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Abstract
Background
Patients with invasive mechanical ventilation may be at high risk of acquiring venous thromboembolism
(VTE). We aim to develop risk assessment models for predicting the improvement of VTE in invasively
ventilated patients.

Methodology
A total of 6,734 invasively ventilated patients enrolled from the Medical Information Mart for Intensive
Care-III (MIMIC-III) database were used as input for model development and internal validation, while data
from 168 patients from Nanfang Hospital were used for external validation. Logistic regression was
performed based on predictive factors derived from least absolute shrinkage and selection operator (LASSO)
regression analysis and logistic regression with backward selection to develop two Risk Assessment Models
(RAM), namely, I and II, for the prediction of VTE, respectively. Model selection was performed by
evaluation of the area under the receiver operating characteristic curve (AUC), the goodness of fit with
calibration curves, and decision curve analyses (DCA).

Results
RAM-I included prior history of VTE, in-hospital immobilization, infection, glucose, the use of antiplatelet,
and activated partial thromboplastin time (APTT) as variables, while RAM-II included prior history of VTE,
in-hospital immobilization, infection, ischemic stroke, glucose, the use of antiplatelet and APTT as
variables. Compared with RAM-I and ICU-Venous Thromboembolism Score, RAM-II exhibited better
discrimination in the training dataset (AUC = 0.826), internal validation dataset (AUC = 0.771), and external
validation dataset (AUC = 0.770). Additionally, DCA demonstrated that RAM-II was clinically beneficial.
Inspection of the calibration curves revealed good agreement between the predictions and observations.

Conclusions
A RAM for VTE in invasively ventilated patients was developed with reasonable performance.

Categories: Internal Medicine, Pulmonology
Keywords: critically ill, risk assessment model, invasive mechanical ventilation, intensive care unit, venous
thromboembolism

Introduction
Venous thromboembolism (VTE) is the third leading cause of cardiovascular-related death occurrences
worldwide after acute myocardial infarction and stroke [1]. VTE commonly presents as deep vein thrombosis
(DVT) of the lower extremities and pulmonary embolism (PE). Patients in the intensive care unit (ICU) may
be at high risk of presenting with VTE due to underlying medical illnesses, prolonged immobilization, and
the need for mechanical ventilation [2]. The incidence of VTE in critically ill patients ranges between 7.5%
and 31% [3], which is almost twice as high as patients in general wards [2]. On the other hand, patients
presenting with VTE complications tend to have longer ICU and hospital stays, as well as longer duration of
mechanical ventilation, compared to those without VTE [4].

Prophylactic anticoagulation is recommended for all critically ill patients without contraindications [5].
However, many patients still develop VTE, even if appropriate prophylactic anticoagulation has been
enforced, especially those requiring prolonged mechanical ventilation [2]. Undetected PE may prolong the
stay from mechanical ventilation. Using therapeutic-dose anticoagulants directly without imaging proof can
increase the risk of bleeding among invasively ventilated patients. Repeated and goal-directed bedside
ultrasonography allows physicians to monitor the condition of the veins of the patient’s extremities.
Nevertheless, VTE remains one of the most common unsuspected autopsy findings in critically ill patients
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[6]. Moreover, the necessity of computed tomography pulmonary angiography (CTPA) should be carefully
evaluated due to the risk during transportation and nephrotoxicity caused by contrast agents. Therefore, risk
assessment of invasively ventilated patients for more aggressive prophylactic strategies should be
considered to reduce the potential morbidity associated with untreated VTE in this high-risk population [2].

Although scores for the risk prediction of VTE among hospitalized patients exist, a study has shown that
Wells and revised Geneva scores are not reliable predictors of PE for patients in the ICU [7]. Compared to
non-critically ill patients, invasively ventilated patients are under prolonged immobilization, have
complicated comorbidities, and undergo several invasive treatments, which are variables that were not
included in most risk prediction models. Recently, a VTE risk prediction tool for critically ill patients,
namely, ICU-Venous Thromboembolism Score, has been developed [8]. However, there is no research
focusing on external validation of this score, especially among invasively ventilated patients. In this study,
two new predictive models were developed in different ways for the occurrence of VTE in invasively
ventilated patients, and the performance of the new models was compared with the ICU-Venous
Thromboembolism Score to determine the best model.

Materials And Methods
Data source
The relevant data from 6,734 patients were retrieved from the Medical Information Mart for Intensive Care-
III database version 1.4 (MIMIC-III v1.4) and was used for model development and internal validation. Data
from a total of 168 patients from Nanfang Hospital were used for external validation. The MIMIC-III
database is a free-access database comprising health-related data from more than 40,000 patients who
stayed in the ICU of the Beth Israel Deaconess Medical Center between 2001 and 2012. The use of the
MIMIC-III database was under the approval from the review boards of the Massachusetts Institute of
Technology and Beth Israel Deaconess Medical Center. To protect patient privacy, patient data in the
database are anonymous; hence, the requirement for informed consent was waived. This study was
conducted in accordance with the recommendations of the Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement.

Definition of venous thromboembolism
VTE was defined as acute incident DVT (either upper or lower extremity), superficial vein thrombosis (either
upper or lower extremity), or PE that was diagnosed using the International Classification of Diseases and
Ninth Revision (ICD-9) codes in the MIMIC-III database or according to discharge diagnoses in Nanfang
Hospital. The reports of duplex venous ultrasonography, CT venography, or CTPA were manually reviewed
to confirm the diagnosis of VTE. The diagnosis date of VTE was defined as the date of imaging confirmation.

Study participants
Adult patients (aged ≥18 years) who required invasive mechanical ventilation were included in this study.
The first admission of a patient was analyzed in case multiple admissions existed. Patients were excluded
meeting some of the following criteria: (1) patients who had VTE before or within 24 hours after invasive
mechanical ventilation; (2) patients who were diagnosed with chronic venous embolism or chronic
pulmonary embolism using ICD-9 codes; and (3) patients with more than four missing baseline variables.
Patients from the MIMIC-III database were randomly divided to form the training dataset and internal
validation dataset at a ratio of 7:3. The training dataset was used to establish risk assessment models, while
the internal validation dataset and external validation dataset were used for validation.

Data extraction
We extracted data from the MIMIC-III database using structure query language (SQL) with PostgreSQL
(version 12.4.1, www.postgresql.org) and Navicat Premium (version 15.0.18, www.navicat.com.cn). Clinical
electronic medical records were reviewed, and data were manually collected from Nanfang Hospital. The
variables in this study included demographic information, symptoms, vital signs, comorbidities, laboratory
parameters and treatments. Demographic data included age, gender, and duration of in-hospital
immobilization. Symptoms included edema, pain in the extremities, and chest pain. Vital signs included
maximum systolic blood pressure (SBP), maximum diastolic blood pressure (DBP), maximum heart rate
(HR), maximum respiratory rate (RR), and minimum SpO2, all of which were collected within 24 hours before

or after invasive mechanical ventilation. Comorbidity data from the MIMIC-III database were collected for
analysis based on ICD-9 codes, while data from Nanfang Hospital were based on discharge diagnoses,
including prior history of VTE, congestive heart failure, chronic pulmonary disease, diabetes mellitus,
hypertension, liver disease, malignant tumor, infection, acute myocardial infarction, atrial fibrillation or
atrial flutter, stroke, and trauma. Laboratory variables, including hemoglobin (HGB), platelet count (PLT),
white blood cell (WBC) count, hematocrit (HCT), red cell distribution width (RDW), activated partial
thromboplastin time (APTT), prothrombin time (PT), and glucose, were likewise measured within 24 hours
before or after invasive mechanical ventilation. Treatment during hospitalization included invasive medical
procedures, medication, and blood product transfusions. Invasive medical procedures were defined as
surgical operation, arterial catheterization, and central venous catheterization (CVC). Medication included
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glucocorticoid, chemotherapy, vasopressor, prophylactic anticoagulation, antiplatelet and statin. For
patients with in-hospital VTE, data regarding treatment were obtained before the day of VTE diagnosis.

Sample size
It is generally accepted that no more than one independent variable should be included in the model for
every 10 events to avoid over-fitting the model [9]. There were 131 patients diagnosed with in-hospital VTE
in the training dataset, suggesting that up to 13 variables (131 divided by 10) could safely be considered.

Missing data
Variables with missing data are common in the MIMIC-III database. To avoid bias due to the high volume of
missing data, variables with over 30% missing values were not included in this study, such as body mass
index (BMI). Missing values from variables with less than 30% missing values were imputed using random
forest.

Statistical analysis
All continuous variables were non-normally distributed, which was confirmed using the Shapiro-Wilk test.
Accordingly, continuous variables were expressed as the median (interquartile ranges, IQRs) and categorical
variables as numbers (percentages). To reduce the effect of outliers and increase convenience in clinical use,
continuous variables were categorized into discrete groups. In Risk Assessment Model I, receiver operating
characteristic (ROC) analyses were conducted to identify the optimal cut-off point. The continuous variables
were converted into binary variables, which may lead to loss of data. Therefore, we attempted to convert
continuous variables into multi-categorical variables in Risk Assessment Model II for model updating and
conditional inference trees (as implemented in the smbinning procedure in R) analyses were conducted to
identify the optimal cut-off point. Subsequently, in-hospital immobilization and glucose were converted
into ordered multi-categorical variables, while others were converted into binary variables. However, the
difference between categories could not be measured accurately in ordered multi-categorical variables.
Analyzing these according to the coded value imposes that the different categories are equidistant, which
may lead to greater error [10]. Therefore, ordered multi-categorical variables were converted into dumpy
variables in the follow-up analysis. Two predictive models were constructed in the training dataset during
model development. In Risk Assessment Model I, we used least absolute shrinkage and selection operator
(LASSO) regression with five-fold cross-validation to remove low information variables. The remaining
variables, following the LASSO regression, were included in a multivariable logistic regression analysis to
obtain the final model. In Risk Assessment Model II, we conducted multivariable logistic regression using the
significant variables identified by stepwise backward-selection multiple logistic regression, with a threshold
for candidate elimination of >0.05. The variance inflation factors (VIF) were used to detect multicollinearity
of all independent variables. The performance of the new prediction models was evaluated and compared
with the ICU-Venous Thromboembolism Score in three datasets using the area under the receiver operakting
characteristic curve (AUC), and the goodness of fit was measured by calibration curves. Moreover, 95% bias-
corrected bootstrap confidence intervals (CI) were calculated for the C-index, and AUCs were compared with
the DeLong test. Besides, decision curve analyses (DCA) were plotted to evaluate the usefulness and
applicability of the models with the best diagnostic value in a clinical setting. Finally, we plotted a
nomogram for the best model. All analyses above were performed using R software (version 4.0.3, CRAN),
and p-values of <0.05 were considered statistically significant.

Results
Participants and baseline characteristics
A total of 6,734 invasively ventilated patients were included in the MIMIC-III database, of whom 181 (2.7%)
patients were diagnosed with VTE after invasive mechanical ventilation, 84 (1.2%) patients had isolated
DVT, 40 (0.6%) patients had isolated PE, 38 (0.6%) patients had isolated superficial vein thrombosis, six
(0.09%) patients had both DVT and PE, and 13 (0.2%) patients had both superficial vein thrombosis and DVT.
The flow diagram of patient selection is shown in Supplemental Figure 6. The training and internal
validation datasets consisted of 4,714 and 2,020 invasively ventilated patients, respectively. The number of
patients with a diagnosis of VTE after invasive mechanical ventilation included in Nanfang Hospital
between February 2016 and August 2018 who were included in the external dataset was 78. In addition, 90
patients without VTE after invasive mechanical ventilation were randomly selected as the control group. In
the external dataset, 66 (39.3%) patients had isolated DVT, five (3%) patients had isolated PE, three
(1.8%) patients had both DVT and PE, and four (2.4%) patients had both superficial vein thrombosis and
DVT. The flow diagram of patient selection is presented in Supplementary Figure 7. The baseline
characteristics of the three datasets are shown in Table 1.

Characteristics
Training dataset (N =
4,714)

Internal validation dataset (N =
2,020)

External validation dataset (N
= 168)

VTE, n (%) 131 (2.8) 50 (2.5) 78 (46.4)
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Demographics

Age, year (median [IQR]) 65.00 [54.00, 76.00] 66.00 [54.00, 77.00] 59.00 [46.00, 72.00]

Gender, male, n (%) 2,872 (60.9) 1,229 (60.8) 114 (67.9)

Prior history of VTE, n (%) 178 (3.8) 81 (4.0) 2 (1.2)

In-hospital immobilization, d (median
[IQR])

3.00 [1.00, 7.00] 3.00 [1.00, 7.00] 7.00 [3.00, 13.00]

Symptoms

Edema of extremities, n (%) 2,287 (48.5) 977 (48.4) 45 (26.8)

Pain in extremities or chest pain, n (%) 1,134 (24.1) 491 (24.3) 36 (21.4)

Vital signs

Heart rate, beats per minute (median
[IQR])

103.00 [92.00, 116.00] 103.00 [91.00, 117.00] 91.00 [80.00, 108.25]

Systolic blood pressure, mmHg (median
[IQR])

148.00 [135.00, 163.00] 146.00 [134.00, 163.00] 124.00 [112.00, 138.00]

Diastolic blood pressure, mmHg (median
[IQR])

80.00 [71.00, 92.00] 79.00 [71.00, 91.00] 70.50 [64.00, 80.25]

SpO2, % (median [IQR]) 94.00 [91.00, 96.00] 94.00 [91.00, 96.00] 95.00 [89.49, 98.00]

Respiratory rate, beats per minute
(median [IQR])

26.00 [23.00, 30.00] 26.00 [23.00, 30.00] 24.00 [20.00, 30.00]

Comorbidities

Chronic heart failure, n (%) 983 (20.9) 443 (21.9) 11 (6.5)

Chronic lung disease, n (%) 1,157 (24.5) 501 (24.8) 26 (15.5)

Diabetes mellitus, n (%) 1,341 (28.4) 581 (28.8) 42 (25.0)

Hypertension, n (%) 2,912 (61.8) 1217 (60.2) 73 (43.5)

Liver disease, n (%) 402 (8.5) 181 (9.0) 26 (15.5)

Malignant tumor, n (%) 1,084 (23.0) 478 (23.7) 36 (21.4)

Infection, n (%) 2,031 (43.1) 865 (42.8) 113 (67.3)

Acute myocardial infarction, n (%) 455 (9.7) 188 (9.3) 18 (10.7)

Atrial fibrillation or atrial flutter, n (%) 1,474 (31.3) 619 (30.6) 37 (22.0)

Stroke, n (%) 243 (5.2) 97 (4.8) 35 (20.8)

Trauma, n (%) 654 (13.9) 288 (14.3) 8 (4.8)

Treatment

Invasive medical procedures

Surgical operation, n (%) 2,871 (60.9) 1,204 (59.6) 101 (60.1)

Arterial catheterization, n (%) 3,192 (67.7) 1,350 (66.8) 111 (66.1)

Central venous catheterization, n (%) 2,524 (53.5) 1 060 (52.5) 147 (87.5)

Medication

Glucocorticoid, n (%) 979 (20.8) 420 (20.8) 92 (54.8)

Chemotherapy, n (%) 60 (1.3) 15 (0.7) 5 (3.0)

Vasopressor, n (%) 2,823 (59.9) 1,226 (60.7) 108 (64.3)

Prophylactic anticoagulation, n (%) 2,504 (53.1) 1,045 (51.7) 71 (42.3)

Antiplatelet, n (%) 2,689 (57.0) 1,194 (59.1) 50 (29.8)
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Statin, n (%) 2,227 (47.2) 975 (48.3) 39 (23.2)

Blood product transfusions

Red blood cell transfusion, n (%) 1,796 (38.1) 768 (38.0) 34 (20.2)

Platelet transfusion, n (%) 562 (11.9) 256 (12.7) 16 (9.5)

Fresh frozen plasma transfusion, n (%) 662 (14.0) 292 (14.5) 39 (23.2)

Laboratory variables

HGB, g/dL (median [IQR]) 10.90 [9.50, 12.40] 10.80 [9.60, 12.40] 10.95 [8.80, 12.30]

PLT, 103/μL (median [IQR]) 193.00 [140.00, 256.75] 191.00 [140.00, 262.00] 154.00 [103.00, 206.50]

WBC, 103/μL (median [IQR]) 11.90 [8.60, 15.90] 12.00 [8.80, 16.10] 11.76 [9.16, 15.33]

HCT, % (median [IQR]) 32.20 [28.30, 37.00] 32.10 [28.50, 37.00] 33 [27.00, 37.00]

PT, seconds (median [IQR]) 14.40 [13.10, 16.10] 14.30 [13.10, 16.00] 13.75 [12.50, 15.70]

APTT, seconds (median [IQR]) 31.00 [26.70, 38.00] 30.90 [26.70, 38.02] 32.80 [26.90, 40.15]

RDW, % (median [IQR]) 14.20 [13.40, 15.40] 14.20 [13.40, 15.40] 14.20 [13.20, 16.52]

Glucose, mg/dL (median [IQR]) 126.00 [106.00, 157.00] 125.00 [104.00, 156.00] 130.77 [102.69, 173.52]

TABLE 1: Baseline characteristics of patients.
APTT: activated partial thromboplastin time; HCT: hematocrit; HGB: hemoglobin; PLT: platelet; PT: prothrombin time; RDW: red cell distribution width;
VTE: venous thromboembolism; WBC: white blood cell

Risk Assessment Model development
In Risk Assessment Model I, 43 characteristics were narrowed down to six potential predictors by LASSO
regression analysis in the training dataset (Figure 1). Multivariate analysis showed that glucose level of
greater than or equal to 137 mg/dL, infection, APTT of less than or equal to 26 seconds, and in-hospital
immobilization of longer than or equal to four days were independent risk factors for VTE, while the use of
antiplatelet treatment was an independent protective factor for VTE (Figure 2A). All variables had a VIF of
less than 10, indicating the absence of multicollinearity. In Risk Assessment Model II, the stepwise
backward-selection multiple logistic regression was applied to select factors that had the highest association
with VTE in the training dataset (p < 0.05). The results showed that seven predictive factors, namely, prior
history of VTE, in-hospital immobilization, infection, ischemic stroke, glucose, the use of antiplatelet, and
APTT, were selected. We then built a prediction model using binary logistic regression analysis based on
these seven features (Figure 2B): prior history of VTE (OR = 4.97, 95% CI = 3.8-6.49, p < 0.0001), in-hospital
immobilization (≥4 days and ≤7 days vs. <4 days, OR = 2.98, 95% CI = 2.19-4.05, p < 0.0001), in-hospital
immobilization (>7 days vs. <4 days, OR = 6.4, 95% CI = 4.87-8.42, p = 0.0004), infection (OR = 1.83, 95% CI =
1.45-2.32, p = 0.0107), ischemic stroke (yes vs. no, OR = 1.88, 95% CI = 1.4-2.53, p = 0.0338), APTT (≤26
seconds vs. >26 seconds, OR = 1.86, 95% CI = 1.53-2.26, p = 0.0019), glucose (>99 mg/dL and ≤ 137 mg/dL vs.
> 137 mg/dL, OR = 0.48, 95% CI = 0.39-0.58, p = 0.0006), and the use of antiplatelet (yes vs. no, OR = 0.57,
95% CI = 0.46-0.71, p = 0.0042). All variables had a VIF of less than two, indicating the absence of
multicollinearity.

2022 Lin et al. Cureus 14(7): e27164. DOI 10.7759/cureus.27164 5 of 12



FIGURE 1: (A) Tuning parameter (lambda) was selected in the LASSO
analysis by five-fold cross-validation. With the lambda value of 0.0086,
six characteristics were included. (B) The coefficients of variables in
LASSO analysis.
LASSO: least absolute shrinkage and selection operator

FIGURE 2: (A) Six predictive factors were included in the Risk
Assessment Model I. (B) Seven predictive factors were included in the
Risk Assessment Model II.
APTT: activated partial thromboplastin time; VTE: venous thromboembolism; OR: odds ratio; CI: confidence
interval

Risk Assessment Model performance and comparison
AUCs for Risk Assessment Model I, Risk Assessment Model II, and the ICU-Venous thromboembolism Score
were 0.826 (95% CI = 0.793-0.858), 0.811 (95% CI = 0.780-0.841) and 0.721 (95% CI = 0.681-0.761) in the
training dataset (Figure 3A), respectively, showing good discriminatory power. DeLong’s test revealed that
the test AUC of Risk Assessment Model II was significantly larger than Risk Assessment Model I (p = 0.048)
and the ICU-Venous Thromboembolism Score (p < 0.001). In the internal validation dataset, threes models
had AUCs of 0.761 (95% CI = 0.694-0.828), 0.771 (95% CI = 0.706-0.836) and 0.694 (95% CI = 0.615-0.774),

2022 Lin et al. Cureus 14(7): e27164. DOI 10.7759/cureus.27164 6 of 12

https://assets.cureus.com/uploads/figure/file/404902/lightbox_c1a56e10ff9f11ecb132df7121be77c4-figure1.png
https://assets.cureus.com/uploads/figure/file/404905/lightbox_15778f50ffa011eca0f967634bb632bb-figure2.png


respectively (Figure 3B). DeLong’s test revealed that there were no statistically significant differences
between them in the internal validation dataset. The AUCs for Risk Assessment Model I, Risk Assessment
Model II, and the ICU-Venous thromboembolism Score were 0.680 (95% CI = 0.599-0.761), 0.770 (95% CI =
0.699-0.841) and 0.582 (95% CI = 0.496-0.668) in the external validation dataset (Figure 3C), respectively.
DeLong’s test suggested that Risk Assessment Model II was a better discriminator of VTE in invasively
mechanical ventilation patients than Risk Assessment Model II (p = 0.0046) and the ICU-Venous
thromboembolism Score (p < 0.001) in the external validation dataset. According to the results of DCA, the
net benefit of Risk Assessment Model II was larger over the range of Risk Assessment Model I in the training
dataset (Figure 3D), internal validation dataset (Figure 3E), and external validation dataset (Figure 3F),
which means Model II is optimal. The calibration curves demonstrated a satisfying agreement for the Risk
Assessment Model I and Risk Assessment Model II in all datasets (Figure 4). To sum up, Risk Assessment
Model II performed best, which indicated Model II possesses significant predictive value. The nomogram of
VTE absolute risk prediction was established in invasively ventilated patients with the prediction factors
obtained from Risk Assessment Model II (Figure 5).

FIGURE 3: ROCs for the training dataset (A), internal validation dataset
(B), and external dataset (C). DCAs for the training dataset (D), internal
validation dataset, (E) and external dataset (F).
ROC: receiver operating characteristic curve; DCA: decision curve analysis
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FIGURE 4: Calibration curves for Risk Assessment Model I (A for the
training dataset, B for the internal validation dataset, and C for the
external validation dataset) and Risk Assessment Model II (D for the
training dataset, E for the internal validation dataset, and F for the
external validation dataset).
VTE: venous thromboembolism

 

FIGURE 5: Nomogram of VTE absolute risk prediction in invasively
ventilated patients (Risk Assessment Model II).
APTT: activated partial thromboplastin time; VTE: venous thromboembolism

Discussion
Patients with invasive mechanical ventilation may be at high risk of acquiring VTE. Venous stasis results
from muscular paralysis, high positive end-expiratory pressure, and injuries or occlusions of the pulmonary
microvascular network in invasively mechanical ventilated patients [11]. Besides, the clinical manifestations
of VTE are usually atypical in this condition (invasive mechanical ventilation) due to disturbance of
consciousness, the requirement of sedation, or underlying medical illnesses such as congestive heart failure
[12]. Therefore, establishing a diagnosis of VTE in invasively mechanical ventilated patients is more likely to
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be delayed or missed [13], which indicates the urgent need to develop reliable assessment models to identify
patients with invasive mechanical ventilation who are at an increased risk of suffering from VTE.

In this study, two models were promoted in different ways aiming to predict the risk of VTE in patients with
invasive mechanical ventilation. In Risk Assessment Model I, the continuous variables were converted into
binary variables, which may lead to loss of data. Therefore, we attempted to convert continuous variables
into multi-categorical variables in Risk Assessment Model II for model updating. The Risk Assessment Model
II was superior in predicting VTE in invasively mechanical ventilated patients compared with Risk
Assessment Model I and the ICU-Venous Thromboembolism Score.

A strong association between VTE and in-hospital immobilization was detected in the model, which was
captured according to electronic medical records charted at the bedside of the patient. Due to loss of
consciousness, patients with invasive mechanical ventilation usually experience no muscle contraction and
muscle tension, causing serious impairment to venous reflux. With the prolongation of immobilization, the
blood stasis is more serious. The reported duration of immobilization beyond which VTE risk increases
differs among studies. In a retrospective study that included 2,188 consecutive neurological ICU patients,
VTE was associated with a longer duration of immobilization (OR = 1.07 per day, 95% CI = 1.05-1.09) [14].
Immobilization for more than or equal to seven days was an independent risk factor associated with three-
month VTE (HR = 1.9, 95% CI = 1.3-2.7) in a study of 15,125 hospitalized medical patients [15]. In this study,
we found that patients with a duration of in-hospital immobilization ranging between four and seven days
had an OR for VTE of 2.98 (95% CI = 2.19-4.05) while patients with a duration of more than seven days had
an OR for VTE of 6.4 (95% CI = 4.87-8.42) compared with patients immobilizing for less than four days.

Infections have been reported to increase the risk of VTE by 2-20 times and were almost associated with
double the risk of VTE in our study. The highest risk of VTE is when the infection is active or within a few
weeks after the infection [16]. The key point that underpins the risk of VTE is the level of inflammation
induced by infection, which can lead to a procoagulant state. The release of inflammatory factors activates
platelets, which may be accompanied by endothelial damage, leading to fibrin deposition and thrombosis
[17].

Long-term immobilization, age, and infection are well-known risk factors for VTE, which are common in
patients with ischemic stroke. The incidence of DVT within two weeks after acute ischemic stroke ranges
from 27% to 75% [18]. In a prospective multi-center study, among 1,380 cases, 4.49% (62 cases) had DVT and
0.80% (11 cases) had PE following acute stroke [19]. Among 30,002 participants recruited from three surveys
of the Tromsø study (conducted in 1994-1995, 2001, and 2007-2008), 1,360 participants suffered from
ischemic stroke and 722 developed a VTE, and ischemic stroke was associated with an increased risk of VTE
(HR = 3.2, 95% CI = 2.4-4.4) [20]. For patients with invasive mechanical ventilation, ischemic stroke may
result in prolonged mechanical ventilation and immobilization, which may aggravate blood stasis.

A shortened APTT is believed to represent a procoagulant tendency, which can occur in patients with
malignant tumors, disseminated intravascular coagulation, etc. In a retrospective study including 13,880
patients with a median follow-up period of 13.1 years, compared with participants in the fourth quartile of
APTT, participants in the lowest two quartiles of APTT had a 2.4-fold (95% CI = 1.4-4.2) and a 1.9-fold (95%
CI = 1.1-3.2) higher risk of VTE, respectively [21]. In a case-control study, patients with an APTT ratio lower
than the fifth percentile of the distribution in the control group had an OR for VTE of 2.4 (95% CI = 1.7-3.6)
[22].

Moderate glucose control within 24 hours before or after invasive mechanical ventilation was confirmed in
this study to decrease the risk of VTE. Studies on the effect of glucose levels on VTE are scarce and have
reported conflicting results. A case-control study found that blood glucose levels of fasting patients did not
increase the risk of VTE (OR = 0.98, 95% CI = 0.69-1.37) [23]. However, another case-control study indicated
that increased risk of VTE was related to hyperglycemia (OR = 2.21, 95% CI = 1.2-4.05) [24]. Stegenga et al.
[25] showed that experimentally induced acute hyperglycemia has a strong procoagulant effect in healthy
volunteers. Hyperglycemia activated coagulation through endothelial glycocalyx damage, upregulation of
tissue factors, non-enzymatic glycation, and the increase of oxidative stress [26].

The use of antiplatelet was identified as a protective factor for VTE in invasively ventilated patients.
Platelets have been shown to be involved in the process of VTE. Activated platelets promote VTE by
releasing polyphosphates, inflammatory factors, phosphatidylserine, and particles that expose tissue factors
while stimulating the formation of an extracellular bactericidal network of neutrophils that provide the
backbone for platelet adhesion [27]. Although antiplatelet agents are not recommended alternatives to
prophylactic anticoagulation in VTE patients, aspirin may play a role in the prevention of recurrent VTE
among patients who have decided to stop receiving anticoagulants [28]. Moreover, the orthopedic surgery
community has long embraced aspirin as an effective option in VTE prevention for high-risk orthopedic
surgery patients [29]. At present, no clinical trials exist that relate the use of antiplatelet agents in critically
ill patients in prophylactic anticoagulation. In a retrospective study of 193 mechanically ventilated patients,
multivariate regression analysis showed that the use of aspirin during hospitalization could reduce the risk
of DVT (OR = 0.39, 95% CI = 0.16-0.94) [30].
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This study has several advantages. First, to our knowledge, this is the first study in which risk assessment
models for VTE in patients with invasive mechanical ventilation are developed. Second, this study was
conducted under the recommendations of the TRIPOD statement. Third, the statistical issues surrounding
the development and validation of models merit discussion. In the training dataset, we confirmed 131
patients developing VTE and our final model contained seven variables, consistent with the sample size
estimation. Statistical methods were also used to handle missing data. We performed statistical analyses to
isolate the risk factors related to the VTE and avoided over-fitting. Fourth, two models were both validated in
an independent dataset of patients from the same database and another independent dataset from Nanfang
Hospital.

As the results showed, the new prediction model performed better than the ICU-Venous Thromboembolism
Score. Even though the ICU-Venous Thromboembolism Score is mainly used to assess the risk of DVT and
PE in critically ill patients, we included patients with superficial vein thrombosis in our study. Besides, our
study focused on patients with invasive mechanical ventilation, while mechanical ventilation is one of the
predictive factors in the ICU-Venous Thromboembolism Score. Therefore, prospective validation in a larger
population is necessary to further evaluate the performance of the score.

One limitation of our study is that it is a retrospective study, and data on non-pharmacological prophylactic
intervention, hereditary risk factors for thrombosis, BMI, and D-dimer were not used due to the high volume
of missing data. Moreover, the incidence of VTE was lower than anticipated, which may lead to model over-
fitting and wide confidence intervals. Nevertheless, the results of calibration curves suggested good
agreement between the predicted and observed values for both models in the external validation dataset.
Additionally, data on time-dependent prospective factors were not collected during invasive mechanical
ventilation.

Conclusions
Of the two simple risk assessment models designed in this study, Risk Assessment Model II has a
significantly improved performance compared with the currently available assessment tool, namely, the
ICU-Venous Thromboembolism Score, which was based on seven clinical and laboratory parameters for VTE
in invasively ventilated patients. The model can detect the high risk of VTE population in patients with
invasive mechanical ventilation, reducing its burden.

Appendices

FIGURE 6: Study population (the training group and internal validation
group).
DVT: deep vein thrombosis; PE: pulmonary embolism; VTE: venous thromboembolism
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FIGURE 7: Study population (the external validation group).
DVT: deep vein thrombosis; PE: pulmonary embolism; VTE: venous thromboembolism
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