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Two vector-borne infections have emerged and spread throughout the north-western

part of Europe in the last decade: Bluetongue virus serotype-8 (BTV-8) and the

Schmallenberg virus (SBV). The objective of the current study was to compare three

statistical methods when applied in a syndromic surveillance context for the early

detection of emerging diseases in cattle in the Netherlands. Since BTV-8 and SBV

both have a negative effect on milk production in dairy cattle, routinely collected

bulk milk recordings were used to compare the three statistical methods in their

potential to detect drops in milk production during a period of seven years in which

BTV-8 and SBV emerged. A Cusum algorithm, Bayesian disease mapping model, and

spatiotemporal cluster analysis using the space-time scan statistic were performed and

their performance in terms of sensitivity and specificity was compared. Spatiotemporal

cluster analysis performed best for early detection of SBV in cattle in the Netherlands

with a relative sensitivity of 71% compared to clinical surveillance and 100% specificity

in a year without major disease outbreaks. Sensitivity to detect BTV-8 was low for all

methods. However, many alerts of reduced milk production were generated several

weeks before the week in which first clinical suspicions were reported. It cannot be

excluded that these alerts represent the actual first signs of BTV-8 infections in cattle

in the Netherlands thus leading to an underestimation of the sensitivity of the syndromic

surveillance methods relative to the clinical surveillance in place.

Keywords: veterinary syndromic surveillance, aberration detection methods, vector-borne diseases, cattle, milk

production data

INTRODUCTION

Syndromic surveillance aims at identifying unusual increases in health related events in a
population based on data aggregated across themonitored population and has been used frequently
in the field of public health surveillance. The field of veterinary syndromic surveillance focusses
on detection of emerging diseases as well as changes in trends of endemic diseases. It has been
rising during the last decade due to increasing availability of relevant data sources and interest of
veterinary epidemiologists for syndromic surveillance (1, 2). Often, the first step in the detection
process is the construction of temporal time series of the data that are beingmonitored (cases, rates,
counts, etc.), to define a baseline model for the expected number of events. The next step is the
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application of statistical methods to distinguish if an observed
event rate is significantly different from the expected levels
defined by the historical baseline. In these analyses, the modeling
approach can be directed at temporal abnormalities, spatial
abnormalities or a combination of both (3).

In the temporal context, time series from a region or
country as a whole are inspected prospectively for abnormalities,
for example in the form of statistical process control charts.
Statistical process control charts are quality control methods used
to monitor production processes over time to detect changes
in process performance (4). Various statistical process charts
have been developed since early in the twentieth century. The
cumulative sum (Cusum) chart is an example of a method that
is known for its ability to detect small shifts in the parameter of
interest (5). The principle of the Cusum algorithm in its simplest
form is that it accumulates deviations between expected and
observed values (e.g., counts, percentages, rates, etc.). Generally,
an arbitrary constant k is chosen to explain the variation of the
mean of the baseline period (meaning that deviations smaller
than k will not be summed). If the process remains “in control”
the cumulative sum should fluctuate stochastically around zero.
Identification of aberrations occurs when the absolute cumulative
sum of differences between expected and observed values exceeds
a fixed control limit (h) to be chosen by the user.

Alternatively, when focusing on detecting abnormalities in a
spatial context in the data source, statistical methods are aimed
at detecting regions in which the distribution of the parameter of
interest within a certain timeframe is abnormally high (or low)
compared to other regions. This is known as disease mapping,
aiming at quantifying the amount of true spatial heterogeneity
and its associated patterns to highlight areas of elevated risk
(6). Disease mapping methods vary broadly from being non-
parametric in nature (e.g., smoothing models) to more complex
Bayesian random effects models (7). Bayesian disease mapping
models treat the relative risks as random variables and specify
a distribution for them, to capture the unexplained variability
in the observed data that might be the result of (local) disease
outbreaks. In the 1990s, Besag et al. (8) proposed to split
the relative risk parameter in separate variance components,
i.e., spatially uncorrelated variance heterogeneity and spatially
correlated heterogeneity. This led to the introduction of Bayesian
disease mapping models based on conditional autoregression
(CAR), i.e., the value for any given spatial unit is estimated
conditionally on the values of neighboring units. In these
models, the estimated correlation structure between neighboring
spatial units is used as prior distribution for the (correlated)
spatial random effect. This prior distribution is then combined
with the likelihood of the observed data to obtain a posterior
distribution for the random effect(s), followed by inference
to identify areas where the relative risk exceeds a predefined
value (9).

The most widely used method in the field of spatiotemporal
modeling is the space-time scan statistic as proposed by Kulldorff
(10). With this method, a cylindrical window scans across all
units in space and time in the data source, noting the number or
value of observed and expected observations inside the window.
In a prospective analysis only those cylinders that include the end

of the study period are considered, hence excluding clusters from
the past. A likelihood ratio statistic is then computed for each
space-time window, by comparing the likelihood of the observed
data (given the value or rate of events within and outside the
window) and the likelihood function assuming the rate of events
within and outside the window are equal (10, 11). The method
adjusts for multiple testing by evaluating only the significance of
the window with the maximum likelihood ratio statistic over all
cylinders (i.e., the most likely cluster), using a p-value obtained
fromMonte Carlo simulations (12).

Two vector-borne infections have emerged and spread
throughout the north-western part of Europe in the last decade:
Bluetongue virus serotype-8 (BTV-8) and the Schmallenberg
virus (SBV). BTV-8 emerged in August 2006 and re-emerged
in July 2007 and caused important economic losses (13).
In the outbreak of 2007, the most prominent clinical signs
observed in affected cattle farms were fever, lameness/stiffness,
conjunctivitis, nasal discharge, crusts/lesions of nose and/or
mouth, redness/lesions of teats and a drop in milk yield (14).
SBV emerged in north-western Europe in the late summer of
2011, causing diarrhea and drop in milk production in adult
cattle (15) and congenital malformations in new-born ruminants
(16). Since BTV-8 and SBV both have a negative effect on milk
production in dairy cattle, routinely collected milk production
records may have the potential to be used for early-warning
syndromic surveillance of such pathogens. In a previous study,
we assessed the value of routinely collected milk production data
for the early detection of emerging vector-borne diseases in cattle
using the space-time scan statistic (17). Although the results
seemed promising, a number of improvements were suggested
for future use of such data. For example, milk yield was calculated
based on monthly “test-day” milk recording data, providing
monthly observations on herd level. As an alternative, the use
of bulk milk collection data (resulting in approximately three
observations per herd per week) might increase timeliness and
sensitivity of detection of disease outbreaks. Also, milk yield
was analyzed with a single statistical method. The objective
of the current study was to compare three statistical methods,
the Cusum chart, Bayesian disease mapping and prospective
spatiotemporal cluster analysis, to assess their potential to detect
drops in milk yield during a period of seven years in which
BTV-8 and SBV emerged using routinely collected bulk milk
collection data.

MATERIALS AND METHODS

Data
A total of 13,330,908 bulkmilk collection recordings (2–3 records
per week per herd) from 21,074 dairy farms (∼96% of the Dutch
dairy herds) were obtained between July 1, 2005 and December
31, 2011. These data were provided by seven dairy processors.
Herd size information on monthly level was obtained from the
national identification and registration (I&R) database and was
used to estimate the number of lactating cows per herd per day.
It was assumed that at any time point, 10% of the cows >2
years of age in a herd were in the dry period and therefore not
taken into account in the number of lactating cows per herd.
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FIGURE 1 | Two-digit postal districts in the Netherlands (N = 90).

For each herd, the average milk yield per animal per day was
calculated by dividing the total amount of collected bulk milk
on a given day (taking into account the number of milkings
since the last collection) by the estimated number of lactating
cows. Days with an average milk production >50 kg/cow were
considered administrative errors and excluded prior to analysis
(1% of the data). Herd location data on postal district level (2-
digit postal code) was obtained from Royal GD. The 90 postal
districts of the Netherlands are shown in Figure 1. The mean
number of herds per postal district decreased from 221 in 2007 to
195 in 2011. Bulk milk data from 2005 to 2006 were incomplete
for 37% of the 90 postal districts (mainly in the northern
and eastern area of the country; districts 65 to 99), due to a
merger of the largest dairy processor in the Netherlands in 2007.

This part of the Netherlands was not affected yet by BTV-8 in
2006 (18).

Data Analysis
Construction of the Baseline Model
Time series analyses were carried using STATA/SE version 14
software (19). Due to the large amount of milk production
records and to guarantee the privacy of herds, aggregation of
the milk yield per cow per herd by calculating its mean at
postal district-week level was done prior to statistical analyses.
Time series of the mean milk yield per cow per postal district
per week was constructed using a harmonic linear regression
model (regress) (Equation 1). Annual seasonality was taken into
account by including two sine/cosine harmonics as predictors.
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TABLE 1 | Boundaries of the baseline and prediction periods for the construction of time series and corresponding week-by-week prediction of mean milk yield per cow

in the Netherlands, including the mean root mean squared error of the model (RMSE) calculated over the baseline period (and its standard deviation).

Model Baseline period Prediction period Mean RMSE (sd)

BTV-model July 1, 2005–June, 30, 2006 July 1, 2006–Dec. 31, 2007 (79 weeks) 0.74 (0.06)

SBV-model Jan. 1, 2009–Dec. 31, 2010 Jan. 1, 2011–Dec. 31, 2011 (52 weeks) 0.58 (0.02)

Control-model Jan. 1, 2008–Dec. 31, 2009 Jan. 1, 2010–Dec. 31, 2010 (52 weeks) 0.66 (0.04)

The number of harmonics, n, was chosen according to the AIC
criterion to best fit the observed milk production data.

yij = β0 + β1districti + β2weekj +
(

2
∑

n=1

αn × cos(
2π∗t∗n

52
)

+ βn × sin (
2π∗t∗n

52
)

)

+ εij (1)

where:
E
(

yij
)

= the expected milk yield per cow in postal district i
in week j

β0 = intercept (constant)
αn, βn = phase and amplitude parameters

t = the number of weeks since the first week in the dataset
n= harmonic number

εij = random error for district i in week j.

The time series model was run in a time-periodic prospective
fashion, i.e., repeating the analysis every week with an updated
(moving) baseline period. In each model-run, the expected milk
yield per cow in postal district i in week j was predicted using up
to two preceding years (104 weeks) as baseline. By doing so, we
simulated the use of the system as if it were applied in real-time
on a weekly basis, i.e., on a practically feasible manner. These
time-periodic analyses were carried out for three separate time
periods (Table 1).

In the first model (“BTV-model”), the expected milk yield was
estimated for each postal district from week 27 of 2006 (i.e., the
first week of July) to week 52 of 2007. It was hypothesized that
during parts of this period, milk production was affected as a
result of the BTV-8 epidemic, which started in the Netherlands
in the summer of 2006 (20) and re-emerged (more intensively)
in the summer of 2007 (21). The BTV-model used only data
from postal districts for which complete time series could be
constructed, thus excluding the northern and eastern areas for
which data from 2005 to 2006 were incomplete or missing (N =
35). The expected milk yield in the first predicted week (week 27
of 2006) was estimated using the preceding 52 weeks as baseline.
After the first predicted week, the baseline was extended with
extra week(s) to a maximum of 104 weeks up to the prediction
of week 27 of 2007. For the weeks thereafter, the expected milk
yield for each week was predicted using a baseline period of 104
weeks. A second model was used to investigate drops in milk
production as a result of the SBV epidemic, which started in the
Netherlands in the later summer of 2011 (15, 22). In this model
(“SBV-model”), the expected milk yield was estimated for each
postal district-week from week 1 to 52 of 2011, using data from
the two preceding years (104 weeks of 2009–2010) as baseline.

A third model was used as control model (“Control-model”) in
which drops in milk production in 2010 were investigated, a
year without major epidemics in the Netherlands. The expected
milk yield was estimated for each postal district-week from week
1 to week 52 of 2010, using data from the preceding 2 years
(2008–2009) as baseline.

The root mean squared error (RMSE) of each week-run was
calculated and averaged per model as a measure of fit of the
time series models over the baseline period (Table 1). RMSE
is a common metric used to measure accuracy for continuous
variables. The observed and predicted milk yield estimates in
each district-week were obtained after each run of each model.
These were subsequently used for further analyses using a Cusum
algorithm, a Bayesian disease mapping model and a prospective
spatiotemporal scan statistic.

Cusum Analysis
Cusum analyses were carried out per postal district after each
run of the moving time series analysis. Aiming to detect drops in
milk production, a one-sided negative Cusum function was used
to calculate the cumulative sum of differences between observed
and predicted milk production (Equation 2), inspired by Lawson
and Kleinman (9) and Marceau et al. (23). The algorithm that
was applied to the time series of each district i can be described
as follows:

Cusumt = min{0,Cusumt−1 +
(

yt − ŷt − ki
)

} (2)

where t is the time unit in weeks, yt is the observed milk yield
in district i at week t, ŷt is the predicted milk yield in district i
at week t and ki is a reference value to explain the variation of
the mean of the baseline period for district i. For k, the 5th and
10th percentile of the difference between observed and predicted
milk yield estimates (the residual) from the baseline periodwithin
district i was used. As these residuals fluctuate around 0, the
5th and 10th percentile of the distribution of the residuals (and
thus k) have a negative value. Please note that a negative Cusum
function was used, shown by the “min” in Equation 2, as we are
interested in detecting drops in milk production, i.e., observed
minus predicted milk yield being <0. The algorithm works as
follows. At t0, the Cusum is set at 0. Once yt − ŷt (the residual)
is negative and more extreme than k, the Cusum value is changed
to
(

yt − ŷt − ki
)

. If the residual is less extreme the next weeks,
by being less negative than k or even positive, the Cusum value
decreases and will reach 0 once

(

yt − ŷt − ki
)

>0. By doing so,
a series of Cusum-values (the “Cusum chart”) is created for each
district. The control limit hi was then applied to the Cusum chart.
The first week in which the Cusum value is more extreme than
h was considered the alert week. Only alerts generated in the
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prediction week were kept for interpretation, i.e., alerts from the
past were considered meaningless. To find the optimal balance
between the algorithm’s timeliness, sensitivity and specificity, a
number of values of hi were explored as a function of ki: 1.5k, 2k,
2.5k, and 3k. A threshold value of 2.5∗ki yielded best results and
was therefore used as control limit hi. A graphical example of a
Cusum chart can be found in Supplementary Figure 1.

Bayesian Disease Mapping Analysis
Spatial disease mapping models typically assess the spatial
association of case event or count data [reviewed by (9)],
expressing localized variation in disease risk as relative risks. We
constructed a disease mapping model that estimates residuals
instead of relative risks, by adding a spatial component to the
residuals per district of the baseline model (Equation 1). A purely
spatial model was developed using OpenBUGS (24) to identify
areas in which the probability of a lower than expected milk
production exceeds a predefined threshold (Equation 3), inspired
by the conditional autoregression (CAR) models described by
Richardson et al. (25) and Lawson (26). The model can be
described as follows:

sresi =
(

yi − ŷi
)

+ ui

σi /
√
nherdi

= standardized residual

for district i (3)

yi = observed milk production in district i

ŷi = expected milk production in postal district

i, based on the time series regression

model (Equation 1)

ui ∼ N(bi, τni) = spatial random effect for district i where

τ is the precision weighted by ni, i.e.,

the number of neighboring districts

of district i and bi is the mean of the spatial

component in the set of districts adjacent to

district i

The model was run time-periodically, using only observed (yi )
and predicted (ŷi) milk yield data from week j per run. In the
model, a spatially correlated random effect (ui) was added to
the residual milk yield estimates

(

yi − ŷi
)

derived from the time
series regressionmodel (Equation 1), creating a new residual. The
model included a correlation structure between postal districts
by specifying a weighted conditional autoregressive Gaussian
distribution (CAR) as prior for the correlated spatial random
effect (ui).The new model residuals were standardized (sresi) by
adjusting them to the number of herds per district i (nherdi).
Non-informative prior distributions were given to the precision
τ of the spatial random effect [gamma(0.001,0.001)]. Residual
thresholds of −1 and −5 were used to calculate the posterior
exceedance probabilities for each district i. Alerts were defined
as district-week combinations where P(sresi < −5) or P(sresi <

−1) was more than 0.99. The model was compiled with two sets
of initial values. A burn-in period of 5,000 iterations was applied;
conclusions are based on the next 10,000 iterations. The Brooks-
Gelman-Rubin diagnostic was used in randomly chosen model

runs to assure that the two chains had converged (27), inspecting
the plots for the potential scale reduction factor being very close
to 1. Geweke’s test was used in randomly chosen model runs to
detect signs of failing convergence (28).

Spatiotemporal Cluster Analysis
Model residuals at postal district-week level, comprising the
complete baseline period plus the predicted week, were uploaded
in SaTScanTM (29) after each model run to identify space-
time clusters of low milk production. Prospective analyses were
carried out using the normal probability model in SaTScanTM.
Model residuals were weighted by the square root of the number
of herds per district-week to account for uncertainty in residuals
from areas with a low cattle herd density. A circular window
shape was chosen.We scanned for “lowmean” clusters, i.e., lower
observed milk production than would have been expected. For
each window, a likelihood-ratio test statistic was calculated and
the window with the maximum value was considered the cluster
that is least likely to have occurred by chance. Its distribution
under the null hypothesis and its corresponding p-value was
obtained by Monte Carlo hypothesis testing (999 simulated
random datasets). Clusters can comprise multiple districts. The
maximum spatial cluster size was set at 5 and 10% of the
population at risk. These relatively low cluster sizes were chosen
as the spatial scan statistic was used for early detection of clusters
of reduced milk production. The maximum temporal cluster size
was set at 1 week. Clusters of low milk production were defined
as windows with a p ≤0.01.

Evaluation of Performance
To compare and evaluate the performance of the different
statistical methods, sensitivity and specificity of detecting the
BTV-8 and SBV epidemics were calculated during corresponding
time periods for each method. A dataset with suspicions of
clinical BTV-8 infections in cattle in 2006 and 2007 was obtained
from the Netherlands Food and Consumer Product Safety
Authority, from which the first confirmed suspicion per district
was derived (referred to as “BTV-reference signals”). It must be
noted that BTV-8 indicative clinical signs in affected animals
were more prominent in sheep flocks than in cattle farms. Also,
according to Elbers et al. (30), during the BTV-8 outbreak in
2006 clinical signs had started ∼12–17 days before a suspicion
was reported to the veterinary authorities. In the Netherlands,
notifying SBV suspicions was not mandatory up to December
2011. An overview of clinical SBV suspicions in adult cattle,
notified voluntarily by farmers and veterinarians in August and
September 2011 (when the existence of SBV was still unknown),
was obtained from Royal GD. The notifications were based on
a sudden drop in milk production, diarrhea and/or fever (15).
From the list of notifications, the first suspicion per district
was derived (referred to as “SBV-reference signals”). With these
two sets of reference signals, sensitivity of detection by the
statistical methods—relative to the clinical surveillance in place—
was calculated as the proportion of first suspicions that was
preceded by a statistical alert. Due to the delay between infection
and appearance of clinical signs, mildness or absence of clinical
signs in cattle, and limited awareness of BTV-8/SBV in the
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FIGURE 2 | Observed daily milk yield per cow (black solid line) and residual values following time series analysis (gray dashed line), averaged by week between July 1,

2005 and December 31, 2011. Prediction periods in 2006/2007, 2010, and 2011 are marked in vertical gray bars.

initial stage of the epidemic, it was assumed that reporting of
clinical suspicions were probably somewhat delayed in terms of
representing the first moment of infection in a district. Therefore,
alerts were considered true when the alert was generated in the
week of the suspicion or in the 4 weeks prior to the suspicion.
A sequence of true alerts within one district was counted as one
true alert. Alerts in the weeks after the first clinical suspicion in
a district were ignored. By doing so, sensitivity was adjusted for
timeliness. To measure the effectiveness of each method per year,
a predictive alert value was calculated as the proportion of alerts
per year that were considered to be true. This is indicative for
the amount of false alerts per method. Specificity was calculated
per district as the proportion of weeks for which no alert was
generated in 2010, i.e., the year without major disease outbreaks.
Specificity values of the 90 districts were averaged to obtain an
overall estimate of specificity per method.

RESULTS

Figure 2 displays the observed and residual daily milk yield
averaged by week over all postal districts, with the three
prediction periods marked in gray. The mean residual daily
milk yield fluctuates around 0 between −1 and +1 in the
prediction periods.

Sensitivity and Predictive Alert Value
The emergence of BTV-8 in 2006 could only be detected by
the Bayesian disease mapping method with setting “sres < −1”.
A total of 54 alerts were generated in 2006 by this method, of
which two were prior to the 29 BTV-reference signals that year,
leading to a sensitivity value of 6.9% (Table 2). Irrespective of
the parameter settings used, the other methods failed to detect

the emergence of BTV-8 in 2006 earlier than the passive clinical
surveillance that was in place (Table 2). The spatiotemporal
cluster analysis method generated some alerts in districts with
clinical suspicions in cattle, yet up to 9–10 weeks prior to the
BTV-reference signals. Multiple alerts were generated by each
method for 2007, except with the Cusum algorithm using the 5th
percentile (P5) as k (Table 2). A graphical overview of the alerts
per model and district-week in 2007 is illustrated in Figure 3.
Eachmethod generated alerts for districts with clinical suspicions
in cattle, up to 23 weeks prior to the BTV- reference signals
(Figure 3). Sensitivity values for 2007 were therefore low and
ranged from 1.2% for the Cusum algorithm with setting “k =
P10” to 22.1% for Bayesian disease mapping with setting “sres
< −1.” Spatiotemporal cluster analyses, with parameter setting
“spatial 10%,” however yielded a predictive alert value of 39%,
indicating that 39% of the 36 alerts generated in 2007 were
considered true alerts. For 2011, each method generated multiple
alerts, of which the majority are clustered around week 32–37
(Figure 4). Sensitivity values for 2011 ranged from 7.1% for the
Cusum algorithm with setting “k = P5” to 78.6% for Bayesian
disease mapping with setting “sres < −1.” Predictive alert values
however appeared highest for spatiotemporal cluster analyses,
with 64.3% for the model with setting “spatial 5%” and 55.6%
for the model with setting “spatial 10%.” In general, Bayesian
disease mapping, irrespective of parameter setting, produced
lowest predictive alert values due to the large number of alerts
relative to the number of true alerts.

Specificity
In 2010, zero alerts were generated with the spatiotemporal
cluster analysis, irrespective of parameter setting, resulting in
a specificity estimate of 100% for this method (Table 2). Eight
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alerts were generated by the Cusum algorithm with setting “k
= P10,” all in week 5–9, resulting in a mean specificity estimate
of 99.8%. Bayesian disease mapping analysis with setting “sres
< −5” yielded 26 alerts, corresponding to a mean specificity of
99.4%.Most alerts were generated with Bayesian diseasemapping
analysis with setting “sres < −1,” resulting in a mean specificity
of 89.6%.

DISCUSSION

Recent examples in the field of cattle health surveillance illustrate
the interest in the use of non-specific herd productivity data for
veterinary syndromic surveillance (31, 32). This study presents
the comparison of three statistical methods to retrospectively
detect the BTV-8 and SBV epidemics in the Netherlands based
on routinely collected milk production records. The methods
we chose to compare were directed at temporal abnormalities
(Cusum), spatial abnormalities (Bayesian disease mapping) or a
combination of both (spatiotemporal cluster analysis). Each of
thesemethods has its own advantages and drawbacks (6, 9, 12, 33)
but to our knowledge have not been applied simultaneously in a
veterinary syndromic surveillance context for the early detection
of emerging diseases.

Baseline Model
Baseline models for milk production were constructed for three
separate time periods using historical baselines of 52–104 weeks.
A drawback of the use of time series is that a meaningful baseline
can only be made when sufficient historical data is available.
As milk production records from July 1, 2005 onwards were
used, only 1 year of baseline was available when predicting
milk production in the summer of 2006. Using only 1 year as
baseline is suboptimal because abnormal weather conditions and,
consequently, poor roughage quality and fluctuations in feed
prices can have a large influence on the value of the baseline
model. From the three time periods we examined, the BTV-
model had the highest mean RMSE value, indicating the least
fit of the baseline model. The SBV-model had the best fit of the
baseline model. The Control-model had a mean RMSE value
that was in between the BTV-model and SBV-model. This is
supported by the distribution of residuals in the baseline period
over all districts: the 5th percentile values of these distributions
have a median value of −0.83 in the BTV-model, −0.68 in the
SBV-model and −0.80 in the Control-model. From Figure 2

it is visible that the observed milk production in some weeks
in the first half of 2009 showed outlying drops in milk yield.
These were likely the result of extremely dry weather conditions
resulting in poor grass yield (34). Each of the three methods
picked up this drop in milk yield (results not shown), indicating
the methods are robust to detect outlying observations. However,
such non-disease related events have certainly influenced the
fit of the baseline model for the SBV-model and the Control-
model. Also, baseline periods including disease outbreaks should
be used with caution. In the model we used to detect the re-
emergence of BTV-8 in 2007, data from 2006 covering the initial
outbreak period of BTV-8 was included in the baseline. This
might have hampered detection of drops in milk production
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FIGURE 3 | Overview of postal districts and weeks with alerts of reduced milk production in week 1–52 of 2007, based on prospective weekly Cusum analysis (C)

with k = P10, spatiotemporal cluster analysis (S) with a maximal spatial window of 10% and Bayesian disease mapping analysis (B) using a residual threshold of −5.

First BTV-8 confirmed suspicions in cattle per district are indicated with an asterisk (districts 65 to 99 were omitted).

during the outbreak period in 2007. When implementing a
syndromic surveillance system using predictions based on a
historical baseline, it might be worthwhile to replace records
from outbreak episodes or other abnormal events in a baseline
by normalized historic observations. Due to privacy issues, milk
yield levels per herd were aggregated by two-digit postal district.
A disadvantage of this approach is that the administrative borders
of a postal district do not reflect the spatial distribution of
epidemiological factors, such as herd size and herd density (35).
Variation in herd density between postal districts was accounted
for by including the number of herds per postal district in the
statistical models. Alternatively, one could aggregate data by a
grid size that ensures each grid to represent an equally large
proportion of the population at risk, provided that geographical
coordinates of the unit of interest are known.

Evaluation of Performance
In this study we used authentic data from years with emerging
disease outbreaks, varying in magnitude and duration, and from
years without major disease outbreaks. The use of authentic
data in combination with the prospective nature of the methods

we applied provided the possibility of illustrating which output
(alerts) will be generated in reality if the methods were to
be applied in real-time. This allows evaluation of the true
effectiveness of the detection algorithms. A disadvantage of
the use of authentic data for evaluation of outbreak detection
methods is the difficulty of defining which alert is the result
of an outbreak and which is not. In addition, in order to
calculate performance metrics, such as sensitivity, timeliness and
specificity, a gold standard is essential, such as the location
and time of introduction of the pathogen responsible for the
disease outbreak. In this study we used clinical suspicions in
cattle as reference signals to define the start of the BTV-8 and
SBV outbreaks per district. It was a challenge to classify the
generated alerts as “true” or “false,” as the actual time between
introduction of these viruses and detection of introduction
was unknown. Therefore, the value of alerts generated prior
to the first notifications of suspected cases remained unclear.
Also, voluntary notifications of clinical suspicions might not
be independent as the start of a disease outbreak is often
communicated by the media, potentially influencing the number
of notifications being made thereafter. In addition, disease
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FIGURE 4 | Overview of postal districts and weeks with alerts of reduced milk production in week 1–52 of 2011 based on prospective weekly Cusum analysis (C) with

k = P10, spatiotemporal cluster analysis (S) with a maximal spatial window of 10% and Bayesian disease mapping analysis (B) using a residual threshold of −5. The

week and location of first SBV suspicions is indicated with asterisks.

awareness in years with major disease outbreaks will increase
awareness in subsequent years. One way to overcome these issues
is to evaluate algorithm performance using wholly simulated data
or by simulating outbreaks of varyingmagnitude on datasets with
a baseline based on authentic data (36).

Sensitivity to Detect BTV-8 and SBV
In August 2006, BTV-8 appeared unexpectedly in northern
Europe affecting parts of the Netherlands, Belgium, Germany
and northern France (37). After successful overwintering in the
region, BTV subsequently re-emerged in 2007 in all countries
affected, in a far more extensive way than the first “wave” of
the epidemic in 2006. BTV-8 is known to affect milk production
in cattle, yet milk loss is not a prominent clinical sign in cattle
(30). It is likely however that milk loss is initiated during the
acute phase of the disease, but remains unnoticed in individual
cattle several weeks before becoming clearly significant (38) or
even completely unnoticed when only few cows are affected. The
Bayesian disease mapping method generated two alerts in the
early summer of 2006, 1–2 weeks before the first notifications of
BTV-8 suspicions were made (39). The relatively limited impact

of BTV-8 onmilk production (18) in the Netherlands in 2006 and
the aforementioned reduced quality of the baseline model might
have contributed to the fact that only few alerts were generated in
the summer of 2006. Alerts of decreased milk production, long
before first clinical suspicions were made, were observed in a
greater extent in 2007 in the districts whose notifications were the
first signal of BTV-8’s re-emergence. The degree of reduction in
milk yield in spatiotemporal clusters—expressed as the difference
between observed and predicted milk yield - was also higher in
2007 (on average−1.6 kg per cow) compared to 2006 (on average
−1.2 kg per cow) (data not shown). The sequence of alerts in
the neighboring southern districts clearly indicated a pattern of
decreased milk production from the end of May to early July
2007. We classified a part of those alerts as false alerts as they
were generated more than 4 weeks before first clinical suspicions

were notified. However, it cannot be excluded that these alerts

were the actual first signs of BTV-8’s re-emergence. Evidently,

increasing the length of the window to classify alerts as true or

false, for example from 4 to 6 weeks before the reference signal,
slightly improved sensitivity of detection of BTV-8 in 2007 by the
methods, but not for 2006 (results not shown).
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Spatiotemporal cluster analyses resulted in the most efficient
detection of SBV, i.e., a high sensitivity was achieved with few
alerts. The degree of reduction in milk yield in spatiotemporal
clusters was on average −1.1 kg per cow in 2011 (results not
shown). Irrespective of method used, the sensitivity of detection
was higher for SBV than for BTV-8. This could have two reasons.
Firstly, the trigger for reference signals we used for SBV was
the same as the trigger for the outbreak alerts, i.e., for SBV they
were both based on drops in milk production whereas the BTV-
8 reference signals were based on more specific clinical signs.
Secondly, as suggested earlier byMadouasse et al. (40), analysis of
milk production data may produce an alert even when the impact
of the disease on milk production is limited, provided that the
disease spreads fast (as was the case with SBV, but not with BTV-
8). More importantly, each method generated multiple alerts in
2011, of which the majority in August and September. This is
in agreement with the time at which notifications of clinical
suspicions in adult cattle, later confirmed as being SBV, were
made by veterinarians from a number of districts. As it is known
that SBV spread widely throughout the Netherlands within
several months (or even weeks) in 2011/2012 (22) it is evident
that clinical signs in cattle during the acute phase of the disease
were not observed or not notified in the remaining districts
(notifying suspicions was not mandatory up till December 2011).
Therefore, the number of generated alerts in the summer of
2011 in the absence of reported clinical suspicions does suggest
that, for each method, sensitivity of detecting SBV may be
underestimated in this study. Yet, whether these alerts were the
actual first signals of the SBV epidemic remains unknown.

Specificity and Parameter Settings
Residual milk yield, not explained by seasonal fluctuations
and trend in time, was used in this study as input for the
outbreak detection methods. It is likely that a large part of the
unexplained variability in milk production is caused by factors,
such as climate, feed quality and feed price. In earlier work
we suggested that specificity of outbreak detection methods
based on milk production data might be improved if underlying
regression models were to be extended with variables explaining
climatological factors (17). Therefore, in this study, we added
weekly mean ambient temperature and amount of rainfall for
each district, based on its nearest weather station (41), to
the baseline models. These factors did not alter the results
considerably; the generated alerts differed only marginally and
the mean RMSE per model was equal (results not shown).

Spatiotemporal cluster analysis was the only method that
reached 100% specificity. Perhaps it is the evaluation of
significance of only the most likely cluster by the space-time
scan statistic that leads to such high specificity of this method.
Nevertheless, specificity in 2010 was also high for the Cusum
algorithm and Bayesian disease mapping analysis. The influence
of parameter settings (such as the detection threshold) and the
trade-off between sensitivity and specificity was clearly visible
in 2006, 2007, and 2011. High absolute values of sensitivity
were achieved by “loosening” detection thresholds, yet with an
increase in total number of (false) alerts per year and decrease
in predictive value as a—potentially expensive—consequence.

The choice of parameter settings is therefore essential in each
outbreak detection method. For the Cusum algorithm, this can
be achieved by finding the most optimal value for the reference
value k and control limit h. The choice of k could be based on
a certain percentile of the frequency distribution or any other
acceptable level of the parameter of interest (e.g., residuals or
case counts). The choice of h however depends on the desired
timeliness and specificity of the system, as it determines which
deviations from k will lead to an alert. SaTScan offers a few
calibration options in the Normal model we used, like setting the
maximum spatial cluster size and the maximum temporal cluster
size. The output was not sensitive to changes in the maximum
temporal size (varied to 1, 2, and 4 weeks; results not shown).
The most evident calibration possibilities in Bayesian disease
mapping models, such as the one we used are the choice of the
posterior exceedance probability threshold [for example P(res <

−5)] and the desired confidence level to identify areas were the
residual value (or relative risk) is below the detection limit (for
example 95 or 99%). Other aspects which should be considered
with care are the choice of prior distributions and which
variance components to include in the model (correlated and
uncorrelated). In general, the desired performance and purpose
of the syndromic surveillance system should be leading the
choice of parameter settings. Systems aiming at early detection of
emerging diseases at all cost (i.e., false positive alerts are allowed)
will aim for high sensitivity, whereas systems in which false
positive alerts have large consequences (such as a trade ban), or
follow-up costs are high, should aim for high specificity.

Comparison of Methods
From the three methods we applied in this study, the Cusum
algorithm was the most straightforward to construct and use.
This feature and the fact that process behavior is examined
chronologically and displayed in a graphical comprehensive
manner are particular advantages of quality control charts, such
as the Cusum algorithm (34). We applied the Cusum algorithm
to 90 postal districts, monitoring each of these areas individually.
A drawback of this approach is that if an outbreak occurs on
the border between areas or only in a small part of an area,
an important outbreak may be missed because it did not follow
to the predefined geographical boundaries (10). Spatiotemporal
cluster analysis using the space-time scan statistic does not take
into account geographical boundaries, but imposes assumptions
about the shape of disease patterns by finding clusters in the
form of a circle or cylinder (36). The fact that the spatiotemporal
cluster analysis of milk production performed best in our
comparison could be due to the simultaneous assessment of
spatial and temporal variation in milk yield, as opposed to the
temporal Cusum algorithm and the spatial Bayesian disease
mapping model. The main characteristic of Bayesian disease
mapping models based on conditional autoregression (CAR) is
to provide some shrinkage and spatial smoothing of raw relative
risk estimates, resulting in a low sensitivity for detecting areas
that only have a small excess risk (25). Strong local smoothing
across neighboring areas, in particular smoothing of abrupt
changes in relative risks is undesirable in a disease outbreak
detection context (12). Bayesian disease mapping is however
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considered an appropriate tool for small area disease mapping
(6). Compared to clinical surveillance, the Bayesian disease
mapping model performed poorest out of the three methods we
assessed, suggesting a need for a revision of the parameter settings
used or an extension of the model to space and time.

From themethods we compared, the spatiotemporal approach
provided in SaTScan’s scan statistic has the greatest potential to
be used for syndromic surveillance on milk production records.
However, as suggested earlier (17), the added value of any
syndromic surveillance system depends on several factors, such
as the availability of demographic coverage of suitable data and
the costs associated with the follow-up of alerts. Also, differences
in the impact (on e.g., milk yield) and spread of an emerging
disease might lead to different performance of the methods we
proposed in this study. It is expected that the performance of
the methods that were assessed in this study will be different
when used for detection of diseases that are less clustered in
space like vector-borne diseases generally are. For example, if
movement of infectious animals results in simultaneous disease
outbreaks in multiple non-adjacent areas, temporal methods
are probably more suitable for early detection than spatial or
spatiotemporal methods (as the indicator will be affected both
inside and outside the cluster being tested). It would therefore
be interesting to assess the performance of the methods under
alternative disease pattern scenarios, for example that of directly
transmitted diseases.

CONCLUSION

When applied on routinely collected milk production data,
spatiotemporal cluster analysis using the space-time scan statistic
performed better than a temporal Cusum algorithm and a
spatial Bayesian disease mapping model for early-detection of
BTV-8 and SBV in cattle in the Netherlands. Compared to
clinical surveillance, sensitivity and predictive alert values were
high to detect SBV and low to detect BTV-8. Particularly in

the years in which BTV-8 emerged and re-emerged, alerts of
reduced milk production were generated long before first clinical
suspicions were reported. It remains unknown whether these
alerts represent the actual first signs of BTV-8 infections in cattle
in the Netherlands.
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