
RESEARCH ARTICLE

Mining Chemical Activity Status from High-
Throughput Screening Assays
Othman Soufan1, Wail Ba-alawi1, Moataz Afeef1, Magbubah Essack1, Valentin Rodionov2,
Panos Kalnis3, Vladimir B. Bajic1*

1 King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research
Center (CBRC), Thuwal 23955–6900, Saudi Arabia, 2 King Abdullah University of Science and Technology
(KAUST), KAUST Catalysis Center (KCC), Thuwal 23955–6900, Saudi Arabia, 3 King Abdullah University of
Science and Technology (KAUST), Infocloud Group, Computer, Electrical and Mathematical Sciences and
Engineering Division (CEMSE), Thuwal 23955–6900, Saudi Arabia

* vladimir.bajic@kaust.edu.sa

Abstract
High-throughput screening (HTS) experiments provide a valuable resource that reports bio-

logical activity of numerous chemical compounds relative to their molecular targets. Building

computational models that accurately predict such activity status (active vs. inactive) in spe-

cific assays is a challenging task given the large volume of data and frequently small propor-

tion of active compounds relative to the inactive ones. We developed a method,

DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a

class of HTP assays, our method achieves considerably better results than the current

state-of-the-art-solutions. We achieved this by modification of a minority oversampling tech-

nique. To demonstrate that DRAMOTE is performing better than the other methods, we per-

formed a comprehensive comparison analysis with several other methods and evaluated

them on data from 11 PubChem assays through 1,350 experiments that involved approxi-

mately 500,000 interactions between chemicals and their target proteins. As an example of

potential use, we applied DRAMOTE to develop robust models for predicting FDA approved

drugs that have high probability to interact with the thyroid stimulating hormone receptor

(TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking

results and literature information. The results based on approximately 500,000 interactions

suggest that DRAMOTE has performed the best and that it can be used for developing

robust virtual screening models. The datasets and implementation of all solutions are avail-

able as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on

Figshare.

Introduction
Experimental screening of chemical compounds for their biological activity has partial cover-
age and leaves millions of chemical compounds untested [1]. Such experiments are usually pur-
sued through high-throughput screening (HTS) assays in which chemical molecules (e.g.
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drugs) are tested against specific biological targets (e.g. protein) [2]. With existence of emerging
and growing public repositories (e.g. PubChem database [3]) that provide access to biological
activity information from HTS experiments, there is an opportunity to develop computational
methods to predict the biological activities of millions of chemical compounds that remain
untested [3, 4]. For example, data mining techniques may help narrow down promising candi-
date chemicals aimed at interaction with specific molecular targets before they are experimen-
tally evaluated [5–7]. This, in principle, may help in speeding up the drug discovery process.
Developing accurate prediction models for in silicoHTS is however challenging. For datasets
such as those obtained from HTS assays, achieving high prediction accuracy may be misleading
since this may be accompanied by unacceptable false positive rate [8] as high accuracy does not
always imply small proportion of false predictions. The fact that should be considered is that
HTS experimental data is usually characterized by a great disproportion of active and inactive
chemical compounds out of thousands screened [9]. This class imbalance may affect accuracy
and precision of resultant predictors of activity status in individual assays [10]. If the imbalance
ratio (IR) between the inactive and active compound classes can be adjusted, the performance
may improve [10–12].

In this study we examine robust solutions that can be used for in silico screening of com-
pound activity status in individual HTS assays that are characterized by great class imbalance.
For such cases, several data mining techniques have been developed to model chemical-target
interactions [13–16]. These techniques differ from virtual screening based on ligand-protein
docking [17], as they do not require any prior knowledge about the 3D surface representation
of the target and its cognate interactor. Also, once trained, data mining models are usually
faster than ligand-protein docking models in predicting biological activity status of a given
chemical compound [18].Several web tools for predicting chemical-protein interactions have
also been developed [19–22].Decision trees are used by Han et al. [23] to predict the activity of
a chemical compound based on the standard set of PubChem features that define chemical fin-
gerprints [24]. The study demonstrated that the great imbalance between data classes limits
classification accuracy. Different studies [25, 26] were focused on finding solution to this prob-
lem. Cost-sensitive classifiers were explored by Schierz et al. [25] to assign a prior importance
weight to the minority class for training, whereas an optimization procedure for selecting infor-
mative samples, specifically aimed at enhancing performance of support vector machines
(SVMs) was also explored [26].

Although good progress has been achieved for building predictive models for HTS data,
there are still many issues in current methods that need to be investigated further.

First, many studies have developed prediction models for HTS data without considering
precision or other precision relevant scores like F1Score in optimizing the performance of these
models. Recently, some studies [27–29] explored applying random under-sampling or syn-
thetic over-sampling techniques to some assays (BioAssays) from the PubChem database.
These studies did not focus on or report the precision of predictions and their impact over the
number of false positives, which are highly relevant [9, 11, 12, 30]. In the case of in silico
screening of chemical activity status, the increased precision will reduce the number of falsely
predicted candidate compounds thus reducing the cost of the potential follow up laboratory
experiments [8].

Second, generating and selecting a good subset of features is an important step in developing
a well-performing prediction model, and may help in the cases of data with large class imbal-
ance [31, 32]. Few efforts, however, have been dedicated for finding strong discriminating fea-
tures for HTS data [26, 33, 34].

To tackle the above-mentioned problems, in this study we examine robust solutions to be
used for in silico screening of compound activity status in individual HTS assays. For this
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purpose, we run experiments using various state-of-the-art methods and compare their effect
on prediction of chemical activity status using different performance metrics. Also, we devel-
oped a variant method, DRAMOTE, based on ideas from active learning, which favors selec-
tion of precision-informative training samples. We describe the data by a rich set of features
that includes PubChem fingerprint features. The set of feature we generated is, to the best of
our knowledge, the most comprehensive feature set used for problems of this type. This set of
features was further subjected to a feature selection method to propose a set of features that
may result in an improved prediction performance in comparison to the PubChem fingerprint
features alone. The results of 1,350 in silico experiments that involved close to 500,000 interac-
tions, suggest that DRAMOTE is the most efficient variant of data preprocessing in the case of
great class imbalance based on the datasets from PubChem we used. DRAMOTE, which favors
selection of interactions that enhances the overall precision of a learning model, improves
F1Score on average by over 41%, relative to other methods. Finally, we illustrate the usefulness
of our DRAMOTE method through a case study of screening all FDA approved drugs in the
DrugBank database [35] against the thyroid stimulating hormone receptor (TSHR) in humans
and suggest top 10 candidates that potentially interact with TSHR. Our findings are further
partially and indirectly supported by 3D docking results and literature information.

Materials and Methods

Datasets
PubChem BioAssay Database. For this study we selected nine datasets from the Pub-

Chem BioAssay database where targets are proteins except for one dataset where the target is
cell-based. Although we have a special interest in protein targets, we choose a case that is cell-
based to illustrate the generality of our method. It is worth noting that all the datasets we chose
are based on the confirmatory assays and we avoided selection of primary assays based on rec-
ommendation of [25]. The datasets are based on the PubChem's BioAssay protocol, where
assays can be referenced by a unique AID identifier. A single BioAssay reports experimental
activity results for a set of chemical compounds over a specific biological target, which in most
cases is a protein. So, a BioAssay dataset contains a list of chemical compounds with assigned
labels, where label ‘+1’ indicates that the compound shows activity with the examined target,
while ‘-1’ relates to inactive compounds. Table 1 provides a summary of the datasets used in
the study. Eight of these datasets AID: 596, AID: 618, AID: 644, AID: 886, AID: 899, AID: 938,
AID: 743042 and AID: 743288, were chosen to demonstrate different imbalance ratios (IR)
between the active and inactive compound classes. The ninth one, called BenchSet, is a bench-
mark dataset that is obtained by merging three BioAssays, AID: 773, AID: 1006 and AID: 1379,
as described previously by Li et al. [26]. In total, these datasets are composed of 11 BioAssays
that represent 487,557 inactive and active interactions and offer a wide variety of class imbal-
ance ratios ranging from 0.26% (i.e. high IR) to 48% (i.e. small IR), where IR is represented as
ratio of the number of minority active cases to the number of majority inactive cases. For
reporting performance over these datasets, 5-fold cross-validation setup is followed in all
computational experiments. Given the large size of our experimental datasets (as shown in
Table 1), 5-fold cross-validation for evaluation is a proper choice for computing a representa-
tive (i.e. non-biased) estimate [36, 37]. In order to avoid any potential bias, testing data is never
used in the training process.

DrugBank database. The DrugBank database data (accessed on August, 2014) was down-
loaded from the website: http://www.drugbank.ca/ [35]. The initial database had about 6,800
drug entries including 1,491 FDA-approved drugs. We considered only the FDA-approved
drug list to screen the model we developed for thyroid stimulating hormone receptor (TSHR).
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Generation of features
Generating and selecting a good subset of features is an important step in developing a well-
performing classification model, and may also help in the cases of large class imbalance [31,
32]. A variety of feature sets of varying complexity have been compiled for virtual screening
and prediction of biological activity [25, 38]. In this study, we used the combined set of finger-
print features from two major cheminformatics toolkits, RDKit [39] and OpenBabel [40], as
well as features from PubChem fingerprints [24]. OpenBabel [40] was specifically used to gen-
erate different SMARTS patterns and 3D spectrophore descriptors. In addition, several basic
chemical descriptors, such as the molecular weight, number of H-acceptors and donors, and
Log-P, were calculated. The finally generated set of features contained 2,940 features. A detailed
description of all the features used in the study, as well as the ones we selected, is provided in
S1 Text. This, to the best of our knowledge, is the largest set of features compiled for use in pre-
diction of chemical activity status from HTS assays.

Feature selection (FS)
A large set of compiled features, as described in the previous section, leads to generating infor-
mation of different level of redundancy, as well as introduces features that may not be relevant
to the types of biological activity of chemicals as observed in particular assays. A good FS
method should be able to remove a lot of such redundant or irrelevant information [41]. FS
methods, in general, can be categorized into: the filters, the wrappers, and those based on the
embedded FS models [32, 42]. In this study, the wrapper FS model of DWFS tool [43], which
selects features so as to maximize the performance of a classifier, is applied. The default setup
of DWFS tool was used for FS experiments. As an illustration, an analysis of the effect of FS on
the classification performance for one of the datasets can be found in S2 Text.

Classifiers
Six widely used classifiers are applied as a basis for comparing different solutions of the class
imbalance problem for activity testing in PubChem assays. These include support vector

Table 1. Summary of experimental datasets including reference IDs in PubChemDatabase.

Dataset Target Name (Target) Type of interacting
compounds

Minority Class
Size

Majority Class
Size

IR
Ratio

BenchSet (AID: 773, AID: 1006
and AID: 1379)

Luciferase [Photuris pennsylvanica](Protein) Inhibitors 487 184,154 1:377

AID 596 Microtubule-associated protein tau [Homo
sapiens] (Protein)

Binders 1,391 66,726 1:48

AID 618 Matrix metalloproteinase 1, partial [Homo
sapiens] (Protein)

Inhibitors 537 86,197 1:160

AID 644 Rho-associated protein kinase 2 [Homo
sapiens] (Protein)

Inhibitors 67 139 1:2

AID 886 Chain B, The Structure Of Wild-Type
Human Hadh2 (Protein)

Inhibitors 2,463 64,616 1:26

AID 899 Cytochrome P450 2C19 precursor [Homo
sapiens] (Protein)

Inhibitors and Substrates 1,901 6,443 1:3

AID 938 Thyroid stimulating hormone receptor [Homo
sapiens] (Protein)

Agonist Activators 1,794 60,806 1:34

AID 743042 Androgen receptor [Homo sapiens] (Protein) Antagonist Activators 674 6,939 1:10

AID 743288 Hek293 cell line (Cell) Binders 95 2,128 1:22

Total Interactions 487,557

doi:10.1371/journal.pone.0144426.t001
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machines [44, 45] (SVM) with linear and radial basis function (RBF) kernels, K-nearest neigh-
bors (KNN; K = 3) [46], Linear Discriminant Analysis (LDA) [47], Naïve Bayes Classifier
(NBC) [48] and Random Forests (RF) [49]. For SVM, LIBSVM [50] implementation was used
for building the different SVMmodels. The default cost parameter as well as RBF kernel widths
were used.

Performance evaluation
Performance of all methods referred to in the results section is obtained form a 5-fold cross-
validation. The testing fold was never used in the training phase. Since we performed 5-fold
cross-validation, with six classifiers and five class imbalance solutions, we performed 150 (5
folds × 6 classifiers × 5 solutions = 150) experiments for each dataset and 1,350 in total for all
nine datasets. We report the average performance over the 5-folds of every dataset, as well as
the standard deviation. In addition, we perform significance analysis between the methods
using one-way analysis of variance (ANOVA). In cases where there is a significant difference
between the methods, we further apply the well-known pair-wise Tukey mean-mean multiple
comparison (MCC) to determine which pairs are significantly different, while simultaneously
examining all methods [see S1 Table]. Giving the characteristics of this problem and the nature
of having highly imbalanced classes, we provide results over many performance metrics to gain
a generic view of the performances of different solutions. Let TP be the number of true posi-
tives, FP the number of false positives, TN the number of true negatives and FN the number of
false negatives. The results in this study are reported based on Eqs (1–7).

sensitivity ¼ TP=ðTP þ FNÞ ð1Þ

specificity ¼ TN=ðTN þ FP ð2Þ

precision ¼ TP=ðTP þ FPÞ ð3Þ

GMean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity � specificity

p
ð4Þ

F1Score ¼ 2� precision� sensitivity
precisionþ sensitivity

ð5Þ

F0:5Score ¼ 1:25� precision� sensitivity
0:25� precisionþ sensitivity

ð6Þ

ROC AUC ¼ Area under the receiver operating characteristic curve ð7Þ
The predictions of a classifier for a HTS dataset should result in high precision in order for

the set of predicted active compounds to contain as few FP predictions as possible. The number
of FPs is a crucial factor in measuring the reliability of predictions as minimizing it leads to
increased chances of successful follow up experiments.

F1Score [9] is a summary metric that computes the weighted average of precision and sensi-
tivity. It is also known as balanced F-Score since it balances both precision and sensitivity
equally. F0.5Score [11, 51, 52] is another summary metric that weights precision twice as much
as sensitivity. Given that intention to use the classifier for computational screening of millions
of compounds, sensitivity is of less importance than precision. A conservative sensitivity rate
with higher precision will still lead to large number of accurate new findings when screening a
large number of candidates in the context of HTS. Thus, we give preference to precision and
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F0.5Score as more indicative performance measures in such scenario. We consider also in the
results section, discussion over sensitivity and F1Score. For other metrics like specificity and
ROC AUC scores are reported in details in S2 Table.

Methods
Data preprocessing for class imbalance case. HTS experiments are usually characterized

by only a small number of active chemical compounds obtained after screening a big com-
pound set. This nature of imbalanced distributions of the active and inactive compound classes
may lead to a degraded classification performance that should be addressed. The class imbal-
ance problem is one of the challenging tasks that received a lot of attention [53–55]. There
exists a wide variety of state-of-the-art solutions of the class imbalance problem, which can be
categorized abstractly into algorithmic and data-based ones [9]. In our study we consider the
following approaches: majority random under-sampling (RU), synthetic minority oversam-
pling technique (SMOTE) [56], granular SVMs for under-sampling (GSVM-RU) [57, 58],
majority weighted minority over-sampling technique (MWMOTE) [59] and our precision-
aware proposed method DRAMOTE. Further details about the existing methods are provided
in S3 Text.

DRAMOTE: our proposed solution. There are certain limitations with the existing solu-
tions for data preprocessing in the case of class imbalance. Methods like RU and SMOTE apply
sampling procedures to data without considering the effect of sampling on the classification
performance. These methods are independent of any feedback from the classifier and may
affect the performance only to a certain limit. In other words, these methods do not provide a
mechanism to have a control over precision or other performance metrics. Other algorithms
like GSVM-RU, take into account the performance of the classifier, but are limited to a specific
classifier, e.g. GSVM-RU is limited to SVM and cannot be applied to other classifiers.
MWMOTE needs more parameters for selecting an informative set of minority samples and is
limited to optimize the performance over nearest neighbor type of classifiers. We propose here
a novel method motivated by ideas from active learning (AL) (for more details about AL see S3
Text). The method is based on establishing a feedback loop with the classifier to highlight
points contributing most to its precision (other performance metrics can be used).

Fig 1 gives a simplified illustration of DRAMOTE, where minority samples are colored
based on how informative they are towards minimizing the false positives and this can be com-
pared with SMOTE which does not differentiate between usefulness levels of minority samples.
Another major difference between DRAMOTE and SMOTE is choosing the direction for syn-
thetically generating the new samples as illustrated by the blue points that highlight this differ-
ence in parts A and B of the Fig 1. Further details about DRAMOTE including mathematical
equations and pseudocode details are provided in S3 Text.

Results and Discussion

Performance Comparison
Wemade a number of experiments to evaluate performance of the methods we used. The
results are provided in Table 2 over the analyzed BioAssays. Table 2 shows the 5-fold cross-val-
idation comparison results between the different class imbalance solutions. The summary
scores in Table 2 are based on averaging the performance over six types of classifiers for each
dataset. Another summary results with statistical significance analysis including p-values can
be found in S1 Table and the detailed results including other performance metrics can be
found in S2 Table.
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Fig 1. Illustration of generating synthetic instances. A) SMOTE generates the light blue samples by interpolation between a randomly chosen minority
sample and k-nearest neighbors. B) DRAMOTE generates the light blue samples by choosing a minority sample based on its importance (i.e. contribution to
precision) and the direction towards a safe region. A minority sample (red colored) that is very close to the majority negatives circles will be probably
misclassified as a negative one and hence, it should get more support compared to the green colored minority samples. Once a minority sample is chosen,
another point needs to be chosen for interpolation. The direction of interpolation can be controlled by choosing a nearest neighbor which is not overlapping
with the negative class. This, in turn, helps in providing support for the red colored point while not harming the classifier performance in its surrounding region.

doi:10.1371/journal.pone.0144426.g001
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Table 2. Comparison of the data preprocessing methods. Larger standard deviation values are the result of averaging over different types of classifiers
in this summary table.

Dataset Method Sensitivity % Precision % F1 Score % F0.5 Score %

BenchSet RU 85.67 (±2.5) 1.07 (±0.29) 2.93 (±0.56) 1.33 (±0.35)

GSVM-RU 68.53 (±6) 2.73 (±2.05) 5.13 (±3.7) 3.36 (±2.49)

SMOTE 62.79 (±15.32) 10.44 (±16.11) 12.44 (±13.64) 10.87 (±15.17)

MWMOTE 69.49 (±13.18) 4.9 (±6.7) 7.87 (±9.08) 5.75 (±7.52)

DRAMOTE 58.14 (±19.2) 13.35 (±22.66) 11.62 (±11.42) 11.68 (±16.57)

[26] 88.46 5 NAa NAa

AID 596 RU 75.9 (±3.04) 5.3 (±1.17) 9.89 (±2.07) 6.51 (±1.41)

GSVM-RU 82.78 (±7.93) 4.56 (±2.78) 8.46 (±4.78) 5.59 (±3.34)

SMOTE 64.02 (±13.8) 10.9 (±8.95) 16.38 (±9.28) 12.47 (±9.16)

MWMOTE 62.1 (±14.3) 10.8 (±9.2) 16.11 (±9.34) 12.32 (±9.37)

DRAMOTE 42.9 (±13.52) 18.41 (±17.81) 19.43 (±9.63) 18 (±13.61)

AID 618 RU 72.54 (±3.41) 1.38 (±0.31) 2.7 (±0.59) 1.71 (±0.38)

GSVM-RU 52.42 (±11.76) 2.64 (±1.48) 4.89 (±2.59) 3.24 (±1.79)

SMOTE 43.01 (±17.87) 10.07 (±12.36) 10.93 (±8.36) 10.01 (±10.42)

MWMOTE 42.34 (±18.53) 10.31 (±12.72) 11.38 (±8.12) 10.24 (±10.49)

DRAMOTE 29.69 (±15.26) 12.78 (±15.61) 9.73 (±6.09) 10.58 (±10.46)

AID 644 RU 50.29 (±4.46) 35.08 (±2.56) 40.32 (±3.1) 37.3 (±2.49)

GSVM-RU 71.28 (±12.76) 36.02 (±2.51) 46.62 (±3.23) 39.84 (±2.48)

SMOTE 47.3 (±14.1) 41.78 (±7.23) 40.95 (±3.21) 41.65 (±3.72)

MWMOTE 47.37 (±12.37) 42.22 (±6.68) 41.99 (±3.24) 42.4 (±4.42)

DRAMOTE 40.09 (±8.51) 43.14 (±9.88) 38.84 (±1.64) 41.49 (±5.79)

AID 886 RU 99.54 (±0.31) 67.65 (±2.55) 80.52 (±1.75) 72.27 (±2.31)

GSVM-RU 99.25 (±0.97) 54.51 (±26.52) 65.87 (±29.63) 58.53 (±27.76)

SMOTE 96.94 (±4.11) 75.2 (±4.92) 84.43 (±2.51) 78.65 (±3.99)

MWMOTE 97.03 (±3.27) 74.32 (±4.81) 83.98 (±2.75) 77.9 (±4.06)

DRAMOTE 94.38 (±8.1) 75.69 (±6.05) 83.55 (±3.72) 78.56 (±4.17)

AID 899 RU 77.65 (±3.43) 45.96 (±7.07) 57.33 (±5.46) 49.89 (±6.7)

GSVM-RU 97.29 (±3.22) 25.82 (±2.6) 40.69 (±2.84) 30.25 (±2.76)

SMOTE 70.44 (±8.14) 53.52 (±14.02) 59.07 (±6.9) 55.32 (±11.22)

MWMOTE 70.5 (±8.48) 52.61 (±13.66) 58.55 (±6.55) 54.55 (±10.83)

DRAMOTE 64.51 (±8.01) 53.61 (±14.43) 56.73 (±5.38) 54.47 (±10.69)

AID 938 RU 99.42 (±0.41) 66.17 (±2) 79.4 (±1.45) 37.3 (±2.49)

GSVM-RU 99.16 (±0.5) 45.85 (±17.01) 56.79 (±17.22) 49.64 (±24.09)

SMOTE 91.86 (±0.9) 80.05 (±1.8) 84 (±1.34) 81.94 (±11.11)

MWMOTE 94.49 (±8.2) 70.7 (±8) 80.74 (±1.9) 74.41 (±6.24)

DRAMOTE 91.39 (±4) 81.02 (±2.03) 84.32 (±3) 82.66 (±10.73)

AID 743042 RU 71.34 (±7.44) 17.22 (±2.83) 27.66 (±4) 20.28 (±3.21)

GSVM-RU 93.21 (±7.7) 11.11 (±0.65) 19.81 (±0.9) 13.47 (±0.74)

SMOTE 33.38 (±16.32) 36.99 (±21.61) 27.71 (±8.52) 29.84 (±10.97)

MWMOTE 35.52 (±14.9) 36.54 (±18.4) 30.56 (±7.01) 32.18 (±9.78)

DRAMOTE 35.38 (±14.13) 38.69 (±20.85) 30.76 (±6.04) 33.03 (±10.23)

AID 743288 RU 68.09 (±5.53) 8.38 (±1.07) 14.89 (±1.77) 10.16 (±1.27)

GSVM-RU 86.33 (±6.49) 5.76 (±0.4) 10.78 (±0.68) 7.08 (±0.48)

SMOTE 25.74 (±18.34) 26.99 (±23.95) 24.56 (±6.5) 24.05 (±10.15)

MWMOTE 23.8 (±17.4) 33.02 (±21.18) 23.75 (±9.67) 25.78 (±10.32)

DRAMOTE 27.88 (±14.66) 34.13 (±20.58) 27.03 (±6.97) 29.02 (±10.42)

a NA indicates that a particular measure was not reported in the referenced work

doi:10.1371/journal.pone.0144426.t002
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In Table 2, we consider examining more closely sensitivity, precision, F1Score and F0.5Score
[51] for evaluating classification results on HTS types of data. These performance metrics shall
better reflect the impact over the data with imbalanced classes [11], but other performance
metrics like specificity, GMean, and ROC-AUC are also included in S2 Table.

To see where a particular solution stands among all the remaining ones, we also ranked the
performance of each of the methods for every classifier based on the F1Score. We then averaged
the rank position for each of the methods. The method with the lowest score is the best per-
forming. We provide in Table 3 the rank position and averaged rank position for each of the
methods. Table 3 clearly demonstrates that overall DRAMOTE and SMOTE were the best per-
forming method in terms of F1Score.

SMOTE, MWMOTE and DRAMOTE are all methods that generate synthetic data with
exactly the same number of new over-sampling points. However, DRAMOTE gives preference
to generating points contributing more to the precision of a particular classifier. Results of
Table 2 confirm this in all nine datasets, based on the fact that DRAMOTE achieves the highest
precision with an improvement of a factor of 2.4 relative to precision of every other method, on
average. In three out of nine cases SMOTE achieves the best in terms of F1Score and in four
cases the second best. For four out of nine datasets, DRAMOTE (compared to other solutions)
achieved the highest F1Score, while appeared the best in terms of F0.5Score for six out of the
nine datasets.

Compared to GSVM-RU that was reported as an effective method for PubChem BioAssays
[26], DRAMOTE shows a significant improvement in precision for five out of nine datasets,
while sacrifices sensitivity significantly as compared to GSVM-RU in only three cases [see S1
Table].

Compounds Interacting with Thyroid Stimulating Hormone Receptor
(TSHR)
This section describes a case study for prediction of activity status of FDA drugs with TSHR
protein. TSHR is a key protein in the control of thyroid function and belongs to the superfam-
ily of G-protein-coupled receptors (GPCRs) [60]. Thyroid stimulating hormone (TSH) is the
main factor responsible for regulating both differentiated function and growth of thyroid follic-
ular epithelial cells [61]. Specifically, BioAssay AID 938 in PubChem database is an assay for
finding agonists of the TSHR, which is based on stimulation of cAMP production that causes
the cyclic nucleotide gated ion channel (CNG) to open to control for compounds signaling
through endogenous receptors and other targets of HEK 293 cells.

The biochemical relevance of the 10 top ranked predictions by DRAMOTE was further
indirectly supported by in silico docking results and literature. For this case study, we use the
previous results to select a proper solution to preprocess the data and then, build a system

Table 3. Ranking of methods based on F1Score for every classifier.

Classifier RU GSVM-RU SMOTE MWMOTE DRAMOTE

SVM-L 3 5 1 4 2

SVM-R 4 5 2 3 1

KNN 3 5 2 4 1

LDA 4 5 2 3 1

NBC 1 4 3 5 2

RF 4 5 1 3 2

Average 3.17 4.83 1.83 3.67 1.50

doi:10.1371/journal.pone.0144426.t003
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based on ensemble of all examined classifiers. Following is the discussion of the results related
to this carefully tuned system.

Computational prediction and support. The application of DRAMOTE to the TSHR
dataset (AID 938) resulted in precision of 81.02% and sensitivity of 91.39%. After building an
ensemble of all six trained classifiers, the performance improved by maintaining similar level
of precision (~81%) but with a sensitivity of 98.84% (i.e. more than 7% increase in sensitivity).

We investigated the potential interaction of approved drugs from the DrugBank database
[35] over TSHR. The ensemble of classifiers trained using BioAssay (AID 938) as its training
set, is used to computationally screen approved drugs extracted from DrugBank. We report the
top 10 predictions as candidate drugs with strong potential to be interact with TSHR. Table 4
provides a brief description of each drug and highlights their ranking score based on the
ensemble system. The drugs, also, docked to TSHR are shown with their corresponding names
and structures in S1 Fig.

Docking simulations can indirectly support the previous top findings in our data-driven
approach. While docking simulations are prone to false positives, the presence of consistent
levels in binding values between our findings and the top experimentally ranked interactions
reported in AID 938 gives more confidence about our suggested candidates having active inter-
action status with TSHR. Fig 2 illustrates comparison of the docking scores of the top 10 pre-
dictions suggested by DRAMOTE, against two other sets of docking experiments we used as
references for evaluation. The two sets of docking experiments include the actual top 10 experi-
mental interactions as ranked and reported in PubChem database for AID 938 and another set
(Random set) of 10 randomly selected drugs from the approved list of DrugBank [38]. In Fig 2,
the listed energies correspond to the lowest predicted binding energy and they are given in
kcal/mol as calculated by AutoDock Vina [62]. Part B of Fig 2 provides the root mean squared
distance (RMSD) values of the best poses of each drug compound docked to an activation site
in TSHR. While difference is not apparent with regard to the free energy values between all the
three sets of docking experiments, the RMSD levels achieved by docking predictions using
DRAMOTE are very similar to the levels achieved by the experimentally validated ones as com-
pared to the Random set. Detailed docking procedure and scores are provided in S4 Text.

A literature review of our top predictions points out that Tasosartan (third ranked predic-
tion) and Forasartan (eighth ranked prediction) are both angiotensin II receptor antagonist.
These drugs are used to treat hypertension [63] and are known to block the renin-angiotensin
system thereby protecting the kidney from damage caused by increased kidney blood pressure

Table 4. Top 10 ranked predictions by DRAMOTE for BioAssay 938 with TSHR protein target.

Rank DrugBank
ID

Drug Name Description Ensemble System
Score

1 DB00904 Ondansetron Treatment of nausea and vomiting caused by cytotoxic chemotherapy drugs 0.98

2 DB00962 Zaleplon Sedative/hypnotic, mainly used for insomnia 0.97

3 DB01349 Tasosartan Treat patients with essential hypertension 0.966

4 DB00405 Dexbrompheniramine Treat allergic conditions such as hay fever or urticaria 0.96

5 DB01261 Sitagliptin Control of type 2 diabetes mellitus 0.958

6 DB06439 Tyloxapol Non-ionic detergent often used as a surfactant 0.957

7 DB00889 Granisetron Antiemetic and antinauseant for cancer chemotherapy patients 0.954

8 DB01342 Forasartan Used alone or with other antihypertensive agents to treat hypertension 0.953

9 DB00748 Carbinoxamine First generation antihistamine that competes with free histamine for binding at
HA-receptor sites

0.95

10 DB06267 Udenafil Treat erectile dysfunction 0.945

doi:10.1371/journal.pone.0144426.t004
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[64]. Several studies have demonstrated a positive correlation between high blood pressure and
the concentration of thyroid stimulating hormone [65–67]. Literature review for remaining top
ranked drugs can be found in S5 Text. These findings strengthen our proposition that the pro-
posed top 10 predictions could be candidate drugs for interacting with TSHR. In order to show

Fig 2. Boxplot over free energy of binding and RMSD values for experimental, random and DRAMOTE
docking results. The random set is based on choosing 10 random drugs from approved drugs list in
DrugBank database. The experimental set includes the top 10 drugs as listed in the original BioAssay AID
938 of PubChem database.

doi:10.1371/journal.pone.0144426.g002
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that DRAMOTE can be used for drugs for different diseases other than those related to TSHR,
an additional top ranked list is included in S6 Text for 17beta-Hydroxysteroid Dehydrogenase
Type 10 (17β-HSD10) as the protein target in AID 886 assay. The expression level of this pro-
tein is elevated in the brains of Alzheimer’s disease patients [68]. Thus, the predicted/suggested
drugs (S6 Text) could serve as potential drugs for Alzheimer’s disease aimed to inhibit expres-
sion of 17β-HSD10 since AID 886 assay is testing inhibition of 17β-HSD10.

Conclusions
In this study, we extensively compare several state-of-the-art methods that handle class imbal-
ance problem based on advanced sampling techniques. The results based on approximately
500,000 interactions suggest that DRAMOTE can be used for developing robust virtual screen-
ing models to recognize candidate chemical compounds for potential activity with specific
molecular targets in specific assays. Moreover, we applied DRAMOTE to screen for drugs likely
to interact with the TSHR as a case study and we presented the top 10 drugs that potentially
interact with TSHR along with indirect supporting evidence of their validity from literature
and simulated 3D docking.

Supporting Information
S1 Fig. Docking output results for Carbinoxamine, Granisetron, Ondansetron, Zalepon,
Sitagliptin, Forasartan, Tasosartan, Udenafil, Tyloxapol with TSHR. The orange color high-
lights the top docking results of a drug binding to the chosen activation site.
(TIFF)

S1 Table. Extended comparison of existing and proposed methods including an analysis of
significance of difference between the reported performance metrics.
(DOCX)

S2 Table. Detailed comparison results for each dataset.Mean and variance of 5-fold cross-
validation performance scores are displayed for each method and for each used classifiers.
(DOCX)

S1 Text. Summary description of features generated for chemical compounds. The file also
includes most of the features we selected after applying variable selection over the originals set
of generated features.
(DOCX)

S2 Text. Effect of feature selection results on classification performance.
(DOCX)

S3 Text. Details about the existing state-of-the-art solutions used in the study and their
input parameters. The file includes also all information about DRAMOTE and its procedure.
(DOCX)

S4 Text. Detailed docking scores including the set of random selected drugs and descrip-
tion of the docking procedure.
(DOCX)

S5 Text. Extended literature review of the top predicted FDA drugs for the TSHR in
humans.
(DOCX)
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S6 Text. A list of the top ranked prediction by DRAMOTE for potential drugs interacting
with 17β-HSD10 in humans.
(DOCX)
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