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ABSTRACT

G-quadruplex structures formed in the telomeric
DNA are thought to play a role in the telomere
function. Drugs that stabilize the G-quadruplexes
were shown to have anticancer effects. The struc-
tures formed by the basic telomeric quadruplex-
forming unit G3(TTAG3)3 were the subject of multiple
studies. Here, we employ 125I-radioprobing, a
method based on analysis of the distribution of
DNA breaks after decay of 125I incorporated into one
of the nucleotides, to determine the fold of the telo-
meric DNA in the presence of TMPyP4 and telomes-
tatin, G-quadruplex-binding ligands and putative
anticancer drugs. We show that d[G3(TTAG3)3
125I-CT] adopts basket conformation in the presence
of NaCl and that addition of either of the drugs does
not change this conformation of the quadruplex.
In KCl, the d[G3(TTAG3)3

125I-CT] is most likely pre-
sent as a mixture of two or more conformations, but
addition of the drugs stabilize the basket conforma-
tion. We also show that d[G3(TTAG3)3

125I-CT] with
a 5’-flanking sequence folds into (3+1) type 2 con-
formation in KCl, while in NaCl it adopts a novel
(3+1) basket conformation with a diagonal central
loop. The results demonstrate the structural flex-
ibility of the human telomeric DNA; and show how
cations, quadruplex-binding drugs and flanking seq-
uences can affect the conformation of the telomeric
quadruplex.

INTRODUCTION

Human telomeres are capped with several thousands
of d(GGGTTA)�d(CCCAAT) repeats with 8–150
d(GGGTTA) repeats in the single-stranded 30 overhang

(1,2). Single-stranded oligonucleotides containing runs of
Gs have been shown to form intra- and inter-molecular
structures stabilized by three or more G-quartets forming
a G-quadruplex (3–7). Shelterin, a specialized protein
complex that protects the ends of the chromosomes has
been identified and characterized (8). One of these proteins
POT1 specifically binds to the 30 telomeric overhangs,
presumably preventing them from forming the quadruplex
structures (9,10). The quadruplex structures can inhibit
the activity of telomerase, an RNA template containing
enzyme that adds the telomeric repeats to the ends on the
chromosomes (9). The telomerase activity is essential for
proliferation of cancer cells; and, therefore, inhibition of
the telomerase could stop tumor growth (11). Several
drugs that specifically bind to G-quadruplexes were shown
to have anticancer activity (12); the most studied of them
is a porphyrin TMPyP4 (13) and telomestatin (14).
For the rational design of the G-quadruplex-binding

drugs, it is important to know the molecular structure of
the human telomeric quadruplex. Several such structures
were recently solved by both NMR and X-ray crystal-
lography (15). Depending upon the flanking sequences
and ionic conditions the human telomeric oligonucleotides
in solution were shown to fold into an antiparallel
basket conformation with alternating directions of the
G3 runs (16), and so-called (3+1) mixed conformation
with three parallel and one antiparallel orientation the
G3 runs (17–19) (Figure 1). In the basket conformation, all
the loops are lateral, i.e. they run across the top or the
bottom G-quartet with two on the top (Figure 1) con-
necting neighboring G-sides while one at the bottom run-
ning diagonally. The (3+1) conformation contains two
lateral loops and one double-chain-reversal loop that
runs across the stack of G-quartets. Two conformers
of the (3+1) conformation were identified, type 1 and 2,
with either first (type 1) or the last (type 2) loop being
the double-chain-reversal one (20–23). In the crystal,
all-parallel propeller conformation of the quadruplex
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was found with all the loops being double-chain-reversal
(24). In addition, telomeric oligonucleotides can fold
into another antiparallel conformation, so-called ‘chair’
that has a lateral loop at the bottom of the G-quad-
ruplex (19,25), although the 3D structure of the chair
conformation has not been solved yet either by X-ray or
by NMR.
Structural methods like X-ray crystallography and

NMR are indispensable in obtaining the detailed 3D
conformation of the different folds of G-quadruplex.
However, given the highly polymorphic nature of the
telomeric DNA, important information on the transitions
between the folds, kinetics, small molecule binding etc.
was obtained by various biochemical methods (26–35).
We applied 125I-radioprobing to study the fold of telo-
meric oligonucleotides. This method is based on the
measurement of the probability of strand breaks produced
by decay of 125I placed into one of the nucleotide (36).

The probability of DNA breaks caused by decay of
125I is inversely related to the distance between the
radionucleotide and the sugar unit of the DNA backbone
where the break occurs; hence, the conformation of a
DNA backbone can be obtained from the distribution of
breaks (37). In our previous study (25), we placed 125I-dC
instead of T into one of the TTA loops of the telomeric
oligonucleotides, and showed the presence in solution of
two antiparallel conformations of human telomeric quad-
ruplex, basket and chair. However, placement of the
radioiodine into the flexible loop introduced some
uncertainty to its location diminishing the resolution
with which the structural information could be obtained.

Herein, we extend our radioprobing studies of the
telomeric quadruplex structures by placing 125I-dC imme-
diately next to the 30-end of the telomeric repeats
(Figure 1). Using this approach, we show that a telomeric
oligonucleotide consisting of four G3 runs, three TTA

Figure 1. Schematic diagram of possible intramolecular conformations of human telomeric quadruplexes.
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loops and 125I-dC and T at the 30-end folds into a basket
conformation in the presence of NaCl, in agreement with
earlier NMR results (16). In KCl, such a ‘minimal’
G-quadruplex forming telomeric oligonucleotide most
likely exist as a mixture of two or more conformations.
Importantly, for the first time we show that in the presence
of G-quadruplex-binding drugs TMPyP4 and telomestatin
this oligonucleotide forms the basket conformation both
in NaCl and in KCl. We also studied the effect of the
50-flanking sequence addition to this oligonucleotide on
the fold of G-quadruplex, and propose a new conforma-
tion of the (3+1) fold with a diagonal loop at the bottom
of the structure.

MATERIALS AND METHODS

Oligodeoxyribonucleotides and reagents

All oligodeoxyribonucleotides (ODNs, Table 1) were
synthesized on an ABI394 DNA synthesizer (PE Applied
Biosystems, Foster City, CA, USA), and purified by
denaturating polyacrylamide gel electrophoresis (PAGE)
as described in detail in ref. (25). The concentration of
single-stranded ODN was measured at 260 nm on a HP
8452A Diode Array Spectrophotometer, and was calcula-
ted with the extinction coefficient calculator software (http:
//www.basic.northwestern.edu/biotools/oligocalc.html).
Cationic porphyrin 5,10,15,20-tetra(N-methyl-4-pyridyl)-
porphin (TMPyP4) was purchased from Calbiochem
(La Jolla, CA, USA); telomestatin was kindly provided
by Dr Kazuo Shin-ya (AIST, Tokyo, Japan)

Labeling and purification of ODNs

The telomeric ODNs were labeled with 125I using [125I]-
IdCTP and Klenow fragment of DNA polymerase I by
primer extension reaction (38). The detailed protocol for
125I labeling was as follows: 2 ml of 10� Klenow fragment
of DNA polymerase I buffer [500mM Tris–HCl (pH 8.0),
50mM MgCl2 and 10mM DTT], 1 ml of 10 mM duplexes
(pairs primer and template—III and IV; VI and VII
(Table 1) were annealed in equimolar amounts) and 16 ml
of H2O were added to freshly dried 120 mCi [125I]-IdCTP.
After 15min at RT, 1 ml of 10U/ml Klenow fragment of
DNA polymerase I (Fermentas, Hanover, MD, USA)
was added. After 15min, 2 ml of 100mM dNTP was added
and after additional 15min incubation, the reactions were
stopped with 1.5ml of 0.5M EDTA. The reaction mixtures
were purified by MicroSpin G-25 columns (Amersham
Pharmacia Biotech, Piscataway, NJ, USA) to remove free

[125I]-IdCTP. The labeled ODNs were separated and
further purified from the template by purification with
denaturing PAGE. The ODNs were 32P 50-end labeled
using T4 Polynucleotide Kinase (Fermentas) following the
standard protocol.

Preparation of G-4 quadruplexes

The telomeric ODNs were incubated in presence or
absence of the TMPyP4 or telomestatin in radioprobing
buffer (RB) solution [20mM Tris–HCl (pH 7.4), 10%
DMSO and 1mM EDTA] with addition of 100mM NaCl
or 100mM KCl at 378C for 1 h. Than samples were
quickly frozen in liquid nitrogen and stored at �808C for 2
weeks to accumulate 125I-induced DNA strand breaks.

DNA strand break analysis

After 2 weeks, the samples were thawed and the strand
breaks were analyzed by 12% denaturing PAGE. The
DNA strand breaks were quantified using a BAS-2500
Bioimager (FUJI Medical Systems USA, Stamford, CT,
USA). To measure the intensity of the individual bands,
the intensity profile of each lane was generated from the
digitized gel image using SAFA software (39). The pro-
bability of breaks were calculated from the areas of the
individual peaks using a recursive formula and assuming
that probability of breaks at [125I]-IdC equals 1 as des-
cribed in detail in ref. (36). Briefly, if there is >1 break/
decay then only the break closest to the 32P-labeled 50-end
of the oligonucleotide will be detected. To obtain the pro-
babilities of breaks in i-th position (pi) we used the recur-
sive expression: pi = Fi/(1 � pi � 1)(1 � pi � 2).(1 � p1),
where is Fi is the observed frequency of breaks at
nucleotide in position i.

RESULTS

Radioprobing rationale

In our previous study, we placed the 125I-dC residue into
one of the loops of the telomeric quadruplex in order
to have the radioiodine inside the structure (25). This
approach has certain limitations due to the flexibility
of the loops resulting in an uncertainty in the position of
radioiodine (25). In this study, we placed 125I-dC next to
the last G at the 30-end of the telomeric quadruplex
(Table 1) in an attempt to reduce the uncertainty in
the 125I position. Having radioiodine in the ‘corner’ of the
G-quadruplex also simplifies the analysis of the data on
distribution of 125I-induced breaks.

Table 1. Oligonucleotides used in this study

I 5‚-32P-G2G3G4T5T6A7G8G9G10T11T12A13G14G15G16T17T18A19G20G21G22C*23T24

Oligonucleotides used for 125I-labeling of I

III 5‚-GGGTTAGGGTTAGGGTTAGGG Primer
IV 3‚-BTTTTTTCCCAATCCCAATCCCAATCCCGA Complementary template

V 5‚-32P-G-8T-7G-6C-5A-4G-3T-2A-1G1G2G3G4T5T6A7G8G9G10T11T12A13G14G15G16T17C18A19G20G21G22C*23T24

Oligonucleotides used for 125I-labeling of V

VI 5‚-GTGCAGTAGGGGTTAGGGTTAGGGTCAGGG Primer
VII 3‚-BTGTGTGTACACGTCATCCCCAATCCCAATCCCAGTCCCGA Complementary template

B, biotin; C�, [125I]-dC.
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Figure 2A shows average distances from the C10 of the
G22 to the sugars of the guanines in the core for three
different conformations of the G-quadruplex calculated as
described previously (25). The plots reflect different folds
of DNA chain in the quadruplex conformations. In all
conformations, the distances sharply increase as we move
from G22 to G20 along the DNA chain. In the basket and
(3+1) type 1 conformations, the distances decrease from
G16 to G14; on the contrary, these distances increase in
the propeller fold reflecting a different conformation of the
A19-T17 loop. In the propeller and (3+1) type 1 confor-
mations, the G10-G8 side of G-quadruplex is the most
distant from the 30 corner, while in the basket fold the
G4-G2 side is the most distant. In general, the distances
increase as we move from the G22 position in the bottom
of the core (as it is oriented in Figure 1); and they are
the longest to the nucleotides located in the side that
is diagonally across the G-quadruplex from G22, as it
could be intuitively expected from the sketches presen-
ted in Figure 1. If ‘"’ indicates the increase in distances
and ‘#’ the decrease, then the basket conformation can be
described as G22"G20, G16#G14, G10"G8, G4#G2,
‘3+1’ type 1 as G22"G20, G16#G14, G10"G8, G4"G2,
and propeller as G22"G20, G16"G14, G10"G8, G4"G2.
At the same time, if the distances are re-plotted

according to the positions of the guanines in the core
structure, numbered in the same order as in the propeller
conformation, (as opposed to the numbering according
to their position along the DNA chain as in Figure 2A),
the graphs became very similar (Figure 2B). This shows
that all three G-quadruplexes are similar in terms of the
distances from the 30-corner of the core to the sugars of
the guanines. Therefore, differences in the breaks distribu-
tion produced by decay of 125I located in the 30-corner of
the G-quadruplex should truly reflect the different folds
of the chain of the telomeric DNA.

Conformation of I in Na+

Figure 3 illustrates our radioprobing approach to
determine intramolecular fold of oligonucleotide I,
d[G3(TTAG3)3

125I-CT]. Panel A shows the analysis of
DNA breaks in denaturing PAGE. Panel B represents the
measurement of the intensity of the breaks by densito-
metry and peak deconvolution (for details see the
Materials and methods section). The resulting probabil-
ities of breaks at the individual nucleotides are plotted in
panel C. The higher the probability of breaks the closer
the nucleotide to the 125I-dC at the 30-end of the structure.
Accordingly, the probability increases sharply from G20
to G22. The drop of the breaks probability from G14 to
G16 shows that the former is closer to the bottom of the
structure than the later. Likewise, the G10 is closer than
G8. The graph in Figure 3C and the sketch in Figure 3D
are oriented such that the arrows showing the increase in
breaks probability correspond to the orientation of the
GGG repeats in the G-quadruplex. Therefore, the
structure can be described in terms of the orientation of
the sides as G22"G20, G16#G14, G10"G8 and G4#G2.
The G4 and G3 have the lowest probability of breaks.
Hence, the nucleotides G4-G2 are located diagonally

across from the 125I-dC. This arrangement of the sides
corresponds to the basket conformation of the quad-
ruplex. Indeed, in other antiparallel fold, the chair
conformation, the G10-G8 side would be the most distant
from 125I-dC and have the lowest breaks probability
(Figure 1). Therefore, the predominant fold of I in NaCl
solution is the basket conformation.

Conformation of I in K
+

Figure 4 shows the results of radioprobing experiment of
oligonucleotide I in the presence of KCl. In contrast to the
NaCl data, there is no clear increase or decrease in the
breaks probability along G10-G8 and G16-G14 sides. In
fact, it is impossible to say which side was the most distant
from the 125I-dC. Overall, the observed distribution of the
probability of breaks does not correspond to any of the
known folds of the G-quadruplex and most likely indi-
cates that two or more conformations of I coexist in
equilibrium in the presence of KCl.

Conformation of I with telomestatin

Figure 5 shows radioprobing of I in the presence of the
G-quadruplex-binding drug telomestatin (14). The dis-
tributions of breaks have similar patterns in the presence
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Figure 2. Average distances (in angstroms) from the C10 of the G22 to
the sugars of the guanines in the core for three different conformations
of the G-quadruplex; open diamonds—(3+1) type 1, PDB ID 2GKU
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of both NaCl and KCl and closely resemble the breaks
distribution obtained in NaCl alone (Figure 3), i.e.
G22"G20, G16#G14, G10"G8, G4#G2. As we rationa-
lized above, such distribution with alternating directions

of the G-sides and G4-G2 being the most distant from
the 125I-dC corresponds to the basket conformation of the
G-quadruplex. Interestingly, the absolute values of the
breaks probability are higher in KCl than in NaCl,
reflecting, most likely, a more compact conformation of
the basket quadruplex in KCl as compared to NaCl.

Conformation of I with TMPyP4

The distributions of breaks produced by decay of 125I in I
in the complex with cationic porphyrin TMPyP4 are
shown in Figure 6. In the presence of both NaCl and KCl,
the break distributions are consistent with the basket
conformation of the quadruplex. The overall shape of the
break distribution is slightly different from that observed
in the complex with telomestatin (Figure 5) most likely
reflecting different conformations of the loops. As with
telomestatin, the quadruplex conformation in the presence
of KCl is more compact than in NaCl judging by the
higher absolute values of the breaks probability in KCl.

Effect of flanking sequences

Our data on the conformation of the human telomeric
quadruplex in the presence of KCl presented above differ

Figure 3. (A) Analysis of DNA breaks in telomeric oligonucleotide I by 12% denaturing PAGE. Lanes: 1–G sequencing ladder; 2–Duplex of I with
complementary strand IV; 3–ODN I folded in RB+100mM NaCl; 4–ODN I folded in RB+100mM KCl; (B) analysis of break distribution in
telomeric oligonucleotide I folded in the presence of 100mM NaCl using SAFA software (39); (C) distribution of 125I-induced strand break
probability in telomeric oligonucleotide I. The samples were incubated (1 h at 378C) in RB with addition of 100mM NaCl (black squares) or
in duplex with complimentary template IV (black circles). Arrows indicate increasing or decreasing probability of breaks along the G3 runs.
(D) Suggested conformation of ODN I in the presence of 100mM NaCl, based on analysis of distribution of breaks probability. Arrows indicate
increasing or decreasing distance from the position of 125I along the G3 runs.
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from our previous radioprobing results. The main differ-
ence of this study is the use of oligonucleotide I that has no
extra nucleotides on the 50-end of the four telomeric repeats
or so-called a 50 tail. To test the effect of such a tail, we
carried out radioprobing experiments with oligonucleotide
V (Table 1). In fact, V has the same sequence of the 50 tail
that the oligonucleotide we used in our previous study (25),
but the 30 tail is now shorten to just two nucleotides, i.e.
125IdC and T. The results of radioprobing ofV are shown in
Figure 7. The distributions of breaks are quite different in
the presence of NaCl and KCl. The latter could be
described in our terms as G22"G20,G16"G14,G10#G8,
G4"G2 with the side G10-G8 being the most distant from
the 125IdC. This arrangement of the sides corresponds to
the (3+1) structure of type 2 (Figure 7C). The quadruplex
conformation of V in NaCl is G22"G20,G16#G14,G10"
G8,G4"G2. This arrangement of the sides could corre-
spond to the (3+1) structure of type 1, but in this structure,
the G10-G8 side would be the most distant from the 125IdC
(Figure 1). However, the results in Figure 7A show that the
most distant side is the G4-G2 side. The structure that
corresponds to such an arrangement of the sides is shown in
Figure 7B. Additional evidence in favor of such conforma-
tion comes from the consideration of the breaks pattern in
the loops. The break probabilities in NaCl show that the
loop T11-A13 is the closest to 125I-dC with T11 and A13
being equidistant, which is consistent with the structure
shown in Figure 7B. This structure has a diagonal loop

similar to the basket conformation of quadruplex
(Figure 1), therefore we called it (3+1) basket structure.

DISCUSSION

We applied radioprobing to determine conformation of
human telomeric DNA oligonucleotides by placing the 125I
labeled dC immediately next to the 3’terminal G3 run of the
basic telomeric quadruplex-forming unit G3(TTAG3)3. An
ideal location for the 125I would be a defined site within one
of the G-quartets forming the core of the quadruplex
structure. Then, by measuring the break probabilities and
comparing them with those, for example, in a duplex with
known structure, it would be possible to obtain actual
distances from the 125I to the sugar backbone of the other
nucleotides in the quadruplex, thus determining its
conformation more precisely. Unfortunately, an effective
procedure for iodination of guanine has not been devel-
oped so far; therefore, 125I-dC remains the only choice for
incorporation of radioiodine into DNA.

The position of 125I-dC at the 30 of the telomeric quad-
ruplex is not exactly defined. Therefore, it was important
to test our approach on a known conformation of the
quadruplex. The first structure of human telomeric DNA
was solved by NMR in 1993 in the presence of NaCl (16).
It was shown that in these conditions d[AG3(TTAG3)3]
folded into a basket-type intramolecular quadruplex.
Later, other quadruplex-forming sequences were shown

Na+, K+

0.00

0.01

0.02

0.03

0.04

0.05

C+1G22G21G20A19T18T17G16G15G14A13T12T11G10G9G8A7T6T5G4G3

B
re

ak
s 

p
ro

b
ab

ili
ty

Duplex
100 mM NaCl+Telomestatin
100 mM KCl+Telomestatin

Telomestatin

A

B C

Figure 5. Distribution of 125I-induced strand break probability in
telomeric oligonucleotide I. The samples were incubated for 1 h at 378C
in RB with addition of 100mM NaCl and 10 mM telomestatin (black
squares); with addition of 100mM KCl and 10 mM telomestatin (open
triangles) or in duplex with complimentary template IV (black circles).
The schemas show the chemical structure of telomestatin and the
basket conformation of oligonucleotide I.

0.00

0.01

0.02

0.03

0.04

0.05

C+1G22G21G20A19T18T17G16G15G14A13T12T11G10G9G8A7T6T5G4G3

B
re

ak
s 

p
ro

b
ab

ili
ty

Duplex
100 mM NaCl+TMPyP4
100 mM KCl+TMPyP4

A

B C

TMPyP4 Na+, K+

Figure 6. Distribution of 125I-induced strand break probability in the
telomeric oligonucleotide I. The samples were incubated in RB with
addition of 100mM NaCl and 10 mM TMPyP4 (closed squares); with
addition of 100mM KCl and 10 mM TMPyP4 (open triangles) or in
duplex with complimentary template IV (closed circles). The schemas
show the chemical structure of TMPyP4 and the basket conformation
of oligonucleotide I.

4084 Nucleic Acids Research, 2008, Vol. 36, No. 12



to adopt the basket conformation in the presence of NaCl
(40). Our radioprobing data (Figure 3) confirmed folding
of I into the basket conformation in NaCl. This result
provided additional evidence for reliability of our
approach.

The results of radioprobing of I in KCl were consistent
with co-existence of two or more conformations. Authors
of recent NMR studies arrived to a similar conclusion (17).
They found that in KCl solutions nucleotides flanking the
quadruplex-forming sequence are required to stabilize a
single conformation. More recently, it was shown that by
altering the nucleotides flanking G3(TTAG3)3 basic telo-
meric quadruplex-forming unit one could stabilize type 1
or type 2 isoform of the (3+1) fold (22,23). In our oligo-
nucleotide I, the quadruplex-forming unit has only two
additional nucleotides, 125I-dC and T that are unlikely to
form the capping structures that stabilized different iso-
mers of the (3+1) fold as it was observed in the NMR
studies. It also worth noting that radioprobing, like NMR,
allows obtaining reliable structural information when
molecules in solution adopt a single or predominant con-
formation. Results obtained from a mixture of conforma-
tions are difficult to interpret, especially in the cases when
the position of 125I is not precisely determined (25).

Our data show that binding of the quadruplex-specific
drugs, TMPyP4 and telomestatin, in both NaCl and KCl
solutions, stabilized the basket conformation of I. For
telomestatin, these results are in agreement with that

obtained earlier based on CD spectra of the drug binding
to the telomeric oligonucleotide (41). On the other hand, in
co-crystals of a telomeric oligonucleotide and TMPyP4,
the porphyrin was bound by stacking to the TTA loops of
the quadruplex in the all-parallel propeller conformation
(42). However, the close packing environment may have
affected the quadruplex structure and the mode of the drug
binding in the crystal. Other studies have proposed the
possibility of the intercalating mode of binding of TMPyP4
to quadruplex, in particular in the presence of NaCl
(43–45). As we noted earlier, our radioprobing data
indicate that the guanines in quadruplex are more distant
from 125I-dC in NaCl than in KCl. Unfortunately, due to
an uncertainty in the position of 125I in our experiments we
could not estimate absolute distances between the guanines
in the neighboring G-quartets. Therefore, at this point, we
can only speculate on the possibility of the intercalating
mode of TMPyP binding in NaCl. Overall, our results
suggest that there could be more than one mode of the
TMPyP4 binding to the telomeric quadruplex.
Extension of I with additional nine nucleotides

upstream of the telomeric repeats changed the fold of
the quadruplex. The breaks distribution in oligonucleotide
V is consistent with the (3+1) type 2 fold in KCl in
agreement with NMR data on the telomeric oligonucleo-
tides containing both 50 and 30 extensions (22,23). In NaCl,
our radioprobing data predict a new conformation of
telomeric quadruplex that we called (3+1) basket type.
This conformation is different from (3+1) forms type 1
and type 2 by having a diagonal loop (Figure 7B). Thus,
it appears that Na+ cations favor diagonal loops,
although the structural reasons for this are not clear at
this point. In our previous radioprobing experiments (25),
we determined the chair quadruplex conformation of the
telomeric oligonucleotide with 50 and 30 complementary
extensions. We believe now that the formation of the
duplex between the 50 and 30-flanking sequences could
have affected the fold of the quadruplex favoring the chair
conformation.
In summary, our results demonstrate that human

telomeric quadruplex can adopt multiple conformations.
The fold of the quadruplex depends on the presence and
the makeup of 50- and 30-flanking sequences, the type of
metal cations in solution as well as binding of quadruplex-
specific drugs. To address questions about possible bio-
logical role of such structural plasticity of the telomeric
quadruplex and the structure of the telomeric repeats
inside living cells more realistic models of telomeric DNA,
including multiple duplex telomeric repeats with single-
stranded overhangs, need to be developed and studied.
Radioprobing is one of the methods that perfectly fit for
such studies, because it can be adapted to large DNA–
protein assembles and even for in situ experiments.
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