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Purpose: To build CT perfusion (CTP)-based delta-radiomics models to

identify collateral vessel formation after revascularization in patients with

moyamoya disease (MMD).

Methods: Fifty-three MMD patients who underwent CTP and digital

subtraction angiography (DSA) examination were retrospectively enrolled.

Patients were divided into good and poor groups based on postoperative DSA.

CTP parameters, such as mean transit time (MTT), time to drain (TTD), time

to maximal plasma concentration (Tmax), and flow extraction product (FE),

were obtained. CTP efficacy in evaluating surgical treatment were compared

between the good and poor groups. The changes in the relative CTP

parameters (1rMTT, 1rTTD, 1rTmax, and 1rFE) were calculated to evaluate

the differences between pre- and postoperative CTP values. CTP parameters

were selected to build delta-radiomics models for identifying collateral vessel

formation. The identification performance of machine learning classifiers was

assessed using area under the receiver operating characteristic curve (AUC).

Results: Of the 53 patients, 36 (67.9%) and 17 (32.1%) were divided into

the good and poor groups, respectively. The postoperative changes of

1rMTT, 1rTTD, 1rTmax, and 1rFE in the good group were significantly

better than the poor group (p < 0.05). Among all CTP parameters in the

perfusion improvement evaluation, the 1rTTD had the largest AUC (0.873).

Eleven features were selected from the TTD parameter to build the delta-

radiomics model. The classifiers of the support vector machine and k-nearest
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neighbors showed good diagnostic performance with AUC values of 0.933

and 0.867, respectively.

Conclusion: The TTD-based delta-radiomics model has the potential to

identify collateral vessel formation after the operation.

KEYWORDS

perfusion imaging, moyamoya disease, cerebral revascularization, delta-radiomics,
machine learning

Introduction

Moyamoya disease (MMD), also known as spontaneous
occlusion of the circle of Willis, is a non-atherosclerotic
progressive steno-occlusive arteriopathy first reported by Suzuki
and Takaku (1969). It most frequently affects the internal carotid
arteries, proximal segments of the middle cerebral arteries
(MCAs), and anterior cerebral arteries, accompanied by a tuft of
collateral vessels at the base of the brain. Revascularization could
mitigate the risk of future ischemic events or MMD rebleeding
(Miyamoto et al., 2014; Kim et al., 2016b). Thus, surgical
interventions are recommended once the MMD diagnosis is
clear (Narisawa et al., 2009; Shi et al., 2021). Revascularization
can immediately improve cerebral blood flow. Superficial
temporal artery–MCA anastomosis is most commonly used in
clinical practice (Kim et al., 2016a; Acker et al., 2018).

Perfusion imaging provides an assessment of the territory
at risk for infarct from hypoperfusion and serves a key role
in making surgical decision for MMD. CT perfusion (CTP),
as a fast, feasible, and multiparameter imaging modality, has
been widely used in cerebral hemodynamic evaluation of MMD
(Chen et al., 2016; Li et al., 2019; Guo et al., 2021). After
revascularization, digital subtraction angiography (DSA) is the
reference standard for evaluating the patency of the bypass
and collateral vessel formation (Hwang et al., 2020). However,
limited by multiple factors (e.g., invasive nature, radiation
exposure, and perioperative complications), DSA is sometimes
given more careful consideration (Bendszus et al., 1999). In
recent years, artificial intelligence with radiomics as the core
has made breakthroughs in computer-aided diagnosis, staging,
and prognosis of diseases (Huang et al., 2016; Elhalawani et al.,
2018; Gu et al., 2019; Zhang et al., 2020). Radiomics has the
advantages of intelligence, multiple parameters, and objective
quantification (Gillies et al., 2016). Delta-radiomics introduces
a time component and shows the changes in radiomics features
from pre- to post-treatment and is suitable for evaluating the
treatment response (Lambin et al., 2017).

Studies on automated detection of MMD based on machine
learning have been recently noted (Kim et al., 2019; Akiyama
et al., 2020; Waddle et al., 2020; Lei et al., 2021). However,
no published studies have focused on radiomics in predicting

MMD treatment outcomes after revascularization. Therefore,
this study aims to (1) evaluate the CTP efficacy to assess
the perfusion changes before and after revascularization and
(2) further build the delta-radiomics models to identify the
formation of collateral vessels after the operation.

Materials and methods

Patients

This retrospective study was approved by the local
institutional review board, and the requirement for informed
consent was waived. The MMD patients, based on the diagnostic
guidelines of the Research Committee of MMD of the Japanese
Ministry of Health (Research Committee on the Pathology and
Treatment of Spontaneous Occlusion of the Circle of Willis
and Health Labour Sciences Research Grant for Research on
Measures for Infractable Diseases, 2012), were enrolled from
June 2016 to March 2020 (Figure 1). The participation eligibility
was established following the inclusion criteria: (1) the CTP and
DSA were performed before and after surgery, (2) the surgical
method was direct revascularization surgery. The exclusion
criteria were as follows: (1) the hemisphere had undergone
other surgery before revascularization and (2) the CTP data was
incomplete or missing. After revascularization, DSA and CTP
examinations were scheduled for patients at 6 months follow-up.

Angiographic evaluation

The angiographic stages of the MMD patients were
evaluated by DSA. All images were assessed by two radiologists
(JL and YZ, with 8 and 10 years of experience, respectively).
The collateral vessels were classified into four grades according
to the extent of collateral vessel formation by modification
of the Matsushima grade (Matsushima et al., 1992) (grade 0,
no clear collaterals; grades 1, less than one-third of the MCA
distribution; grade 2, between two-thirds and one-third of the
MCA distribution; and grade 3, more than two-thirds of the
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FIGURE 1

Flowchart of the study of the enrolled patients.

MCA distribution). Grades 2 and 3 were classified as the good
group, and grades 1 and 0 were classified as the poor group.

CT scanning and processing of CT
perfusion data

The CTP was performed using the third-generation dual-
source CT scanner (Somatom Force, Siemens Healthcare,
Forchheim, Germany). Routine brain scanning was done,
and DynMulti 4D scan mode (shuttle scan mode, Siemens
Healthcare) was used for volume perfusion computer
tomography. A 50-ml bolus of contrast media iopromide
(Ultravist 370 mg L/ml; Bayer Schering Pharma, Berlin,
Germany) was administered into an antecubital vein using
a power injector (Ulrich Injection System, Germany) with
an injection rate of 5 ml/s. Eighteen dynamic CT scans were
initiated 5 s after the start of the contrast material injection.
The scanning parameters were as follows: 70 kV tube voltage,
200 mA tube current, collimator 128 mm × 0.6 mm, 1.5 mm
slice thickness, and 0.25 s rotation time.

CT perfusion source data were transferred to the Syngo
workstation (Siemens Syngo.via, VA20A). The data source was
analyzed using CT Neuro-Perfusion software. The cerebral
artery that first reached the enhanced peak was selected as
the input artery. The superior sagittal sinus was selected as
the output vein. Perfusion parameter maps were generated via
an automatic delay-insensitive deconvolution algorithm (Abels
et al., 2010). Parameter maps for cerebral blood flow (CBF),
cerebral blood volume (CBV), time to drain (TTD), mean transit
time (MTT), time to maximal plasma concentration (Tmax),
and flow extraction product (FE) were obtained.

For quantitative analysis, the Tmax > 6 s was used as the
threshold to define the ischemic hypoperfusion area (Zaro-
Weber et al., 2019). Regions of interest (ROIs) were drawn in
the largest cross-sectional area of the abnormal perfusion. The
range of ROIs covered the complete perfusion abnormalities
over the cortical MCA distribution. Previous hemorrhage and
infarcted lesions were avoided in the ROI. Contralateral mirror
ROIs were automatically acquired. The average value was taken
after two measurements. The relative CTP values (e.g., rCBF,
rCBV, rMTT, rTTD, rTmax, and rFE) were defined as the ratios
between absolute CTP values of the surgical and contralateral
sides. An attempt was made to draw the same ROIs in the same
location for one patient before and after the revascularization as
shown in a previous study (Kang et al., 2020).

To compare variation between the preoperative and
postoperative perfusion parameters, the relative CTP parameter
changes were calculated as follows: 1rCBF = rCBFpost -
rCBFpre, 1rCBV = rCBVpost - rCBVpre, 1rMTT = rMTTpre -
rMTTpost, 1rTTD = rTTDpre - rTTDpost, 1rTmax =
rTmaxpre - rTmaxpost, 1rFE = rFEpre - rFEpost, where 1, pre,
and post indicate CTP parameter change, before surgery, and
after surgery, respectively.

Radiomics workflow

The workflow of the delta-radiomics analysis included
ROI segmentation, feature extraction, feature reduction and
selection, and model construction.

ROIs segmentation

Two experienced radiologists (with 7 and 15 years of CT
diagnosis experience) performed the segmentation using the
open-source software ITK-SNAP (version 3.8.01). The ROIs
were contoured from both the preoperative and postoperative
CTP maps. An attempt was made to draw the same ROIs as the
CTP data processing.

Feature extraction

Feature extraction was performed using RadCloud V.2.2
(Huiying Medical Technology Co., Ltd., Beijing, China). The
largest cross-sectional area of the abnormal perfusion was used
as the ROI, and the shape-based features were deleted. Of
the features, 1,395 were extracted (Supplementary Table 1).
The radiomics features were divided into three groups:
(a) first-order statistics (126 features), which quantitatively
delineated the distribution of voxel intensities within ROIs;

1 http://www.itksnap.org
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(b) textural features (525 features), which were calculated
from gray-level run-length matrix, gray-level co-occurrence
matrix, gray-level size zone matrix, gray-level dependence
matrix, and neighborhood gray-tone difference matrix; (c)
wavelet-transformed features (744 features), which included
the intensity and texture features derived from wavelet
transformation of the original images, processed using filters
(e.g., wavelet-LLL, wavelet-LLH, wavelet-LHL, wavelet-LHH,
wavelet-HLL, wavelet-HLH, wavelet-HHL, and wavelet-HHH).
Delta-radiomics (an example was shown in Supplementary
material 1) was defined as the changes in radiomics features
pre- and postoperatively during treatment and calculated as
follows:

Delta− radiomics Feature = Featurepostoperation

−Featurepreoperation.

Radiomic feature reduction and
selection

The intraclass correlation coefficient calculated from
all the patients was used to improve the reproducibility
of the radiomic features (Koo and Li, 2016). Features
with intraclass correlation coefficient values > 0.75
were retained for subsequent analysis. All radiomics
features were standardized into normal distribution with
z-score normalization. Then, the independent t-test with
Bonferroni corrected p-values was used to test whether
the radiomics features were different between the good
and poor collateral formation groups. Finally, the least
absolute shrinkage and selection operator (LASSO)
algorithm was performed to select the radiomic features.
Tenfold cross-validation was used in determining the
tuning parameter λ. Some feature coefficients were
reduced to zero by tuning the λ. The non-zero coefficient
features were selected.

Radiomics model construction

Two classifiers with machine learning algorithms
(support vector machine, SVM; k-nearest neighbors,
KNN) were trained for model construction and validated
in the training and validation cohorts, respectively.
Details of parameters used in machine learning were
shown in Supplementary Table 2. The diagnostic
performance of the models was evaluated by accuracy,
precision, recall, F1 score, and area under the receiver
operating characteristic (ROC) curve (AUC) compared
with Delong’s test.

Statistical analysis

Statistical analysis was performed using SPSS statistical
software (version 18.0, SPSS Inc., Chicago, IL, United States)
and Python software.2 Qualitative variables were in n (%) and
analyzed using Chi-square test, whereas quantitative variables
were in mean ± SD and analyzed using t-test. Paired t-test and
two-sample t-test were used to analyze differences. ROC curves
were constructed to explore the efficacy of CTP parameters and
machine learning classifiers. All statistical tests were two-sided,
and p < 0.05 indicates a significant difference.

Results

Patient characteristics

The mean follow-up was 8.2 ± 3.5 months. Fifty-three
patients with MMD fulfilled the inclusion and exclusion criteria.
The demographic and clinical information of patients are shown
in Table 1. All patients were randomly divided into the training

2 https://www.python.org/downloads/release/python-376

TABLE 1 Clinical information of patients with MMD.

Variables Patients (n = 53)

Age, years* 41.5± 12.1(12–62)

Gender

Male 22 (41.5%)

Female 31(58.5%)

Preoperative clinical symptoms

Ischemia 16 (30.2%)

TIA 8 (15.1%)

Infarction 19 (35.8%)

Hemorrhage 10 (18.9%)

Lesion type

Bilateral 40 (75.5%)

Unilateral 13 (24.5%)

Postoperative follow-up, months 8.2± 3.5 (3–24)

Suzuki stages

Stage 1 0

Stage 2 1 (1.9%)

Stage 3 26 (49.1%)

Stage 4 24 (45.3%)

Stage 5 2 (3.8%)

Stage 6 0

Grades for collateral vessel formation after operation

Grade 0 2 (3.8%)

Grade 1 15 (28.3%)

Grade 2 26 (49.1%)

Grade 3 10 (18.9%)

TIA, transient ischemic attack.
*Qualitative variables are in n (%), whereas quantitative variables are in mean± SD, with
ranges in parentheses.

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.974096
https://www.python.org/downloads/release/python-376
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-974096 August 6, 2022 Time: 21:13 # 5

Li et al. 10.3389/fnins.2022.974096

(n = 42) and test (n = 11) cohorts. No significant differences
were found in patient characteristics between the training and
validation cohorts (Supplementary Table 3).

Patency of the anastomoses and
formation of collateral vessels

The patency of the anastomoses was evaluated by DSA. Fifty
(94.3%) cases showed patency of the bridging vessels (Figure 2),
whereas three cases (5.7%) were occluded. Among the 53
patients with collateral vessels formation grade classification,
10 (18.9%), 26 (49.1%), 15 (28.3%), and two (3.8%) cases were
grades 3, 2, 1, and 0, respectively. Moreover, 36 and 17 cases were

classified into good and poor groups, respectively. Additionally,
the patient characteristics of the good and poor groups are
presented in Supplementary Table 4.

CT perfusion evaluations

Six perfusion maps (CBF, CBV, MTT, TTD, Tmax, and
FE) were obtained (Table 2 and Figure 2). Compared with
preoperative parameters, the results showed that the absolute
CBF and rCBF values of the surgical side increased significantly
after operation (pCBF = 0.023, prCBF < 0.001), whereas
the MTT, TTD, Tmax, FE, and their relative values reduced
significantly (pMTT, pTTD, pTmax, prMTT, prTTD, and

FIGURE 2

Digital subtraction angiography (DSA) and CT perfusion (CTP) images of a 23-year-old female patient with a history of headache for 2 months
(A–H preoperation, I–P postoperation). (A,B,I,J) The DSA images show a patient bypass with supply to the majority of the middle cerebral artery
territory after direct bypass surgery. (C–H,K–P) The CTP images show that the hemodynamics improved after revascularization in the left
hemisphere.
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TABLE 2 Comparison of CTP values of surgical side before and after operation (mean ± SD).

Pre-operation Post-operation t-value P-value

CBF (ml.100 g−1.min−1) 49.260± 21.614 55.671± 17.193 –2.337 0.023

CBV (ml.100 g−1) 3.595± 2.051 3.339± 0.923 0.941 0.351

MTT (s) 5.559± 1.225 4.381± 0.754 6.86 < 0.001

TTD (s) 8.033± 2.524 5.523± 1.831 7.755 < 0.001

Tmax (s) 5.263± 2.077 3.352± 1.513 7.293 < 0.001

FE(ml.100 g−1.min−1) 2.035± 1.861 1.181± 1.209 2.902 0.005

rCBF 0.848± 0.246 0.986± 0.206 –4.453 < 0.001

rCBV 1.001± 0.227 0.987± 0.189 0.451 0.654

rMTT 1.305± 0.258 1.028± 0.190 7.507 < 0.001

rTTD 1.739± 0.806 1.195± 0.519 5.840 < 0.001

rTmax 2.215± 1.607 1.408± 0.904 4.372 < 0.001

rFE 2.385± 2.622 1.194± 0.746 3.215 0.002

CBF, cerebral blood flow; CBV, cerebral blood volume; TTD, time to drain; MTT, mean transit time; Tmax, time to maximal plasma concentration; FE, flow extraction product.

TABLE 3 Comparison of 1rCTP values before and after operation between good and poor groups.

1rCBF 1rCBV 1rMTT 1rTTD 1rTmax 1rFE

Good group(n = 36) 0.164± 0.238 –0.07± 0.229 0.357± 0.270 0.823± 0.634 1.056± 1.554 1.723± 3.116

Poor group(n = 17) 0.085± 0.194 0.105± 0.169 0.105± 0.163 0.193± 0.152 0.281± 0.384 0.061± 0.633

t-value –1.184 –2.806 –3.556 –5.629 –2.815 –3.070

p-value 0.242 0.007 0.001 < 0.001 0.007 0.004

1rCTP, the changes in the relative CTP parameters; CBF, cerebral blood flow; CBV, cerebral blood volume; TTD, time to drain; MTT, mean transit time; Tmax, time to maximal plasma
concentration; FE, flow extraction product.

prTmax < 0.001, pFE = 0.005, prFE = 0.002). In addition, no
significant difference was noted in CBV and rCBV before and
after operation (pCBV = 0.351, prCBV = 0.002).

The perfusion improvement between good and poor
collateral vessel groups was also compared. The 1rMTT,
1rTTD, 1rTmax, and 1rFE in the good group were
significantly better than those in the poor group (Table 3).
However, no statistically significant difference was noted in
the 1rCBF between the two groups. In the ROC curve
analysis of the efficacy of the CTP parameters, 1rTTD
had the largest AUC (0.873) among all parameters with a
diagnostic sensitivity and specificity of 72.2% and 94.1%,
respectively (Figure 3).

Radiomic feature selection

After the reproducibility analysis, 1,156 features were left.
Using independent t-test and LASSO regression model analysis
(Figure 4), 11 features were finally left (Figure 5).

Diagnostic performance of radiomics
models

The performance of the two feature classifiers for the
identification of collateral vessel formation is shown in Table 4.

The AUC values of SVM and KNN were 0.933 (95% CI, 0.618–
0.999) and 0.867 (95% CI, 0.536–0.991), respectively (Figure 6).
No significant difference was noted between SVM and KNN
classifiers (p = 0.394).

FIGURE 3

Comparison of receiver operating characteristic curves based
on the changes in the relative CTP parameters (1rCTP) pre- and
postoperation. 1rTTD had the largest AUC (0.873) among all
parameters.
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FIGURE 4

Radiomics feature selection using the least absolute shrinkage
and selection operator (LASSO) algorithm. (A) The mean square
error plot for tenfold cross-validation. The optimal parameter λ

(λ = 0.013) in the LASSO algorithm is shown with the smallest
mean square error. (B) The coefficient profile plot was produced
against the log (λ) sequence. At the selected optimal λ value, 11
non-zero coefficients were selected.

Discussion

Extracranial–intracranial bypass surgery has been widely
used in MMD treatment since the first superficial temporal
artery-MCA anastomosis was performed by Yasargil in 1967
(Yasargil and Yonekawa, 1977). Traditionally, the surgical
outcome was evaluated by DSA. The present study explored
whether machine learning could be used to identify collateral
vessel formation. Through the analysis of CTP parameters
and construction of delta-radiomics models, hemodynamics
improvement after revascularization at the surgical side could
be evaluated by CTP, and the radiomics models could non-
invasively identify collateral vessel formation, where the AUC
values of SVM and KNN were 0.933 and 0.867, respectively.

This study adopted the third-generation dual-source CT
with DynMulti 4D scan mode. Whole-brain CTP, which can
reflect cerebral microcirculation information, was scanned
in a single examination with fast scanning speed and low
radiation dose (Fang et al., 2016). This study used the

Syngo.via to process the CTP images. It used the same delay-
insensitive deconvolution algorithm with the reference standard
CTP software RAPID (iSchema View inc., Menlo Park, CA,
United States) (Muehlen et al., 2021). The study found that
the rCBF value of the surgical side significantly increased after
the operation, while the rMTT, rTTD, rTmax, and rFE values
significantly reduced. This finding was consistent with previous
research (Zhang et al., 2013; Chen et al., 2016). In the present
study, other CTP parameters (e.g., Tmax and FE) were also
evaluated. Tmax is the time to the maximum of the tissue
residue function. It is an important parameter to differentiate
the infarction core from the penumbral tissues (Shih et al., 2003);
the optimal threshold for early identification of hypoperfused
tissue is between 4 and 6 s (Olivot et al., 2009). The preoperative
and postoperative mean Tmax values on the surgical side for
total sets in the current study were 5.263 ± 2.077 s and
3.352 ± 1.513 s, respectively (p < 0.05). It demonstrated that
the ischemic area decreased after revascularization. FE reflects
the efflux rate (permeability) from intravenous to extravenous
(Roberts et al., 2000), generally regarded as a marker of
blood–brain barrier (BBB) disturbance (Xyda et al., 2011). The
BBB permeability increases in cerebral ischemia, and the BBB
is impaired in MMD patients (Narducci et al., 2019). The
absolute and relative values of FE on the surgical side were
significantly decreased after revascularization in the current
study. This suggested that the BBB was repaired after the
revascularization. The parameters through quantitative analysis
showed that ischemic cerebral tissue perfusion improved
after revascularization. The improvement of cerebral perfusion
between the good and the poor groups was further compared
after the bypass operation. The postoperative changes in
1rMTT, 1rTTD, 1rTmax, and 1rFE of the good group were
significantly greater than that of the poor group (p < 0.05). In
addition, this study found that 1rTTD had the highest efficacy
in evaluating the cerebral perfusion improvement, and it may
be the most sensitive parameter to evaluate cerebral perfusion.
TTD is defined as the time to start + MTT and represents the
time in which the contrast agent moves away from the analyzed
voxel (Abels et al., 2010; Othman et al., 2016; Vulcu et al., 2019).
Thus, it is well-suited to delineate the extent of ischemic lesions.

Radiomics was first proposed by Lambin et al. (2012). Delta-
radiomics analysis shows the changes in radiomics features
between baseline and follow-up examinations during treatment.
This study is believed to be the first to use CTP-based
delta-radiomics features to identify collateral vessel formation
after revascularization. In the present study, the radiomics
changes in MMD before and after revascularization reflected
the treatment response. Two machine learning classifiers were
trained to identify the formation of collateral vessels. The results
showed that the classifiers SVM and KNN had good diagnostic
performance with AUC values 0.933 and 0.867, respectively,
and no difference was noted between the AUC of SVM and
KNN (p = 0.394). The algorithms of SVM and KNN are widely
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FIGURE 5

Information of 11 selected features and corresponding feature weights.

used in machine learning (Lee, 2010; Dong et al., 2020). In
the present study, the first important radiomics feature was
square_firstorder_InterquartileRange. It is a first-order feature
and reflects changes in the image array intensity. A previous
study found that texture features such as Entropy, uniformity,
kurtosis, skewness, and standard deviation of the pixel
distribution histogram were correlated with clinical outcomes
(Ng et al., 2013). These results implied that the endangered brain
tissue was reperfused after vascular anastomosis, and thus led to
the intensity and texture change in this area.

The present study had some limitations. The sample size
was relatively small. Multicenter prospective studies with a
larger set of clinical data are necessary to validate the radiomics

TABLE 4 Performance of the two feature classifiers for the prediction
of collateral vessels formation after revascularization in
moyamoya disease.

Accuracy Precision Recall F1 score AUC (95% CI)

SVM 0.818 0.750 1.000 0.857 0.933 (0.618–0.999)

KNN 0.636 0.667 0.667 0.667 0.867 (0.536–0.991)

SVM support vector machine, KNN k-nearest neighbors, AUC area under the curve.

FIGURE 6

Comparison of receiver operating characteristic curves of the
two classifiers.

model. In addition, the radiomic features extracted in this study
were based on two-dimensional (2D) images. Ideally, three-
dimensional (3D) image feature extraction should be performed.
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The study of Lubner et al. (2015) found that the 2D and 3D
CT texture results were fairly similar. In addition, there were
previous studies used the 2D ROIs to build the radiomics and
achieved good performance (Zhou et al., 2019; Arendt et al.,
2021).

Conclusion

CT perfusion could quantitatively access the cerebral
hemodynamic changes in MMD before and after
revascularization, and TTD maps was the most sensitive
parameter in evaluating the cerebral perfusion improvement
after revascularization in patients with MMD. The TTD-
based delta-radiomics model has the potential to identify
collateral vessel formation after the operation, and it
may serve as an alternative way to evaluating the MMD
revascularization outcomes.
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