O]c2ccccc2

[N,C,S,O]c3ccccc13

Hepatotoxic Tricyclic

antidepressants (TCAs)

11 9 (81.80) 2 (18.20)

6 [N;!$([N+]);!$(NC=O);

!$(N=[N,C,O])][a]

Hepatotoxic Aromatic amines 10 6 (60.00) 4 (40.00)

7 O=C1CCCCCCC

CCCCCO1

Hepatotoxic Macrolide antibiotics 7 5 (71.40) 2 (28.60)

8 Nc1[n,c]cc2C(=O)

C(=CNc2[c,n]1)C(O)=O

Hepatotoxic Anti-bacterial agents

(fluorquinolone)

6 4 (66.66) 2 (33.34)

9 *N(*)CCC(c1cccc[n,c]1)

c2cccc[n,c]2

Hepatotoxic Cationic amphiphilic

drugs (CADs)

6 5 (83.33) 1 (16.67)

10 CC=C(C)C=CC

=C(C)C=C[R,a]

Hepatotoxic Retinoids 4 3 (75.00) 1 (25.00)

11 CNC(=O)N(CCCl)N=O Hepatotoxic Nitrosourea

compounds

2 2 (100) 0 (0)

(Continued)
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TABLE 1 | Continued

ID SMARTS Activity Chemical structures Pharmacological

class

Total occurrences in

the training set

N. of TP (%TP) N. FP (%FP)

12 C1CC2CCC3C(CC

[C,c]4[C,c][C,c]

[C,c][C,c][C,c]34)C2C1

non-hepatotoxic Steroids 23 16 (TN) (69.56) 7 (FN) (30.44)

13 CC(=O)NC1C2[S,O]

CC=C(N2C1=O)C(O)=O

non-hepatotoxic β-lactam antibiotics

(cephalosporins)

16 11 (TN) (68.75) 5 (FN) (31.25)

We used Marvin for drawing and displaying chemical structures and substructures (Marvin 5.11.5, 2013, ChemAxon) (http://www.chemaxon.com)2.

identified correctly negative compounds (TN % 100). SAs with
ID 49, 50, 51, 54, and 63 reported 100% of TN in the training set
but in the test and/or external validation set it did not match any
compound.

Decision Tree
After identifying the SAs, we established a reasonable strategy
for manually building the model basing on the expert-based
knowledge. Figure 2 shows the decision tree we applied for
building the model for the prediction of hepatotoxicity. Basically,
if no SAs are found for the target compound, no prediction
is provided and the compound is labeled “unknown (non-
predicted).” If one SA is identified, the prediction for the target
compound is hepatotoxic or non-hepatotoxic depending on the
SA. If more than one SAs is found, the prediction depends
on the number of SAs: if more SAs for non-hepatotoxicity are
found than those for hepatotoxicity, the target compound is
predicted as non-hepatotoxic; otherwise (the number of SAs
found for non-hepatotoxicity is lower or equal to the number
of SAs found for hepatotoxicity) it is hepatotoxic. Since it is
preferable to overestimate hepatotoxicity rather than not to
recognize unsafe compounds, the overall model’s architecture
followed a conservative approach.

Results on the Training, Test and External
Validation Sets
The performance of the model in the training, test and external
validation sets is illustrated in Figure 3 and Table 2.

Out of 760 compounds that were present in the training set,
263 were not predicted by the model (unknown, non-predicted).
263 compounds were correctly predicted as hepatotoxic (TP)
and 144 were correctly predicted as non-hepatotoxic (TN).
72 molecules experimentally non-hepatotoxic were identified
by the model as hepatotoxic (FP) and only 18 compounds
experimentally hepatotoxic were predicted as non-hepatotoxic
(FN). For 91 compounds in the test set (190molecules) the model
did not provide any prediction (unknown, non-predicted), 48
compounds were correctly identified as hepatotoxic (TP) and 15
as non-hepatotoxic (TN). The number of experimentally negative
(non-hepatotoxic) compounds wrongly predicted as hepatotoxic

2ChemAxon, Version 5.11.5, 2013, http://www.chemaxon.com.

(FP) was 30 and the number of positive compounds (hepatotoxic)
wrongly predicted as negative (FN) was 6. In the external
validation set (101 compounds), 59 chemicals were not predicted
by the model (unknown, non-predicted), the numbers of TP
and TN was 35 and 5 respectively. 10 compounds were wrongly
classified as hepatotoxic (FP) and 9 as non-hepatotoxic (FN).

Performance in the training set was good on all four
parameters (accuracy 81%, sensitivity 93%, specificity 67 and
MCC 0.64). As expected, in the test and external validation sets
the statistical parameters tended to decrease, mainly specificity
(33% in both test and external validation sets). However, in
the test and external validation sets accuracy (63% and 68%),
sensitivity (88% and 80%) and MCC (0.27 and 0.13%) were
satisfactory.

Figure 3 shows percentages of correctly predicted and
wrongly predicted compounds in the training, test and external
validation sets. In the training set 54% of the compounds were
correctly predicted and the prediction was wrong only for 12%.
The model did not provide any prediction for 35, 48, and 41%
of the substances present respectively in the training, test and
external validation sets. However, excluding the non-predicted
compounds, the percentages of correct prediction were 82, 64,
and 68% in the training, test and external validation sets.

DISCUSSION

Limitations and Weaknesses of
Experimental Hepatotoxicity Data
High-quality and reliable biological data are essential in order to
build predictive models to provide relevant information about
the toxicological behavior of a substance. Ideally the data for
building a model should be obtained using a unique, well-
standardized protocol, in the same laboratory by the same
scientists. It is also important that these data refer to a clear and
unambiguous endpoint (Cronin and Schultz, 2003). However,
this is difficult, especially for hepatotoxicity, since the data
are spread out in the literature and databases, refer to several
endpoints related to hepatotoxicity (steatosis, colestasis, fibrosis
etc.) and are obtained with different laboratory methods. Then,
as previously mentioned, there is no a good single standard
indicator of DILI with high sensitivity and specificity (Przybylak
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FIGURE 2 | Decision tree developed for the hepatotoxicity model. Hep stands for “hepatotoxic” and non-hep for “non-hepatotoxic.”

and Cronin, 2012). Indeed, no well-defined biomarkers exist
for the identification of hepatotoxicity in vitro or in vivo.
Consequently, the data in the literature refer to different
effects and mechanisms of action underlying the endpoint of
hepatotoxicity. Here we used one of the largest data sets available
for DILI (Fourches et al., 2010). This data set, compiled using
the data mining procedure, suffers some limitations. Firstly it
does not make any distinction between idiosyncratic and dose-
dependent toxicity. Idiosyncratic toxicity refers to an abnormal
reaction to a drug that is not connected to its pharmacological
activity but is due to individual hypersensitivity (Cheng and
Dixon, 2003; Russmann et al., 2009). This toxicity does not follow
any specific mode of action, but the adverse reactions to drugs are
of unknown etiology and involved only a small proportion of the
population (Walgren et al., 2005). Furthermore, in this data set,
the compounds labeled as “negative” do not refer to compounds
without reported effects, but to those without information in
the literature. This means that where information is lacking it
has been assumed that the compound was negative. Even if it
is true that for well-known and investigated drugs, the lack of
information can be taken as negative (Hewitt et al., 2013) this can
lead to a large amount of FN in the data set that can in the end
interfere with the data modeling.

Concerning the second data set we used, the US FDA
Human Liver Adverse Effects Database, other limitations need
to be discussed. This data set classifies compounds as active
(hepatotoxic) and inactive (non-hepatotoxic) on the basis of
reported alterations for five hepatic enzymes (ALP, AST, ALT,
LDH and GGT). When the hepatocyte membrane is damaged
these enzymes, which are normally located in the cytosol,
are released into the bloodstream (Pari and Murugan, 2004).

TABLE 2 | Performance of the model in the training, test and external

validation sets.

Training set Test set External validation set

Number of compounds 760 190 101

Number of TP 263 48 35

Number of FP 72 30 10

Number of TN 144 15 5

Number of FN 18 6 9

Number predicted 497 99 59

Number unknown 263 91 42

Accuracy 81 63 68

Sensitivity 93 88 80

Specificity 67 33 33

MCC 0.64 0.27 0.13

Although the serum transaminases are commonly used as
indicators of liver injury and reflect damage to hepatocytes
(Ozer et al., 2008), they are not always reliable and specific
for the detection of hepatotoxicity. For example, ALT and AST
are present in other tissues (heart, brain and skeletal muscle)
besides the liver and so they are released into the circulation
when there is damage to these tissues. AST mostly increases
in case of myocyte damage due to extreme physical effort
(Ozer et al., 2008). LDH is another enzyme occasionally used
as a biomarker of hepatocellular injury. However, it is not
routinely employed since its specificity is questionable (Ramaiah,
2007). More recently genomics, proteomics and metabolomics
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FIGURE 3 | Percentages of correctly predicted, wrongly predicted and

non-predicted (unknown) compounds in the training, test and external

validation sets.

have been proposed as valuable techniques for discovering
biomarkers (Amacher et al., 2005) and gene-expression profiling
and microRNAs as more sensitive and specific indicators of
DILI (Blomme et al., 2009; Laterza et al., 2009). Despite its
limitations, however, in our opinion the US FDA Human
Liver Adverse Effects Database is a good choice for modeling
since the source (US FDA) is reliable and the results are
based on objective laboratory parameters (serum transaminases).
However, the most of the datasets is not suitable to be used alone
for classification modeling. In conclusion, the data we used for
modeling have a certain level of uncertainty due to these points
which may have influenced the reliability and performance of the
model.

An alternative that could limit the uncertainty linked to
hepatotoxicity data is to use in vitro data obtained if possible
on the same cell lines and using the same laboratory assay

and conditions. However, not much public data is available
in the open literature for this purpose and this approach
too suffers some limitations such as the influence of genetic
and environmental factors in the variations of biochemistry
(Przybylak and Cronin, 2012).

Mechanistic Explanation of SAs
We propose, when possible, a mechanistic rationale using
the information in the literature and in public databases
(PubChem https://pubchem.ncbi.nlm.nih.gov/, LiverTox, http://
livertox.nih.gov/) for each SA that we manually identified
through the chemical category approach.

SA ID 1: N-Containing Heterocyclic Aromatic

Compounds: Pyridine, Pyrazine, Pyrimidine
This SA, identified by the ID number 1 (Table 1), is a generic
chemical structure that may be seen in several different chemical
families. In the training set it matches 57 compounds (covering
different chemical and therapeutic classes), 41 of them classified
as hepatotoxic. Considering the lack of specificity of this SA,
it is impossible to highlight any single mechanism of action
that may explain the toxicity. In the training set this chemical
fragment correctly identified hepatotoxic compounds in 71.4%
of cases and that is enough to retain this alert. However,
we identified two sub-families in this large group of drugs.
The first comprises a group of three drugs used for the
treatment of malaria (amodiaquin, primaquine, mefloquine).
The hepatotoxicity of these molecules are mainly linked to
hypersensitivity reactions (LiverTox database, http://livertox.nih.
gov/).

The second includes seven chemical compounds used in
the therapy of several cancer types (methotrexate, amsacrine,
bortezomib, imatinib mesilate, intoplicine, OSI-461, rubitecan).

Methotrexate is a methyl analog of folic acid, used in
the treatment of various neoplastic diseases. A reasonable
part of the population treated with this drug reported
liver injury. The typical histologic features of methotrexate
toxicity are aspecific and comprise steatosis, “glycogen” nuclei,
multinucleation, anisonucleosis, and lipofuscin accumulation,
chronic inflammation of portal tracts, bile duct damage, ductular
reaction, and fibrosis. Thin fibrous septa extending from the
portal tracts into the lobules, often in a stellate configuration
is the typical pattern of liver fibrosis induced by methotrexate.
Persistent fibrosis eventually may lead to cirrhosis (Hytiroglou
et al., 2004).

The mechanisms of liver injury of bortezomib are still unclear.
It is metabolized in the liver largely through the CYP 3A4
pathway and liver injury may be related to production of a toxic
intermediate (LiverTox database).

Therapy with imatinib may lead to three forms of acute liver
injury: transient and usually asymptomatic elevations in serum
enzymes during treatment, clinically apparent acute hepatitis,
and reactivation of an underlying chronic hepatitis B (LiverTox
database).

Metabolism ofOSI-461 occurs in liver and preclinical repeated
dose toxicity studies reported liver injury at higher doses. In a
recent study (O’Bryant et al., 2009), treatment OSI-461 caused
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only mild to moderate and reversible transaminase and bilirubin
increase.

SAs ID 2: Sulphonamides
This SA identified by the ID number 2 (Table 1) matches
chemicals containing a sulfonamide group in their structures.
Most of the compounds correctly predicted as hepatotoxic by this
SA are sulfonamide antibiotics. Several compounds belonging
to this class have been reported to cause mild cholestasis
hepatitis, but severe and even fatal cases have occurred (Polson,
2007). Sulfonamide antibiotics are among the most common
causes of allergic or hypersensitivity reactions and it has been
estimated that 6% of patients treated with this class of antibiotics
have shown an immune-mediated event. The percentage rises
steeply (60%) for HIV-positive individuals (Brackett, 2007).
From a histopathological point of view centrilobular cholestasis
is frequent in sulfonamide hepatotoxicity with only mild to
moderate mixed portal inflammation of lymphocytes, and small
numbers of eosinophils and neutrophils (Murray et al., 2008).
Granulomatous hepatitis is uncommon but it can occur with
many of the sulfonamides while massive hepatocellular necrosis
has been described in fatal cases (Murray et al., 2008).

SA ID3: β-lactam Antibiotics (Penicillin)
The β-lactam ring, which is shared by many penicillin-like
antibiotics, represents the SA identified with ID number 3
(Table 1). This SA matched 12 compounds in the training
set, eight of them are labeled as hepatotoxic. Six are β-lactam
antibiotics (azlocillin, carbenicillin, amoxicillin, flucloxacillin,
oxacillin and penicillin) with the core structure of penicillins
and two are used as β-lactamase inhibitors (clavulanic acid and
sulbactam). β-lactams have been associated with small increases
in serum enzymes (Zimmerman, 1999). However, more severe
liver diseases, such as hepatitis and or intrahepatic cholestasis,
have been reported: β-lactam and the isoxazolyl penicillins
(oxacillin) are the most frequently involved (Olans and Weiner,
1976). Amoxicillin which is normally used in combination with
clavulanic acid in order to reduce antibiotic-resistance can cause
from mild to moderate hepatitis that rarely leads to liver failure.
The mechanism of action that leads to toxicity is still not
completely clear. However, several human leukocyte antigen
haplotypes have been found to be related with hepatotoxicity,
especially in the elderly (Pugh et al., 2009). A few severe reactions,
including bile duct damage have been reported (Cundiff and
Joe, 2007). Prolonged treatment with flucloxacillin in the elderly
has been associated with jaundice (Fairley et al., 1993), and
cholestatic liver injury has been described, most often with
flucloxacillin (Devereaux et al., 1995).

SA ID 4: Nucleoside Analogs
This SA, marked with the ID number 4 (Table 1), identifies
two classes of compounds in the training set: the antiretrovirals
(nucleoside analogs reverse transcriptase inhibitors, NRTI) and
anti-cancer nucleoside drugs. Four compounds are found in
the first class: lamivudine, stavudine, zidovudine and 2′-fluoro-
5-methyl arabinosyl uracil, all used for the treatment of HIV
or hepatitis B infection. Some cases of liver injury have

been reported in patients taking zidovudine, but stavudine is
responsible for more severe hepatotoxicity (Nunez, 2006).

The second class of drugs matched by the SA with ID 8
is nucleoside analogs used for the treatment of malignancies
(cytarabine, capecitabine, doxifluridine, uridine, and 5-fluoro-
2′-deoxyuridine). They are a family of drugs that inhibit DNA
synthesis either directly or through inhibition of DNA precursor
synthesis (Diab et al., 2007). Several NRTI induce hepatotoxicity
through mitochondrial damage (Nunez, 2006). The mechanisms
of this liver damage is explained well in Boelsterli and Lim (2007)
andDykens andWill (2007). Briefly, NRTI inhibit the polymerase
that replicates mitochondrial DNA, preventing mitochondrial
replication and finally leading to a reduction in mitochondrial
function in several tissues (liver and muscle toxicity), and also
lipodystrophy and lipoatrophy (Dykens and Will, 2007).

Due to their lack of selectivity toward tumor cells, nucleoside
analogs are cytotoxic interfering with the physiological cellular
metabolism and deregulating the nucleoside/nucleotide pools in
both normal and cancerous cells. These drugs cause several side
effects such as myelosuppression, hepatotoxicity, renal toxicity,
leucopenia, thrombocytopenia and mucositis (Diab et al., 2007).

SA ID 5: Triciclycic Antidepressants (TCAs)
We identified the SA with ID 5 (Table 1) starting from nine
compounds in the training set and labeled as hepatotoxic. Among
these nine, seven are triciclycic antidepressants (TCAs), one is
also an antidepressant but with four rings (mianserin) and one
is an antihistamine with a tricyclic group (cyproheptadine).

TCAs, developed in the 1950s, are a group of compounds
that share similar chemical structures and have antidepressant
potential in humans. The use of these drugs as antidepressants
dropped steeply with the introduction of selective serotonin-
reuptake inhibitors and other new-generation molecules.
However, they are still used for several off-label prescriptions.
Their decrease has meant that few hepatotoxicity cases have
been reported in the past 15 years (DeSanty and Amabile, 2007).
However, TCAs have been associated with hepatotoxic and
cholestatic reactions (Ilan et al., 1996; de Abajo et al., 2004).
Asymptomatic increases in transaminase serum levels are a
common side effects with this group of drugs (Price et al., 1983;
Ramesh et al., 1990) and severe hepatitis and acute liver failure
cases are also reported (Lucena et al., 2003).

As mentioned, this group of drugs shares a similar chemical
structure so cross-hepatotoxicity is possible (Larrey et al., 1986;
Remy et al., 1995). Some TCA-induced hepatotoxic reactions
seemed to be immune-mediated since significant extrahepatic
symptoms, eosinophilia, and eosinophilic infiltration of the
liver have been reported (Anderson and Henrikson, 1978).
Hypothetically TCAs could show the same mechanism of action
(cholestatic injury) as chlorpromazine since these compounds
present structural similarity (Selim andKaplowitz, 1999; de Abajo
et al., 2004).

SA ID 6: Aromatic Amines
We identified ten molecules in the training set containing the SA
with ID 6 (Table 1), six of them were labeled as hepatototoxic.
Three compounds (amsacrine, gefinitib and vandetanib) are
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antineoplastic agents used for the treatment of several cancer
types. The others are one antimalarial agent (amodiaquine), a
non-narcotic analgesic (glafenine) and an α-adrenergic blocker
(prazosin). The common chemical feature is the aromatic amine.
Although no specific mechanism of action for the liver toxicity
is described, in vivo studies on animal models indicated that
aromatic amines exert liver toxicity by inducing cellular oxidative
stress (Hillesheim et al., 1995; Ambs and Neumann, 1996).

SA ID 7: Macrolide Antibiotics
The SA identified with the ID number 7 (Table 1) correctly
identified five hepatotoxic compounds out of the seven chemicals
matched. These five are all macrolide antibiotics. The main
member of this class is erythromycin. Hepatic dysfunction
after treatment with these drugs is occasional. Erythromycin
estolate has been associated with cholestatic hepatitis in
particular (Hashisaki, 1995). Through their hepatic metabolism,
reactive oxygen species (ROS), such as superoxide anion (O−

2 )
and hydrogen peroxide (H2O2), are created, leading to the
production of free radicals such as OH•. These hydrogen
species bind polyunsaturated fatty acids starting the lipid
peroxidation that causes oxidative degradation and inactivation
of biomolecules (Pari and Murugan, 2004).

SA ID 8: Anti-Bacterial Agents (Fluoroquinolone)
The SA marked with the ID number 8 (Table 1) matched six
compounds in the training set, four of them are hepatotoxic.
The chemicals correctly identified as hepatotoxic belong to
the fluorquinolones class of antibiotics. These are anti-bacterial
agents are widely prescribed and used (Orman et al., 2011). Side
effects from fluorquinolones are uncommon, though significant
adverse effects with this drug category have been reported in
the gastrointestinal tract, the central nervous system (CNS),
heart, cartilaginous tissues and skin (Stahlmann and Lode, 1999).
Numerous cases of severe liver injury were reported only for
trovafloxacin that was subsequently withdrawn from the market
(Ball et al., 1999; Orman et al., 2011).

Concerning the other members of the drugs family, there are
occasional case reports of hepatotoxicity (Orman et al., 2011).
However, one investigation (Paterson et al., 2012) reported 88
fatal cases of acute liver injury among 144 patients in hospital
after treatment with fluorquinolone and with no evidence of
preexisting liver disease.

SA ID 9: Cationic Amphiphilic Drugs (CADs)
The SA with ID number 9 (Table 1) comprises a group of
heterogeneous drugs and matched six compounds in the training
set, five of which were correctly identified as hepatotoxic
(chlorpheniramine, disopyramide, doxapam, methadone, and
tolterodine). From a chemical point of view this structure is
a typical cationic amphiphilic since it has a hydrophobic ring
structure and a hydrophilic side chain with an amino group.With
the exception of doxapram, all the other drugs matched by SA
number 9 are CADs. This category is known to have the potential
to cause phospholipidosis which involves excessive accumulation
of phospholipids within cells (Sawada et al., 2005). Any tissue
can be potentially affected by phospholipidosis and excessive

accumulation is commonly found in the lung, liver, brain, kidney,
ocular tissues, heart, adrenal glands, hematopoietic tissue, and
circulating lymphocytes (Halliwell, 1997). It has been reported
that CADs induce phospholipidosis by inhibiting lysosomal
phospholipase activity; however the specific mechanism is still
not clear (Sawada et al., 2005).

SA ID 10: Retinoids
This SA, identified with the ID number 10 (Table 1), is the typical
carbon chain of retinoids. It matches four compounds, three of
them are retinoids (etretinate, vitamin A, fenretidine), labeled as
hepatotoxic and one, a terpene (astaxanthin), as non-hepatotoxic.
It is well-known that excessive intake of retinol (vitamin A)
is toxic. Hepatomegaly and cirrhosis have been reported in
patients given retinol (Myhre et al., 2003). The toxicity of
vitamin A is reviewed in Penniston and Tanumihardjo (2006).
The mechanism of toxicity of retinoid derivatives has not yet
been clarified, but they may alter glycoprotein synthesis and/or
genomic expression, inducing membrane injury in hepatic cells
(Fallon and Boyer, 1990).

SA ID 11: Nitrosourea Compounds
The SA identified by ID number 11 (Table 1) comprises the
so-called nitrosourea compounds. We identified it using two
compounds in our data set: carmustine and lomustine. Both
are alkylating agents used in the therapeutic protocols for many
types of cancer. Their hepatotoxic effect is usually transient and
is associated with glutathione depletion, which that leads to
oxidative injury (King and Perry, 2001; Sümbül and Özyilkan,
2010). These compounds have also been associated with rises
in aminotransferase levels, with rare fatalities (Thatishetty et al.,
2013).

SA ID 12: Steroids
We identified 23 molecules that contain the SA with ID
12 (Table 1). Only in seven cases the molecules in the
training set were labeled as hepatotoxic (ursodiol, 2-methoxy
estradiol, betulinic acid, estrone, ethynil estradiol, ethinyl
estradiol 3-methyl-ether, oxymethodone), so we retained this
SA for identifying non-hepatotoxic compounds. Among the
compounds labeled as non-hepatotoxic we found three chemicals
belonging to the class of steroidal neuromuscular-blocking
drugs (pipecuronium, rocuronium and vecuronium) which are
mainly employed in anesthetic practice (Sparr et al., 2001).
To the best of our knowledge the side effects reported for
this class of compounds relate to the cardiac vagus nerve
that leads to cardiovascular effects (Larijani et al., 1989; Sparr
et al., 2001). Another group of compounds are digitoxin and
digoxin that belong to the class of cardiac glycosides, used
as cardiotonic (Fabricant and Farnsworth, 2001). No studies
reported hepatotoxicity after treatment with these compounds. A
recent investigation (Rabadia et al., 2014) indicated that digitoxin
and digoxin had hepato-protective activity in albino rats exposed
to carbon tetrachloride (CCl4).

Dehydrocholic acid is also present among the compounds
labeled as non-hepatotoxic; and in fact this chemical is hepato-
protective (Herraez et al., 2009). The other compounds identified
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by the SA with ID 14 are mainly estrogens (estradiol derivatives).
In some cases these are labeled as hepatotoxic and in others non-
hepatotoxic. This may depend on the different substitutions that
somehow affect their toxicity.

SA ID 13: β-Lactam Antibiotics (Cephalosporins)
The SA identified with the ID number 13 (Table 1) matches
16 compounds in the training set. Only five were labeled as
hepatotoxic so we decided to retain this SA for identifying
negative (non-hepatotoxic) compounds. The non-hepatotoxic
compounds matched by this SA belong to the class of
cephalosporin antibiotics. The cephalosporins are a safer class
of antibiotics than other commonly used antibiotics such as
aminoglycosides, sulfonamides, tetracyclines, and penicillins (SA
ID 4) (Neu, 1990). From a chemical point of view, both penicillin
and cephalosporin antibiotics have a four-member β-lactam ring,
but cephalosporins have a six-member dihydrothiazide ring in
place of the five-member thiazolidine ring of penicillin (Ong,
2014). Cephalosporins generally cause few side effects and seem
less allergenic than the molecules belonging to the penicillin
group (Neu, 1990; Dancer, 2001). They rarely cause idiosyncratic
hepatotoxicity (Pugh et al., 2009). Since cephalosporins are
mostly excreted in the urine, the main toxicity is related to the
kidney where they can cause dose-related nephrotoxicity and
hypersensitivity interstitial nephritis (Maher, 2013).

Comparison with Other In silico Models for
the Prediction of Hepatotoxicity and
General Considerations
Since the prediction of toxicity at organ level is a recent
acquisition, so far only a small number of in silico models
are available for hepatotoxicity. These models differ considering
both the data used (in vitro or in vivo, human or animal
models) and the techniques applied (statistical or expert-based).
In silico models for the prediction of hepatotoxicity have been
reviewed (Cheng and Dixon, 2003; Przybylak and Cronin, 2012).
To the best of our knowledge, the only comparison with our
model is the technique developed by Greene et al. (2010), who
starting from a data set of 1266 compounds, identified 38 SAs
related to hepatotoxicity. These SAs were implemented into the
commercial software Derek for Windows, developed by Lhasa
Limited, and the predictive ability of the model was tested on
an external data set (626 compounds). In terms of accuracy this
model gave lower performance (56%) in the test set than the
one we developed (63% in the test set and 68 in the external
validation set). Sensitivity was lower too: 46 vs. 88% (test set)
and 80% (external validation set), while specificity was higher
for Greene’s model (73 vs. 33% of our model). In our model
the sensitivity is high because the small number of FN in the
training, test and external validation sets: 18, 6, and 9 respectively
corresponding to 2.4, 3.1, and 8.9% of the total number of
compounds in the three sets. In contrast, the number of FP is
high (72, 30, and 10 respectively in the training test and external
validation sets) leading to a loss of performance in terms of
specificity. However, the poor specificity mainly in the test and
external validation sets can be explained by two different aspects.
Firstly, the conservative approach we followed. Indeed, since it
is preferable to overestimate hepatotoxicity rather than not to

recognize unsafe compounds, the model followed a conservative
architecture. When of a compound is matched by more than
one SA and the SAs do not agree (one related to hepatotoxicity
and another to non-hepatotoxicity) the final prediction is for
positive activity, hence hepatotoxicity. This approach may lead
to more of FP, in other words non-hepatotoxic compounds
wrongly predicted as hepatotoxic influence the performance of
the model, mainly for the specificity. Secondly, the SAs extracted
for the negative property performed worst compared to those
extracted for the positive activity, leading to a decrease in the
ability of the model to correctly identify non-toxic compounds.
This may be due to the uncertainty mainly of the negative data
as already discussed in Section Limitations and Weaknesses of
Experimental Hepatotoxicity Data.

The high number of FP in the present model may have
an impact also in the context of drug developmental process.
However, two aspects should be taken into account. Firstly, the in
silicomodels should not considered as “black box,” but the expert-
based judgment is needed to correctly interpret themodel output.
Secondly, in silico models should be used in the framework of
an integrated testing strategy, in support and addition to other
techniques.

Besides the final performance and the availability of the
models (commercial for Derek for Windows but free for
our model), there are other differences between the two in
silico models. One of the main differences from our model
is that the SAs implemented into Derek for Windows refer
only to hepatotoxicity. This means that if a SA related to
hepatotoxicity is identified for a compound, it is predicted as
positive (hepatotoxic) otherwise a prediction is not provided by
the model. In our model we identified specific SAs for non-
hepatotoxicity that are used for the final prediction. If no alerts
are identified for a compound, it is not predicted, so is classified
as “unknown.” The absence of a specific SA for a compound is
not enough proof to classify the compound as negative, hence
safe (Przybylak and Cronin, 2012). The identification of SAs
for negative activity is a novel approach. To the best of our
knowledge, most of the in silicomodels based on SAs can predict
the non-toxicity of a substance only on the basis of a lack of
information for toxicity. However, an exception related to human
toxicity exists, such as the model for mutagenicity developed by
Ferrari et al. (2013).

Another model has been developed for the prediction of
hepatotoxicity, described in the literature and based on SAs
(Egan et al., 2004). Starting from a training set of 244
compounds, most of which were drugs, 74 SAs were identified
for hepatotoxicity. However, no information was reported on the
statistical performance of the SAs in the training and test sets, so
it is hard to make any comparison on the overall application.

Hewitt et al. (2013) using the Fourches et al. (2010) data
set, did not build up a real model but identified a list of 16
SAs for hepatotoxicity using the chemical categories approach.
Some of these SAs are the same as those we found. In particular,
Hewitt et al. (2013) generated sulfonamides SA (ID number 2)
and retonoids SA (ID number 10). They also found steroids
derivatives SA (ID number 12) and β-lactam antibiotics SAs (ID
numbers 3 and 13), but they were associated to the prediction
of hepatotoxicity. We used the same SAs (SA 12 and SA 13)
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for the prediction of non-hepatotoxicity of compounds, since
we distinguished for β-lactam antibiotic SAs between penicillins
(labeled as hepatotoxic) and cephalosporins (labeled as non-
hepatotoxic). The differences between Hewitt et al. (2013)
findings and our may be explained considering that we used the
Fourches et al. (2010) data set in addition to the US FDA data set.
We also extracted the SAs starting from the positive compounds
present in the training set and not on the whole data set as
the other authors did. Moreover Hewitt et al. (2013) accepted a
threshold of similarity lower than to the one we applied (0.6 vs.
0.7) in order to retain chemical groups.

Beside in silico models, also in vitro approaches are reported
for the prediction of hepatotoxicity. Some of them are reviewed
in Chen et al. (2014a,b). These in vitro assay-based models
use human derived hepatocellular carcinoma cells (HepG2) to
assess hepatotoxicity of drug/chemicals. The performance of
these models in terms of sensitivity and specificity ranges from
45 to 100% and 82 to 100%, respectively. However, in vitro assays
are time and money-consuming compared to in silicomodels.

CONCLUSION

DILI is one of the main challenges for the pharmaceutical
industry. Identifying easily substances that can interfere with
the normal activity of the liver is essential in order to protect
human health and reduce the money and efforts that drug
development normally requires. Besides in vitro methods,
increasing attention is now paid to computational methods used
for the prediction of toxicity of substances. We present a SAR
model for the prediction of hepatotoxicity induced by drugs,
using experimental human data. We modeled the data in order
to identify SAs for both hepatotoxicity and non-hepatotoxicity
using both an automatic (SARpy software) and expert-based
(based on chemical grouping) approach. The main effort was
to model the negative property (non-hepatotoxicity). This is a
new aspect of classification modeling, since most models are
able to predict the toxicity while the safety of compounds is
predicted only on the basis of the lack of information about
the toxicity or is not-predicted at all. Future improvements

could take place whenever more reliable data, mostly for non-
hepatotoxicity (based on experimental results and not on the
lack of activity), will be available. Considering the bias of the
starting experimental data and the complexity of the endpoint,
which comprises several mechanisms of action, the model we
present here gave satisfactory results, higher than those already
available. We built this model using human data so it could and
be applied without any need for extrapolation from other species.
Moreover, this model was tested on an external validation set,
in order to evaluate its real predictive ability. This model will
be freely available through the VEGA platform. It may help in
the early identification and screening of drug candidates and in
reduction of animals used for scientific purposes.
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