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Prediction of new drug indications 
based on clinical data and network 
modularity
Liang Yu1, Xiaoke Ma1, Long Zhang2, Jing Zhang1 & Lin Gao1

Drug repositioning is commonly done within the drug discovery process in order to adjust or expand the 
application line of an active molecule. Previous computational methods in this domain mainly focused 
on shared genes or correlations between genes to construct new drug-disease associations. We propose 
a method that can not only handle drugs or diseases with or without related genes but consider the 
network modularity. Our method firstly constructs a drug network and a disease network based on side 
effects and symptoms respectively. Because similar drugs imply similar diseases, we then cluster the 
two networks to identify drug and disease modules, and connect all possible drug-disease module pairs. 
Further, based on known drug-disease associations in CTD and using local connectivity of modules, 
we predict potential drug-disease associations. Our predictions are validated by testing their overlaps 
with drug indications reported in published literatures and CTD, and KEGG enrichment analysis are also 
made on their related genes. The experimental results demonstrate that our approach can complement 
the current computational approaches and its predictions can provide new clues for the candidate 
discovery of drug repositioning.

Traditionally, drug discovery process mainly consists of three stages: discovery, preclinical stage, and clinical 
development1. In the discovery stage, new drugs are screened and identified. Then, the new drugs are tested  
in vitro and in animal models in the preclinical stage. Finally, the drug candidates are tested in human beings as 
clinical trials in the clinical development stage. The whole process is time-consuming, costly, and often inefficient. 
It is conservatively estimated that the time for bring a drug to market is about 15 years2, and the cost is $800~1000 
million3. Drug repositioning, which refers to identify and use the known drugs that can treat diseases other than 
those for which they were originally designed4, is an increasingly attractive mode of therapeutic discovery. This 
strategy certainly has the potential of being the most efficient technique for drug development since it does not 
need the initial six to nine years, thus reducing risk and costs5. There are a number of drug examples that have 
been successfully repositioned such as sildenafil citrate (brand name: Viagra), which was repositioned from a 
common angina drug to a therapy for erectile dysfunction and pulmonary hypertension6, and minoxidil which 
was originally tested for hypertension and now was indicated for hair loss7.

With the dramatic expansion of available high-throughput datasets, many approaches to discover new drug 
indications have been developed. Some are mainly focused on small-scale applications to analyze specific classes 
of drugs or drugs for specific diseases8–10. For example, based on chemical similarity, Noeske et al. considered the 
pharmacophore descriptors of drugs to cluster drugs8. In 2010, Kotelnikova et al. firstly constructed signaling 
pathways related to glioblastoma based on data got from scientific literature and ResNet database. Then using 
Sub-Network Enrichment Analysis (SNEA), they analyzed the differential expression in glioblastoma patients9. 
There are also a few examples involving a relatively large number of drugs and diseases11–15. Lamb et al.11 created 
the first installment of a reference collection of gene-expression profiles to discovery functional connections 
among diseases, genetic perturbation, and drug action. Based on molecular activity similarity, the researchers 
constructed a drug network12 and they partitioned the network into densely interconnected groups. The drugs 
in the same group are significantly enriched for compounds with similar mode of action, or in the same path-
way, which can be used to identify the compound-targeted biological pathways. Some methods also predicted 
drug-target interactions for drug repositioning16,17 and microRNA-disease associations based on social network 
analysis methods18,19. In 2014, Ye et al. constructed drug-drug interaction through side effect similarities and 
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predicted the indications of a drug by the functions of its neighboring drugs20. PREDICT is based on the obser-
vation that similar drugs are indicated for similar diseases, and utilizes multiple drug-drug and disease-disease 
similarity measures for the prediction of drug-disease associations21. It allows easy integration of additional sim-
ilarity measures among diseases and drugs.

Here, we propose a method for predict potential drug-disease associations that can not only handle drugs or 
diseases with or without related genes but consider the network modularity. The main framework of our method is 
shown in Fig. 1. Based on side effects of drugs and symptoms of diseases, drug-drug and disease-disease weighted 
networks are firstly constructed. Then, we cluster the two networks and get drug-module and disease-module 
sets. Further, according to the known associations in Comparative Toxicogenomics Database (CTD; http://ctd.
mdibl.org)22 between drugs and diseases, we correlate drug and disease modules with scores. Finally, we rank the 
drug-disease module pairs according to their scores and select the top-3 drug-disease module pairs for further 
analysis. For each selected drug-disease module pair, we score the connection between each drug and each dis-
ease in the pair. The larger the score, the greater the degree of reliability, thus the greater the possibility of drug 
relation to disease. We evaluate our predictions with drug-disease associations that are reported in published 
literature and CTD benchmark, and also make Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis on their related genes. The results demonstrate that our predictions can provide new clues for drug repo-
sitioning based on drug side effects, disease symptoms and network modularity.

Results
Based on the top-3 drug-disease module pairs, shown in Table 1, we get three ranking lists of drug-disease asso-
ciation and predict new drug indications. The top associations in each list are reliable. Therefore, we evaluate the 
top-20 predicted associations in each list by their overlap with drug indications that are reported in published 
literature and Comparative Toxicogenomics Database (CTD; http://ctd.mdibl.org) benchmark, and we also make 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on them.

CTD benchmark and literature verification. Table 2 to 4 respectively show three lists of top-20 
drug-disease associations corresponding to the three drug-disease module pairs in Table 1 (Rank =  1 to 3). In 
these tables, the predicted results are divided into two categories: known and potential associations. If there 
is direct evidence for a chemical-disease association marked as “therapeutic” or “marker/mechanism” in CTD 
database, we take it as a known association. Otherwise, it is considered as a potential drug-disease association 
(marked as bold italic items), such as prochlorperazine and Tremor (ID =  9) in Table 2. In the following section, 
we abbreviate “therapeutic” to “T”, and “marker/mechanism” to “M”.

Verification of top-20 drug-disease associations in module pair while Rank =  1. Figure 2 shows the network topol-
ogy of the first drug-disease module pair (Rank =  1 in Table 1). In the figure, internal connections within a mod-
ule are labelled by blue, and external connections between two modules are labelled by purple. Green circle and 
red diamond nodes represent drugs and diseases, respectively. The purple edges represent the reliably curated 
drug-disease associations in CTD, which are also shown in Table 2 (CTD mark are “M” or “M&T”).

In Table 2, we find 18 of 20 are known associations. The percentage reaches up to 90%. Two results are new pre-
dictions and labelled by bold italic. The association between fluphenazine and Parkinsonian Disorders (ID =  19) 
is inferred by CTD (Inference Score =  7.38). The inference score23 reflects the degree of similarity between CTD 
chemical-gene-disease networks and a similar scale-free random network, which is computed as shown below:

= –Y P G C D k n P G C D k nln[ ( associated with both and , ) (no other connects and , )] (1)G G

where Y represents the inference score; P represents the probability that a vertex in a large network interacts with 
another vertex decays according to a power law24; G, C, and D represent a gene, chemical, and disease respec-
tively; k represents the number of connection between G, C, or D; nG represents a gene set. The higher the Y score, 
the more likely the inference network has atypical connectivity25.

We also find the inferred association (ID =  19) is based on three genes: NGF26, DRD227, and PRL28. Moreover, 
the two results (in bold italic) are also supported by external literature. Studies29 have shown that prochlorpera-
zine can cause Tremor (ID =  9). People possibly have tremor while taking prochlorperazine from FDA (Food and 
Drug Administration) and social media. Fluphenazine (ID =  19) is a drug used to treat psychotic disorders, agi-
tation, and dementia30. And its use may lead to the development of symptoms that resemble Parkinson’s disease31.

Verification of top-20 drug-disease associations in module pair while Rank =  2. Supplementary Fig. S1 shows the 
relationships of the second drug-disease module pair (Rank =  2 in Table 1). Table 3 gives the details of top-20 
drug and disease associations. In this table, sixteen associations are known and the remaining four ones marked 
as bold italic are new predicted results. The association between thorazine and Lewy Body Disease (ID =  16) is 
inferred associations in CTD (Inference Score =  3.77). The relationship is based on the gene “MAG”. Evidences 
show that thorazine affects the expression of MAG mRNA32 and that MAG expression significantly relates to 
Lewy Body Disease33. Thorazine is an antipsychotic medication, which is primarily used to treat psychotic disor-
ders such as schizophrenia. Lewy body dementia (LBD) is a type of progressive dementia that leads to a decline in 
thinking, reasoning and independent function because of abnormal microscopic deposits that damage brain cells 
over time34. LBD is found among people who take thorazine, especially for people who are male, more than 60 
years old, also take medication protonix, and have insomnia35. The researchers found thorazine had shown better 
capacity to control hyperkinetie manifestations, and had not shown any undesirable side effects36,37.

For the association (ID =  10), thioridazine is a typical antipsychotic drug used in the treatment of Psychoses 
(ID =  10)38. Prochlorperazine (ID =  18) belongs to a group of medicines called “phenothiazines”. It is prescribed 
for a variety of unrelated conditions, including problems with balance and dizziness, sickness, agitation and 
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restlessness, and schizophrenia39. Bipolar Disorder (ID =  18) is found among people who take prochlorperazine, 
especially for people who are female, more than 60 years old, also take medication klonopin, and have nausea40. 

Figure 1. The framework of our method. 
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Symptoms typical of alcohol withdrawal (ID =  20) include agitation, seizures, and delirium tremens41. Laties and 
colleagues42 determined that promazine and chlorpromazine (ID =  20) were equally efficacious in the treatment 
of delirium tremens. Chlorpromazine, promazine, and other low-potency typical antipsychotic agents have been 
reported43 to have the greatest effect on lowering seizure threshold.

Verification of top-20 drug-disease associations in module pair while Rank =  3. The network topology of the 
third drug-disease module pair (Rank =  3 in Table 1) is shown in Supplementary Fig. S2. From Table 4, we find 
2 associations (in bold italic) are new predictions by our method. The other 18 associations are all known in 
CTD. The percentage reaches up to 90%. Though, two other associations (ID =  15 and ID =  20) are not existed in 
CTD at present, their associations are supported by features of their ancestors and literatures. Circadian rhythms 
(“body clocks”) are controlled by a biological clock and work on a daily time scale. Circadian rhythm sleep dis-
orders (CRSD) (ID =  15) are a family of sleep disorders. People with circadian rhythm sleep disorders are una-
ble to sleep and wake at the times required for normal work, school, and social needs. We find amitriptyline 
(ID =  15) has strong connections with sleep disorders in CTD (marked as “M&T”). They are related by the gene 
“CHRNB2”: amitriptyline results in the decreased expression of CHRNB2 mRNA44 and CHRNB2 protein results 
in the increased susceptibility to amitriptyline45. Hence, it is reasonable to infer that circadian rhythm sleep dis-
orders and amitriptyline probably have close connection. Moreover, amitriptyline is found useful as a sleep aid 
continues46. Postpartum depression (ID =  20) is moderate to severe depression in a woman after she has given 
birth, which is a descendant of depressive disorder. The relationship between imipramine (ID =  20) and depres-
sive disorder is marked as “therapeutic” and “marker/mechanism”, which is based on five genes: ALB47, BDNF48, 
CRH49, POMC50, SLC6A451. Therefore, it is likely that postpartum depression has connection with imipramine. 
Furthermore, Cohen and Rosenbaum52 pointed out the use of tricyclic antidepressants should not pose a risk 
when used in pregnancy or in the postpartum period. They maintained that the safest medications to use at this 
point in time are nortriptyline, imipramine, and fluoxetine.

KEGG pathway enrichment analysis. In this section, for the predicted drug-disease associations shown 
in bold italic in above tables, we perform KEGG pathway enrichment analysis on their related gene sets with the 
functional annotation tool of DAVID53. For DAVID, EASE Score, a modified Fisher Exact P-Value, is used as a 

Rank Drugs in drug module Diseases in disease module
Number of 

drugs
Number of 

diseases
Density of 

drug module
Density of 

disease module
Score between drug-
disease module pair

1

thiothixene, Parkinson Disease Secondary,

Tremor,

chlorpromazine, Dyskinesia Drug-Induced,

fluphenazine, Movement Disorders,

perphenazine, Parkinsonian Disorders, 7 9 0.95 0.50 0.59

prochlorperazine Basal Ganglia Diseases,

thioridazine, Essential Tremor,

trifluoperazine Parkinson Disease,

Hepatolenticular Degeneration

2

thiothixene, Alcohol Withdrawal Delirium,

chlorpromazine, Schizophrenia,

fluphenazine, Substance-Related Disorders,

perphenazine, Bipolar Disorder,

prochlorperazine Narcolepsy, 7 8 0.95 0.71 0.39

thioridazine, Lewy Body Disease,

trifluoperazine Psychoses Substance-Induced,

Psychotic Disorders

3

Alcoholism,

Depressive Disorder Major,

protriptyline, Mood Disorders,

imipramine, Depressive Disorder,

cyclobenzaprine, Schizophrenia,

nortriptyline, Substance-Related Disorders,

amoxapine, Bipolar Disorder, 7 12 0.95 0.50 0.36

desipramine, Personality Disorders,

amitriptyline Anxiety Disorders,

Depression Postpartum,

Dyssomnias,

Sleep Disorders Circadian Rhythm

Table 1.  Information of top-3 drug-disease module pairs.
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threshold for gene-enrichment analysis54. It ranges from 0 to 1. When Fisher Exact P-Value is 0, it represents 
perfect enrichment. We set it as 0.01.

For each drug, we combine the genes obtained from Drugbank database55, which combines detailed drug data 
with comprehensive drug target information, and the top interacting genes got from CTD database. Similarly, the 
genes related to each disease are got from OMIM database56, which is a comprehensive, authoritative compen-
dium of human genes and genetic phenotypes.

For each predicted drug and disease pair, we respectively put their corresponding genes into DAVID and 
examine whether the drug and the disease have overlapped KEGG pathways. If they have more overlapped path-
ways, they are more relevant, that is the drug has strong correlation with the disease. For example, prochlorper-
azine and tremor (Rank =  9 in Table 2) has one overlapped pathway: “Neuroactive ligand-receptor interaction” 
(p-value =  1.2E-3). We find thioridazine (Rank =  10 in Table 3) has two pathways overlapping with psychoses, 
substance-induced: “neuroactive ligand-receptor interaction” and “calcium signaling pathway”. Their corre-
sponding p-values are 2.14E-05 and 2.81E-04 respectively. Lower p-values indicate the predicted associations 
are reliable. Especially, the pathway overlapped between amitriptyline and dyssomnias (Rank =  16 in Table 4) is 
“neuroactive ligand-receptor interaction”, which has a very low p-value: 8.66E-29. These good results show their 

Rank Drug Name Disease Name Score CTD mark

1 trifluoperazine Basal Ganglia Diseases 7.36 M

2 thorazine Basal Ganglia Diseases 7.15 M&T

3 perphenazine Basal Ganglia Diseases 7.01 M

4 trifluoperazine Movement Disorders 6.92 M

5 trifluoperazine Dyskinesia, Drug-Induced 6.81 M

6 trifluoperazine Parkinson Disease, Secondary 6.73 M

7 Thorazine Movement Disorders 6.71 M&T

8 Thorazine Dyskinesia, Drug-Induced 6.62 M&T

9 prochlorperazine Tremor 6.59 none

10 perphenazine Movement Disorders 6.56 M&T

11 Thorazine Parkinson Disease, Secondary 6.54 M

12 thioridazine Basal Ganglia Diseases 6.44 M

13 perphenazine Dyskinesia, Drug-Induced 6.43 M

14 perphenazine Parkinson Disease, Secondary 6.36 M

15 prochlorperazine Parkinsonian Disorders 6.34 M

16 perphenazine Tremor 6.22 M

17 trifluoperazine Tremor 6.22 M

18 Thorazine Tremor 6.18 M

19 fluphenazine Parkinsonian Disorders 6.06 inferred

20 prochlorperazine Basal Ganglia Diseases 6.03 M

Table 2.  Top-20 drug and disease associations in drug-disease module pair while Rank = 1. CTD mark 
represents a drug-disease association is curated, inferred or not existed in CTD database. Curated associations 
include three types: marker/mechanism (CTD mark =  “M”), therapeutic (CTD mark =  “T”), marker/
mechanism & therapeutic (CTD mark =  “M&T”). If an association is inferred by CTD, CTD mark =  “inferred”, 
and if it is not existed in CTD, CTD mark =  “none”.

Figure 2. The network topology of the first drug-disease module pair (Rank = 1 in Table 1). Internal 
connections within a module are labelled by blue, and external connections between two modules are labelled 
by purple. Green circle and red diamond nodes represent drugs and diseases respectively. The purple edges 
represent the reliably curated drug-disease associations in CTD (CTD mark is “M” or “M&T”).
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high reliability. Because of the incompleteness of data, the numbers of genes related to some drugs and diseases 
are all small, such as prochlorperazine and bipolar disorder (Rank =  18) in Table 3. Therefore, it is hard to find 

Rank Drug name Disease name Score CTD mark

1 chlorpromazine Psychotic Disorders 5.36 T

2 chlorpromazine Schizophrenia 5.19 T

3 chlorpromazine Psychoses, Substance-Induced 5.19 M&T

4 perphenazine Schizophrenia 5.15 T

5 Thorazine Bipolar Disorder 5.07 M&T

6 thiothixene Psychotic Disorders 4.91 M&T

7 trifluoperazine Psychotic Disorders 4.72 T

8 trifluoperazine Psychoses, Substance-Induced 4.58 M

9 trifluoperazine Schizophrenia 4.57 T

10 thioridazine Psychoses, Substance-Induced 4.56 none

11 trifluoperazine Bipolar Disorder 4.54 T

12 fluphenazine Psychotic Disorders 4.42 T

13 fluphenazine Schizophrenia 4.24 T

14 fluphenazine Bipolar Disorder 4.16 T

15 fluphenazine Psychoses, Substance-Induced 4.10 M

16 thorazine Lewy Body Disease 4.07 inferred

17 perphenazine Bipolar Disorder 3.89 T

18 prochlorperazine Bipolar Disorder 3.81 none

19 perphenazine Psychotic Disorders 3.78 T

20 chlorpromazine Alcohol Withdrawal Delirium 3.68 none

Table 3.  Top-20 drug and disease associations in drug-disease module pair while Rank = 2. CTD mark 
represents a drug-disease association is curated, inferred or not existed in CTD database. Curated associations 
include three types: marker/mechanism (CTD mark =  “M”), therapeutic (CTD mark =  “T”), marker/
mechanism & therapeutic (CTD mark =  “M&T”). If an association is inferred by CTD, CTD mark =  “inferred”, 
and if it is not existed in CTD, CTD mark =  “none”.

Rank Drug name Disease name Score CTD mark

1 imipramine Bipolar Disorder 8.80 M&T

2 amitriptyline Bipolar Disorder 8.51 T

3 imipramine Depressive Disorder, Major 7.96 M&T

4 amitriptyline Depressive Disorder, Major 7.86 M&T

5 desipramine Bipolar Disorder 7.38 M&T

6 amitriptyline Depressive Disorder 6.93 M&T

7 imipramine Depressive Disorder 6.67 T

8 amitriptyline Mood Disorders 6.64 M&T

9 desipramine Depressive Disorder, Major 6.62 T

10 nortriptyline Bipolar Disorder 6.59 M

11 imipramine Mood Disorders 6.47 T

12 amitriptyline Personality Disorders 6.21 T

13 nortriptyline Depressive Disorder, Major 6.21 M&T

14 amitriptyline Anxiety Disorders 5.88 T

15 amitriptyline Sleep Disorders, Circadian Rhythm 5.82 none

16 amitriptyline Dyssomnias 5.77 M&T

17 desipramine Depressive Disorder 5.49 M&T

18 desipramine Mood Disorders 5.37 M

19 amitriptyline Schizophrenia 5.32 T

20 imipramine Depression, Postpartum 5.23 none

Table 4.  Top-20 drug and disease associations in drug-disease module pair while Rank = 3. CTD mark 
represents a drug-disease association is curated, inferred or not existed in CTD database. Curated associations 
include three types: marker/mechanism (CTD mark =  “M”), therapeutic (CTD mark =  “T”), marker/
mechanism & therapeutic (CTD mark =  “M&T”). If an association is inferred by CTD, CTD mark =  “inferred”, 
and if it is not existed in CTD, CTD mark =  “none”.
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pathways related to prochlorperazine and bipolar disorder using DAVID tool at present. With the improvement 
of data, the performance of our method will be more effectively.

Comparison with other method based on CTD benchmark. To evaluate the performance of our 
method, we compare it with PREDICT21. PREDICT integrates multiple data sources, including chemical struc-
tures, drug side effects, drug target protein sequences and target protein interactions and phenotype data. It 
applies network analysis for target protein distance calculation, applies text mining to identify disease phenotypes 
and use machine learning algorithms to classify true and false drug-disease associations2.

Based on CTD benchmark, we make a comparison between our method and PREDICT21. We choose the 
top-20 drug-disease associations of PREDICT for analysis. They are shown in Table 5. In the table, the column 
“Disease name” sometimes includes more than one disease name. As long as one disease is found related to a drug 
in CTD, the association is marked as “T”, “M”, “M&T” or “inferred”. Taking the fourth association (Rank =  4) as 
an example, its “Disease name” =  “Pyogenic Sterile Arthritis, Pyoderma Gangrenosum, And Acne” (Rank =  4). 
We find “Arthritis” is related to “Gonadorelin” in CTD and it is an inferred association. Thus the association is 
marked as “inferred”, i.e. CTD mark =  “inferred”. Finally, there are 14 drug-disease connections are found in CTD 
benchmark, but only 5 of them are known associations (CTD mark =  “T” or “M&T” and marked as bold italic in 
Table 5) and the other 9 associations are inferred in CTD (CTD mark =  “inferred”). Its precision is 5/20 =  0.25, 
which is lower than that of our method. The precision of our top-20 associations in each list is more than 0.8. 
From Table 2 to 4, they are 0.9, 0.8, and 0.9 respectively.

Discussion
Based on side effects of drugs and symptoms of diseases, we construct drug and disease networks firstly. Then we 
cluster them to get two types of modules: drug module and disease module. According to the known drug-disease 
associations in CTD database, we score each pair of drug-disease module and reserve the top-3 drug-disease 
module pairs. For each selected drug-disease module pairs, we construct a drug-disease bipartite graph. We 
calculate all the connections to predict potential drug-disease associations. The significant enrichments of our 
predictions in the biomedical literature, clinical trials and KEGG pathways demonstrate that our approach can 
effectively identify new indications as an indicator for the mode of action. The success of our methods PDCIM can 
be attributed as follows: First, we integrate clinical data into our model, such as disease symptoms and drug side 
effects. Second, our approach is based on clustering and known drug-disease associations. Finally, we combine 
the neighborhood information of nodes in drug modules and disease modules. We believe that the combination 
of clinical data, network clustering and subnetwork connectivity could help us to predict new hypotheses to infer 
the drug-disease relationship and even improve the drug development. Moreover, our predicted drug-disease 
associations are not generated using the genes associated with diseases or drugs, so we can find some drug-disease 
associations that these drugs or diseases have less or no related genes. However, the limitation is the difficulty in 

Rank Drug name Disease name Score CTD mark

1 Gonadorelin Endometriosis, Susceptibility To, 1 0.997 inferred

2 Escitalopram Alcohol Dependence 0.997 inferred

3 Escitalopram Encephalopathy With Intracranial Calcification, Growth Hormone Deficiency, 0.997 inferred

4 Gonadorelin Pyogenic Sterile Arthritis, Pyoderma Gangrenosum, And Acne 0.997 inferred

5 Levofloxacin Helicobacter Pylori Infection, Susceptibility To 0.997 none

6 Levonorgestrel Acroosteolysis With Osteoporosis And Changes In Skull And Mandible 0.997 none

7 Betamethasone Asthma, Nasal Polyps, And Aspirin Intolerance 0.997 inferred

8 Gonadorelin Leiomyoma, Uterine; Ul 0.997 inferred

9 Escitalopram Encephalopathy, Acute Necrotizing 1, Susceptibility To; Ane1 0.997 none

10 Gonadorelin Polyps, Multiple And Recurrent Inflammatory Fibroid, Gastrointestinal 0.997 none

11 Gonadorelin Prostate Cancer, Hereditary, 1; Hpc1 0.997 T

12 Escitalopram Spastic Paraplegia, Optic Atrophy, And Dementia 0.997 inferred

13 Escitalopram Peripheral Neuropathy, Ataxia, Focal Necrotizing Encephalopathy, And Spongy 
Degeneration Of Brain 0.997 none

14 Ofloxacin Asthma, Nasal Polyps, And Aspirin Intolerance 0.997 inferred

15 Leuprolide Hypogonadotropic Hypogonadism 0.997 inferred

16 Betamethasone Growth Retardation, Small And Puffy Hands And Feet, And Eczema 0.997 T

17 Medroxyprogesterone Breast Cancer 0.997 M&T

18 Betamethasone Mismatch Repair Cancer Syndrome 0.997 none

19 Prednisolone Asthma, Nasal Polyps, And Aspirin Intolerance 0.997 T

20 Escitalopram Panic Disorder 1; Pand1 0.997 M&T

Table 5.  Top-20 drug and disease associations of PREDICT. CTD mark represents a drug-disease association 
is curated, inferred or not existed in CTD database. Curated associations include three types: marker/
mechanism (CTD mark =  “M”), therapeutic (CTD mark =  “T”), marker/mechanism & therapeutic (CTD 
mark =  “M&T”). If an association is inferred by CTD, CTD mark =  “inferred”, and if it is not existed in CTD, 
CTD mark =  “none”.
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distinguishing the positive and negative associations between drugs and diseases. In the future, we can choose dif-
ferent methods to calculate the similarity between drugs and diseases to enhance the reliability of our constructed 
networks. On the other hand, we can integrate various data sources such as pharmacological data, therapeutic/
toxicological expression profiles and DNA methylation data to try to distinguish the positive and negative asso-
ciations between drug and disease.

Methods
Data Source. Human symptom-disease data. The human symptom-disease data is got from57. Based on 322 
disease symptoms, a weighted disease network is constructed, which contains 133,106 interactions between 1,596 
distinct diseases (see Supplementary Table S1). The disease network combines phenotypic relations with shared 
molecular mechanisms.

Drug-side effect data. The drug-side effect data is downloaded from SIDER (Side Effect Resource) version 258. 
SIDER contains information on 996 marketed drugs, corresponding 4,192 recorded adverse drug reactions, and 
99,423 drug-side effect pairs (see Supplementary Table S2). The information is extracted from public documents 
and package inserts. The available information include side effect frequency, drug and side effect classifications as 
well as links to further information, for example drug–target relations.

Drug-Disease data. We obtain the drug–disease associations from Comparative Toxicogenomics Database 
(CTD) in December 201522. CTD contains curated and inferred chemical–disease associations. They can help 
researchers develop hypotheses about environmental diseases and their underlying mechanisms. We only 
preserve the curated associations with marker “therapeutic” or “marker/mechanism” as known associations. 
“Therapeutic” represents that a chemical has a known or potential therapeutic role in a disease (e.g., chemical X is 
used to treat leukemia). “Marker/mechanism” represents that a chemical correlates with a disease (e.g., increased 
abundance in the brain of chemical X correlates with Alzheimer disease) or may play a role in the etiology of a 
disease (e.g., exposure to chemical X causes lung cancer)22. Finally, we get 82,858 chemical–disease associations 
in all (see Supplementary Table S3).

Construct drug similarity network based on side effects. The relationship between drug j and side 
effects is treated as a feature vector dj:

= ...d w w w( , , , ) (2)j j j n j1, 2, ,

where wi,j quantifies the strength of the association between side effect i and drug j. The prevalence of the differ-
ent side effects and diseases is very different. For example, there are highly abundant side effects like abdominal 
pain, and publication biases towards certain drugs. To account for this heterogeneity, we do not use the abso-
lute co-occurrence Wi,j to measure the strength of an association between side effect i and drug j, but the term 
frequency-inverse document frequency59 wi,j:

=w W N
n

log
(3)i j i j

i
, ,

where N denotes the number of all drugs in the dataset and ni denotes the number of drugs in which side effect 
i appears. Wi,j is equal to 1, if drug j displays side effect i, otherwise, it will be 0. Since all side effects in our data 
have at least one associated drug, the potential problem of dividing by zero does not arise. For the 996 drugs with 
recorded clinical side effect data, each will be assigned a 4192-dimension vector.

We use the cosine similarity60 to measure the similarity between the vectors di and dj of two drugs i and j. The 
formula is shown as:

=
∑ ×

∑ ∑
d d

d d

d d
cos( , )

(4)
i j

k i k j k

k i k k j k

, ,

,
2

,
2

where the cosine similarity ranges from 0 (no shared side effects) to 1 (identical side effects).

Cluster constructed networks using ClusterONE. After filtering drug and disease networks, we respec-
tively cluster drug network and disease network using ClusterONE (Clustering with Overlapping Neighborhood 
Expansion)61 and obtain two kinds of modules: drug module and disease module. ClusterONE is a graph cluster-
ing algorithm that is able to handle weighted graphs. Owing to these properties, ClusterONE is especially useful 
for detecting modules in networks with associated confidence values.

Cluster drug similarity network. In order to improve the reliability of the drug network, we filter the edges with 
lower similarity. To remain relatively more reliable edges, the cutoff is set to be 0.4 and we get a new drug network 
with 248 nodes and 379 edges, as shown in Supplementary Table S4. We run ClusterONE with default parameter 
values in the filtered drug network and get 27 modules (See Supplementary Table S5). The p-values of 26 modules 
are lower than 0.05. The network topologies of 27 modules are also shown in Fig. 3 (nodes representing drugs). 
Rectangles and diamonds represent nodes in clusters and overlap between different clusters, respectively.
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Cluster disease similarity network. When the scores of edges in disease network are not lower than 0.5, we 
can obtain more meaningful modules (p–value ≤ 0.05). Therefore, we discard the edges with scores lower than 
0.5. After filtering, the disease network includes 1,367 nodes and 9,792 edges, as shown in Supplementary 
Table S6. We also run ClusterONE with default parameter values in disease network and get 145 modules  
(see Supplementary Table S7). The p-values of 64 modules are lower than 0.05.

Construct connections between disease and drug modules based on CTD. Based on reliable 
chemical-disease associations got from CTD database, we construct connections between disease and drug mod-
ules. As an example shown in Fig. 4, we assume drug module i includes four drugs (drug1 to drug4) and disease 
module j includes four diseases (disease1 to disease4). The strength of the association between drug module i and 
disease module j, w(i, j), is defined as:

=
×

w i j
M

N i N j
( , )

( ) ( ) (5)
ij

where Mij denotes the number of chemical-disease associations verified by CTD (marked as T or M/T) between 
drug module i and drug module j; N(i) and N(j) denote the number of elements in drug module i and drug 

Figure 3. The network topologies of 27 modules, here nodes representing drugs; rectangles represent 
nodes in clusters; and diamonds represent overlap nodes between different clusters. 
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module j, respectively. In Fig. 4, Mij =  5 and N(i) =  N(j) =  4, so = =
×

w i j( , ) 5
4 4

5
16

. In this way, we can get the 
correlation between any drug-disease module pair.

Finally, we obtain 1,180 drug-disease module pairs whose score are not zero. According to the definition of 
the association between a drug-disease module pair (see formula (5)), the drug-disease module pairs with higher 
score will be preserved. There are 27 drug-disease module pairs whose scores are all not lower than 0.2, which are 
shown in Supplementary Table S8. In order to analyze our results more targeted and find more valuable associ-
ations, we focused on the top-3 drug-disease module pairs for further analysis. The top-3 drug-disease module 
pairs whose correlations are all not lower than 0.36. Their details are shown in Table 1. In Results section, we will 
analyze the top-3 drug-disease module pairs to predict new drug indications.

Predict drug-disease associations based on top-3 drug-disease module pairs. In this section, we 
predict novel drug-disease associations based on the neighborhood partnerships of drugs and diseases in their 
own modules. Table 1 shows the information of top-3 drug-disease module pairs. We can find these modules are 
dense, that is to say, the nodes in a same module interact frequently. We know that the stronger the interactions 
between nodes within a same module, the more similar their functions. Therefore, based on the strong correla-
tions between dense drug and disease modules, we can predict potential associations between drugs and diseases. 
The details are as following:

Step 1: Recalculate the similarity of each pair of nodes in a module based on subgraph topology of the mod-
ule. Given a and b is a pair of nodes in a drug module or a disease module, there may be many different paths 
between a and b. Suppose pathi represents a path between a and b with i edges; sum(pathi) represents the weight 
of pathi, which equals to the sum of weight on each edge in it; avg(pathi) represents the average weight of pathi: 
avg(pathi) =  sum(pathi)/i. Then, the similarity between a and b is defined as:

= = ... −sim a b avg path i n( , ) max( ( )), 1, 2, , 1 (6)i

where n represents the number of nodes in the module. If there does not exist a path with i edges, we set 
avg(pathi) =  0. In this way, we score all the correlations between each pair of nodes in a module.

From the above steps, we know drugs or diseases have similar properties are clustered in a same group. The 
indications of a drug may be inferred by the enriched FDA-approved functions of its neighboring drugs in a same 
drug subgraph. Relationships in strong similar edges and connected components provide potential candidates for 
the previously unknown therapeutic effects of drugs. In the same way, the treatments of a disease may be inferred 

Figure 4. An example of calculating the correlation between drug module i and disease module j based on 
the drug-disease associations verified by CTD (marked as “M” or “M&T”). 
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by its neighboring diseases in a same disease subgraph. Therefore, for a drug-disease module pair, we predict new 
drug-disease associations based on the subgraph topology of modules.

Step 2: Recalculate the association of each pair of nodes belong to two different modules based on Step 1. 
Based on known drug-disease associations in CTD database, and correlations of drug-drug and disease-disease 
obtained from Step 1, we get a drug-disease heterogeneous network, which includes two types of nodes: drug and 
disease, and two types of edges: internal connections and external connections. Then, based on the heterogeneous 
network, we score the correlations between each pair of drug and disease nodes. Given v represents a node in 
disease module DI and w represents a node in drug module DR, that is v∈ DI and w∈ DR. Their relation corr(v, w)  
is defined as:

∑ ∑= +
∈ ∈

orr v w sim v p sim w qc ( , ) ( , ) ( , )
(7)p N v q N w( ) ( )DI DR

The direct neighbors of v in DI, which have connections with nodes in DR, are stored in NDI(v). The direct 
neighbors of w in DR, which have connections with nodes in DI, are stored in NDR(w). sim(v, p) and sim(w, q), 
defined as Equation (6), denote the similarities between v and p, w and q, respectively.

After the process of Step 1 and Step 2, we will score all the drug-disease associations between a drug-disease 
module pair and rank them in descending order. We do the same process for the top-3 drug-disease module pairs 
and get three ranking lists of drug-disease associations.
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