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A B S T R A C T   

Legumes are global staple foods with multiple human health properties that merit detailed composition analysis 
in cooked forms. This study analyzed cowpea [Vigna unguiculata] (three varieties: Dagbantuya, Sangyi, and 
Tukara), pigeon pea [Cajanus cajan], and common bean [Phaseolus vulgaris] using two distinct ultra-performance 
liquid chromatography mass spectrometry (UPLC-MS) platforms and analytical workflows. Comparisons between 
cowpea and pigeon pea consumed in Ghana, and common bean (navy bean) from USA, revealed 75 metabolites 
that differentiated cowpeas. Metabolite fold-change comparisons resulted in 142 metabolites with significantly 
higher abundance in cowpea, and 154 higher in abundance from pigeon pea. 3-(all-trans-nonaprenyl)benzene- 
1,2-diol, N-tetracosanoylphytosphingosine, and sitoindoside II are novel identifications in cowpea, with notably 
higher abundance than other legumes tested. Cowpea variety specific markers were tonkinelin (Dagbantuya), 
pheophytin A (Sangyi), and linoleoyl ethanolamide (Tukara). This study identified novel cowpea and pigeon pea 
food metabolites that warrant continued investigation as bioactive food components following consumption in 
people.   

1. Introduction 

Cowpea (Vigna unguiculata) is a warm-season and nitrogen-fixing 
legume well adapted to the sandy soils and low-input farming prac
tices of sub-Saharan Africa (Ji et al., 2019; Vaillancourt & Weeden, 
1992). Cowpea is a nutritious food due to high protein content, and 
abundance of vitamins, trace minerals, antioxidants, amino acids, fibers, 
lipids, and phytochemicals that have bioactivity and human health 
properties (Abizari, Pilime, Armar-Klemesu, & Brouwer, 2013; Awika & 

Duodu, 2017; Jayathilake et al., 2018). In addition to containing nu
trients that can combat child malnutrition (Stephenson et al., 2017), 
consumption of cowpeas is associated with lowered risk of high 
cholesterol and blood pressure, as well as a reduced risk of developing 
diseases such as diabetes and cancer (Awika & Duodu, 2017; Jayathilake 
et al., 2018). Cowpea is highly valued as a cash crop and used for animal 
feed to support livestock production that bolster farmers income. In 
Ghana, consumers will pay a premium for certain cowpea varieties, 
which provides the incentive to sell the food crop (Langyintuo et al., 
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2003). Detailed compositional analysis of cowpea varieties in the 
cooked forms that are consumed by people is lacking. 

Pigeon pea (Cajanus cajan) is another important nitrogen-fixing, 
warm season legume grown in sub-Saharan Africa (Adjei-Nsiah, 
2012). Like cowpea, it is drought tolerant and well adapted to low-input 
farming practices (Saxena, 2008). Pigeon pea is often used as a border 
crop or grown in an intercropping system to help improve soil fertility, a 
major factor with implications on local food security (Abunyewa & 
Karbo, 2005). Pigeon pea is also valued for human and animal con
sumption due to its high protein content (Abunyewa & Karbo, 2005; 
Adjei-Nsiah, 2012; Nwokolo, 1987; Pal, Mishra, Sachan, & Ghosh, 2011; 
Saxena, 2008). Pigeon pea is rich in nutrients, and therefore also rele
vant for helping to alleviate malnutrition (Nwokolo, 1987; Pal et al., 
2011). Based on anecdotal evidence of a local focus group in Ghana 
(described in section 2.1), pigeon peas were classified as integral part of 
the local diet. Cowpea and pigeon pea are consumed in multiple ways as 
a whole bean (boiled), and then may be fried, dried, steamed as a paste, 
or made into flour forms (Langyintuo et al., 2003). 

Soybeans, various dry beans, green peas, chickpeas, and lentils have 
been investigated for identification of small molecule markers in the 
food and following human dietary exposure (Borresen et al., 2017; Lu 
et al., 2010; Madrid-Gambin, Llorach, Vazquez-Fresno, Urpi-Sarda, 
Almanza-Aguilera, Garcia-Aloy, & Andres-Lacueva, 2017; Perera et al., 
2015; Sri Harsha et al., 2018; Zarei et al., 2021). For example, pipecolic 
acid and s-methylcysteine have been quantified in legumes while also 
being proposed as biomarkers following common dry bean consumption 
(Perera et al., 2015). A series of amino acids, lipids, peptides and xe
nobiotics were reported for cowpea from a single Malawi study, 
including ophthalmate, palmitoyl-oleoyl-glycerol (16:0/18:1), ala
nylleucine, and benzoate (Borresen et al., 2017). This study compared a 
single cowpea to dry bean and soybean blends using a single metab
olomics platform, but this study did not compare cowpea varieties. The 
analysis of food metabolomes for cowpea and pigeon pea varieties that 
are consumed locally in Ghana was a major objective herein for 
enhancing linkages to maternal and child nutritional studies with these 
foods, and particularly in undernourished populations. To our knowl
edge, there are no studies specifically aimed to identify dietary bio
markers in pigeon pea. In addition to human health applications, these 
cowpea and pigeon pea cooked food metabolite profiles will have utility 
in breeding programs geared towards improving nutritional quality 
traits. 

In this study, we analyzed the metabolite profiles of three different 
cowpea varieties commonly consumed in Ghana with comparisons to 
pigeon pea that is also consumed in combination with cowpeas. A 
common bean of the Navy market class from the USA was used as a 
reference legume that has already been characterized via metabolomics 
(Perera et al., 2015; Zarei et al., 2021). The main objective was to 
examine and compare the metabolite composition of cowpeas and pi
geon pea types consumed in Ghana using two distinct and comple
mentary non-targeted metabolomics workflows as a novel, 
comprehensive chemical profiling approach. 

2. Materials and methods 

2.1. Cooked legume flours 

Four varieties of local “cowpea” flours (Dagbantuya, Sangyi, Tukara, 
and Adua), identified by a local community focus group in the region, 
were collected from a local market in Tamale (northern Ghana). A local 
legume expert from the Savanna Agricultural Research Institute 
accompanied the investigator to the general market in Tamale, Ghana. 
There he identified the four types by sight and familiarity. 10 kg 
amounts of each type were purchased from multiple vendors, such that 
100kg total of each type were acquired. These were thoroughly me
chanically mixed homogenizing them by type. All samples were cooked, 
dried, and milled into flours for metabolite analysis. Seed morphology 

together with metabolomics data (see Section 3.1.2) revealed that one of 
the varieties (Adua) was a pigeon pea. The common bean flour (Navy 
market class) was purchased from ADM Edible Bean Specialties, Inc. 
(Archer Daniels Midland Company, Decatur, Illinois, USA). 

Flours were prepared by boiling the legumes for 45 min., draining 
them, and then drying them on a flat sheet in an oven at 40 ◦C. The dried, 
cooked legumes were then ground to a fine powder with a mortar and 
pestle. Flours were stored in sealed conical tubes until the time of 
analyses. 

2.2. Metabolomics Platform 1: CSU analytical resources core – 
Bioanalysis and omics laboratory (ARC-BIO) (Fort Collins, CO, USA) 

2.2.1. Sample preparation 
For each legume sample, 50 (+/-1) mg of each cooked legume flour 

was weighed into a 2.0 mL eppendorf tube (Cole-Parmer, Vernon Hills, 
IL, USA, #06335–02) with 1.5 mL of absolute methanol (Thermo Sci
entific, Waltham, MA, USA, Fisher Optima LC-MS grade, A4564). Three 
process blanks were prepared alongside the legume samples, where 
solvent was used to extract from empty tubes. Samples were vortex 
mixed and extracted with shaking for one hour at 4 ◦C. After centrifu
gation at 4 ◦C, 13,000 xg, 1.0 mL of supernatant was collected and 
transferred to an autosampler vial (VWR, Radnor, PA, USA, #66009- 
854). 100 uL of supernatant was collected from each sample to generate 
a pooled QC. Sample processing order was randomized. 

2.2.2. Ultra performance liquid chromatography-time of flight mass 
spectroscopy (UPLC-TOF-MS) 

Three microliters of legume flour sample extract were injected onto a 
Waters Acquity UPLC system (Waters Corporation, Milford, MA, USA) in 
randomized order with a pooled quality control (QC) injection after 
every 5 samples. Separation was achieved using a Waters Acquity UPLC 
CSH Phenyl Hexyl column (1.7 μM, 1.0 × 100 mm) (Waters Corporation, 
Milford, MA, USA), using a gradient from solvent A (Water, 2 mM 
ammonium formate) to solvent B (Acetonitrile, 0.1% formic acid). In
jections were made in 99% A, held at 99% A for 1 min, ramped to 98% B 
over 12 min, held at 98% B for 3 min, and then returned to starting 
conditions over 0.05 min and allowed to re-equilibrate for 3.95 min, 
with a 200 μL/min constant flow rate. The column and samples were 
held at 65 ◦C and 6 ◦C, respectively. The column eluent was infused into 
a Waters Xevo G2-XS Q-TOF-MS (Waters Corporation, Milford, MA, 
USA) with an electrospray source in positive mode, scanning 50–1200 
m/z at 0.1 s per scan, alternating between MS (6 V collision energy) and 
MSE mode (15–30 V ramp). Calibration was performed using sodium 
formate with 1 ppm mass accuracy. The capillary voltage was held at 
700 V, source temperature at 140 ◦C, and nitrogen desolvation tem
perature at 600 ◦C with a desolvation gas flow rate of 1000 L/hr. 

2.2.3. Data normalization, filtration, and grouping 
RAMClustR version 1.1.0 in R version 3.6.2 (2019-12-12)) was used 

to normalize, filter, and group features into spectra from XCMS output 
data (Smith, Want, O’maille, Abagyan, & Siuzdak, 2006; Tautenhahn, 
Bottcher, & Neumann, 2008). Features which failed to demonstrate 
signal intensity of at least 3-fold greater in QC samples than in blanks 
were removed from the feature dataset. 18,561 of 52,141 features were 
removed. Features with missing values were replaced with small values 
to simulate noise and then the minimum detected or simulated value 
was multiplied by 0.1. The filled value was the absolute value of this 
value. Features were normalized by linearly regressing run order versus 
qc feature intensities to account for instrument signal intensity drift. 
Only features with a regression p-value less than 0.05 and an r-squared 
greater than 0.1 were corrected. Features were filtered based on their qc 
sample CV values. Only features with CV values less than or equal to 0.3 
in MS or MSMSdata sets were retained. 22,091 of 33,580 features were 
removed. Features were additionally normalized to total extracted ion 
signal to account for differences in total solute concentration. Features 
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were clustered using the ramclustR algorithm. Parameter settings were 
as follows: st (sigma t, controlling retention time tolerance) = 2.22, sr =
(sigma r, controlling correlational strength tolerance) 0.7, maxt (beyond 
which similarity is not calculated) = 222, deepSplit (controlling tree 
cutting) = FALSE, hmax (maximum branch height) = 0.3, minModule
Size (number of features required per compound) = 2, and cor.method 
= pearson. Charge state detection was performed using the assign.z 
function using parameters: chargestate (maximum charge state) = 3, 
mzError = 0.005, nEvents = 2, minPercentSignal = 10, and assume1 =
TRUE, which enforces a charge state = 1 when isotope-based inference is 
unclear. Molecular weight was inferred from in-source spectra 
(Broeckling et al., 2016) using the do.findmain function, which calls the 
interpretMSSpectrum package (Jaeger, Hoffman, Schmitt, & Lisec, 
2016). Parameters for do.findmain were set to: mode = positive, mzabs. 
error = 0.002, ppm.error = 10, ads = default, scoring = auto, and use.z 
= TRUE, which ensures that m/z values are converted to explicit mass 
values having inferred charge state (z) above. 

MSFinder (Tsugawa et al., 2016) was used for spectral matching, 
formula inference, and tentative structure assignment, and results were 
imported into the RAMClustR object. Annotations were assigned using 
the RAMClustR annotate function. Annotation priority was assigned 
from highest priority to lowest: MSFinder structure, MSFinder formula, 
interpretMSSpectrum M. Database priority was set to HMDB, PubChem, 
UNPD, ChEBI, PlantCyc, KNApSAcK, FooDB, DrugBank, LipidMAPS, and 
Urine. Compounds were assigned to chemical ontogenies using the 
ClassyFire API (Djoumbou, 2016). 

2.3. MetaboAnalyst and statistical analysis 

The normalized spectral abundance data was grouped by legume 
type and comparison grouping prior to input into MetaboAnalyst 
Version 5.0 (https://www.metaboanalyst.ca/), where the following 
statistical functions were performed; one-way ANOVA, dendrogram, 
heatmap, and fold-change analysis. Data was not additionally filtered, 
normalized, or transformed. ANOVA p-value cutoff was set to 0.05 and 
Fisher’s least significant difference (LSD) post-hoc analysis was used. 
Dendrograms used Euclidean distances and Ward clustering. Correlation 
heatmaps mapped the features with Pearson r distances. Fold change 
threshold was set to 2. 

2.4. Metabolomics Platform 2: Metabolon, Inc. (Durham, NC, USA) 

The samples of cowpea and pigeon pea flours were also sent to 
Metabolon, Inc. (Durham, NC, USA) for a comprehensive varietal anal
ysis of the cowpea flours using 80% methanol extraction. 

2.4.1. Sample preparation 
Samples were inventoried and accessioned into the Metabolon LIMS 

system where they were assigned a unique identifier and then stored at 
− 80 ◦C until processed. Samples were prepared using the automated 
MicroLab STAR® system from Hamilton Company (Reno, NV, USA). 
Several recovery standards were added prior to the first step in the 
extraction process for QC purposes. To remove protein, dissociate small 
molecules bound to protein or trapped in the precipitated protein ma
trix, and to recover chemically diverse metabolites, proteins were 
precipitated with methanol under vigorous shaking for 2 min (Glen Mills 
GenoGrinder 2000 [Glen Mills Inc., Clifton, NJ, USA]) followed by 
centrifugation. The resulting extract was divided into four fractions: two 
for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods 
with positive ion mode electrospray ionization (ESI), one for analysis by 
RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by 
HILIC/UPLC-MS/MS with negative ion mode ESI. Samples were placed 
briefly on a TurboVap® (Zymark Corporation, Hopkinton, MA, USA) to 
remove the organic solvent. The sample extracts were stored overnight 
under nitrogen before preparation for analysis. 

2.4.2. Ultra performance liquid chromatography-tandem mass spectroscopy 
(UPLC-MS/MS) 

All methods utilized a Waters ACQUITY ultra-performance liquid 
chromatography (UPLC) (Waters Corporation, Milford, MA, USA) and a 
Thermo Scientific Q-Exactive high resolution/accurate mass spectrom
eter (Thermo Fisher Scientific, Waltham, MA, USA) interfaced with a 
heated electrospray ionization (HESI-II) source and Orbitrap mass 
analyzer operated at 35,000 mass resolution. The sample extract was 
dried then reconstituted in solvents compatible to each of the four 
methods. Each reconstitution solvent contained d7-glucose (1.0 ng/ 
mL–50.0 ng/mL); d3-leucine (0.25 ng/mL–5.0 ng/mL); d8- 
phenylalanine (0.25 ng/mL–3.0); d5-tryptophan (0.25 ng/mL–25.00 
ng/mL); d5-hipppuric acid (0.25 ng/mL–25.0 ng/mL); Br-phenylalanine 
(0.25 ng/mL–3.0); d5-indole acetic acid (3.0 ng/mL–25.00 ng/mL); 
amitriptyline (0.5 ng/mL–3.0 ng/mL) and d9-progesterone (1.0 ng/ 
mL–25.0 ng/mL) are included in the series of standards at fixed con
centrations to ensure injection and chromatographic consistency (Evans 
et al., 2014). One aliquot (50 μL) was analyzed using acidic positive ion 
conditions, chromatographically optimized for more hydrophilic com
pounds. Supplementary Table 1 shows the gradient profiles for reverse 
phase and HILIC methods. In this method, the extract was gradient 
eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm 
[Waters Corporation, Milford, MA, USA]) using water and methanol, 
containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid 
(FA). Another aliquot was also analyzed using acidic positive ion con
ditions, chromatographically optimized for more hydrophobic com
pounds. In this method, the extract was gradient eluted from the same 
afore mentioned C18 column using methanol, acetonitrile, water, 0.05% 
PFPA and 0.01% FA and was operated at an overall higher organic 
content. Another aliquot was analyzed using basic negative ion opti
mized conditions using a separate dedicated C18 column. The basic 
extracts were gradient eluted from the column using methanol and 
water, however with 6.5 mM Ammonium Bicarbonate at pH 8. The 
fourth aliquot was analyzed via negative ionization following elution 
from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm 
[Waters Corporation, Milford, MA, USA]) using a gradient consisting of 
water and acetonitrile with 10 mM Ammonium Formate, pH 10.8. The 
MS analysis alternated between MS and data-dependent MSn scans using 
dynamic exclusion. The scan range varied slighted between methods but 
covered 70–1000 m/z. 

2.4.3. Data extraction and compound identification 
Raw data was extracted, peak-identified and QC processed using 

Metabolon’s hardware and software. These systems are built on a web- 
service platform utilizing Microsoft’s .NET technologies, which run on 
high-performance application servers and fiber-channel storage arrays 
in clusters to provide active failover and load-balancing. Compounds 
were identified by comparison to library entries of purified standards or 
recurrent unknown entities. Metabolon maintains a library based on 
authenticated standards that contains the retention time/index (RI), 
mass to charge ratio (m/z), and chromatographic data (including MS/ 
MS spectral data) on all molecules present in the library, which include 
more than 3300 commercially available purified standards. Further
more, biochemical identifications are based on three criteria: retention 
index within a narrow RI window of the proposed identification, accu
rate mass match to the library +/- 10 ppm, and the MS/MS forward and 
reverse scores between the experimental data and authentic standards. 
Standard statistical analyses are performed in ArrayStudio on log 
transformed data. 

3. Results 

3.1. Identification of metabolites across legume types via non-targeted 
metabolomics 

The CSU ARC-BIO metabolomics (Platform 1) yielded 775 
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metabolites across diverse classes. By superclass, there were 410 lipids 
and lipid-like molecules, 260 unclassified metabolites, 26 organic acids 
and derivatives, 18 organoheterocyclic compounds, 17 phenyl
propanoids and polyketides, 14 organic oxygen compounds, 8 benze
noids, 8 hydrocarbons, 8 organic nitrogen compounds, 2 alkaloids and 
derivatives, 2 lignans/neolignans/related compounds, 1 nucleoside/ 
nucleotide/analogue, and 1 organosulfur compound in the data (data 
available at: www.ebi.ac.uk/metabolights/MTBLS3619) (Haug et al., 
2020). 

The Metabolon Inc. analysis (Platform 2) yielded 441 metabolites in 
the cowpea and pigeon pea. There were 400 metabolites with known 
identifications categorized by super pathways. This included 134 lipids, 
130 amino acids, 43 carbohydrates, 40 nucleotides, 24 cofactors/pros
thetic groups/electron carriers, 21 secondary metabolites, 5 peptides, 2 
xenobiotics, and 1 hormone (Supplementary Table 2). 

3.1.1. Metabolite profile comparisons across legume types revealed 
differences between cowpea, pigeon pea, and common bean 

Clear differences in small molecule profiles were observed between 
the legumes. Fig. 1(A and B) shows all legumes clustered by type (i.e., 
species). Principal component (PC) 1 explained 52.7% of the variation 
and mainly differentiated the pigeon pea (i.e., Adua) samples from 
cowpea and common bean, while PC2 explained 22.3% of the variation 
and separated the USA common bean samples from the Ghana cowpeas 
and pigeon pea (Fig. 1B). A dendrogram constructed using metabolite 
abundance profiles showed similar relationships between the three 

legumes (Fig. 1A). One-way ANOVA revealed 551 metabolites with 
significant differences in relative abundances between legume types 
(Fig. 1C). The most significant metabolites were TG(14:1(9Z)/14:1(9Z)/ 
20:5(5Z,8Z,11Z,14Z,17Z)), PG(22:1(11Z)/22:1(11Z)), UNPD93557, 
C11H23N2O24PS10, and pipecolic acid, all of which have higher 
abundance in common bean compared to cowpea and pigeon pea 
(Supplementary Table 3). There were 75 metabolites that differentiated 
cowpea, 121 that differentiated pigeon pea, and 185 that differentiated 
common bean after post-hoc analysis (Fig. 1D). 

The 75 metabolites that differentiated cowpeas from the other le
gumes include 45 lipids and lipid-like molecules, 22 unclassified me
tabolites, 3 organoheterocyclic compounds, 2 organic oxygen 
compounds, 2 phenylpropanoids and polyketides, and 1 organic acid or 
derivative (Table 1, Supplementary Table 3). Most of the metabolites 
that differentiated cowpeas from the other legumes, were significantly 
higher in cowpeas than the other two legumes. A selection of metabo
lites according to significance by p-value included TG(16:0/16:1(9Z)/ 
18:2(9Z,12Z)), C41H102N10O3S2, TG(16:0/18:1(9Z)/18:2(9Z,12Z))_2, 
1-[(9Z)-octadecenyl]-3-[(9Z)-octadecenoyl]-sn-glycerol, and TG(18:2 
(9Z,12Z)/18:2(9Z,12Z)/20:1(11Z)). Apart from C41H102N10O3S2, 
these metabolites belong to the glycerolipid class. Based on comparative 
analysis of the metabolites that differentiated cowpea within the le
gumes and between the cowpea varieties (described in section 3.1.3), 3- 
(all-trans-nonaprenyl)benzene-1,2-diol, N-tetracosanoylphytosphingo
sine, and sitoindoside II warrant further investigation as indicators for 
cowpeas and represent possible markers detectable in people following 

Fig. 1. Legume metabolomes examined together by (A) Hierarchal cluster dendrogram based on Euclidean distance and Ward clustering. (B) Principal Component 
Analysis (PCA) scores plot. (C) One-way ANOVA plotting -log10(p-values) of all detected metabolites. Metabolites with significant differences in means across legume 
type are plotted in red (n = 551), metabolites with no significant difference in mean across legume types are plotted in green (n = 224). (D) Venn diagram indicating 
the number of metabolites that differentiate legume type based on Fisher’s least significant difference (LSD) post-hoc analysis. 
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consumption. 
There were 121 metabolites that differentiated pigeon pea from the 

other legumes. This list included 63 lipid and lipid-like molecules, 46 
unclassified metabolites, 6 phenylpropanoids and polyketides, 2 hy
drocarbons, 1 benzenoid, 1 organic acid or derivative, 1 organic oxygen 
compound, and 1 organoheterocyclic compound (Table 1, Supplemen
tary Table 3). Most of the differentiating metabolites were significantly 
higher in pigeon pea than the other legumes and metabolites with higher 
significance according to lower p-values included proline betaine, PE 
(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), C14H9NS12, 22:0-Glc-Sitosterol, 
and DG(18:3(6Z,9Z,12Z)/18:2(9Z,12Z)/0:0). These metabolites are 
classified to the carboxylic acid, glycerophospholipid, unclassified, ste
roid, and fatty acyl classes, respectively. 

3.1.2. Fold-change metabolite analysis between legume types expanded the 
identification of a diverse suite of chemical profile distinctions 

Fold change analysis of the metabolites identified on Platform 1 
revealed notable differences between cowpea and common bean. 173 
metabolites were significantly higher in abundance in cowpea than in 
common bean, 183 were significantly higher in common bean than in 
cowpea, and 419 were not significantly different (Fig. 2). The most 
extreme log2(fold change) values observed in either direction were 
− 17.235 and 16.594 for pipecolic acid and C33H79N13S, respectively 
(Supplementary Table 4). Pipecolic acid was one of the most significant 

metabolites found by ANOVA analysis (section 3.1.2). Post-hoc and fold 
change analyses both confirm that it is higher in abundance in common 
bean than the other two legumes. 

Comparing fold-change differences in metabolite abundance be
tween pigeon pea and common bean on Platform 1, revealed 233 me
tabolites significantly higher in pigeon pea than in common bean, 216 
metabolites significantly higher in common bean than in pigeon pea, 
and 326 metabolites which did not show significant fold change dif
ferences (Fig. 2). The extreme log2(fold change) values observed in 
either direction were − 20.07 and 15.416 for soyasaponin V and pipt
amine, respectively (Supplementary Table 4). Soyasaponin V was 
significantly higher in common bean and did not have a significant 
difference in means between cowpea and pigeon pea. Piptamine was 
significantly higher in pigeon pea than both cowpea and common bean 
and may warrant further investigation as a metabolite specific to pigeon 
pea. 

Cowpea and pigeon pea fold change comparisons from Platform 1 
revealed that 142 metabolites were significantly higher in cowpea than 
in pigeon pea, 154 were significantly higher in pigeon pea than in 
cowpea, and 479 did not show a significant fold change (Fig. 2). The 
extreme log2(fold change) values observed were − 12.909 and 16.783 
for pipecolic acid and TG(19:0/20:2(11Z,14Z)/20:4(5Z,8Z,11Z,14Z)) 
[iso6], respectively (Supplementary Table 4). Pipecolic acid was a 
highly significant metabolite by ANOVA analysis (section 3.1.2), and 
was higher in common bean than the other two legumes. Post-hoc and 
fold change analysis resulted in the establishment of major metabolite 
differences between cowpea and pigeon pea. 

3.1.3. Key varietal differences in cowpea metabolite composition for 
varieties Dagbantuya, Sangyi, and Tukara 

Comparing the metabolic profiles of three cowpea varieties (Dag
bantuya, Sangyi, and Tukara) with principal component analysis (PCA) 
had similar observations in metabolite differences identified with the 
metabolite-based dendrogram in Fig. 3A and B). Both plots indicated 
that Dagbantuya and Sangyi are more similar to each other than they are 
to Tukara. 

The one-way ANOVA testing supported 320 metabolites with sig
nificant differences in means, out of the 775 detected from Platform 1 
(Fig. 3C). Of those, 101 metabolites differentiated Dagbantuya, 27 
differentiated Sangyi, and 82 metabolites differentiated Tukara after 
post-hoc analysis (Fig. 3D). Cowpea varietal comparisons bring an 
intentional highlight on the following compounds C18H34N6O6S16, 
C45H106N12O3S2, C14H47N4O32PS12, 1,2-Di-(9Z,12Z,15Z-octade
catrienoyl)-3-(Galactosyl-alpha-1–6-Galactosyl-beta-1)-glycerol, and 
uvarigrin;(+)-uvarigrin based on ANOVA p-values. With the exception 
of 1,2-Di-(9Z,12Z,15Z-octadecatrienoyl)-3-(Galactosyl-alpha-1–6- 
Galactosyl-beta-1)-glycerol, the other metabolites were all higher in 
Dagbantuya than the other two cowpea varieties (Supplementary 
Table 3). 

The 101 metabolites that differentiated Dagbantuya from the other 
cowpeas on Platform 1 include 56 lipids and lipid-like molecules, 40 
unclassified metabolites, 3 organic oxygen compounds, 1 organic acid or 
derivative, and 1 phenylpropanoid and polyketide (Table 2). 73 of these 
101 metabolites (equivalent to 72.3%) that differentiated Dagbantuya 
from the other varieties were higher in abundance in Dagbantuya than 
Sangyi and Tukara. The 27 metabolites that differentiated Sangyi from 
the other two cowpeas on Platform 1 include 18 lipids and lipid-like 
molecules, 4 unclassified metabolites, 2 benzenoids, 1 nucleoside/ 
nucleotide/analogue, 1 organic acid or derivative, and 1 phenyl
propanoid and polyketide (Table 2). 14 of these 27 metabolites 
(equivalent to 51.9%) differentiating Sangyi from the other varieties 
were lower in abundance in Sangyi than the other varieties. Lastly the 82 
metabolites that differentiated Tukara from the other cowpeas on Plat
form 1 include 48 lipids and lipid-like molecules, 25 unclassified me
tabolites, 4 organic oxygen compounds, 3 organic acids and derivatives, 
and 2 organoheterocyclic compounds (Table 2). 64 of these 82 

Table 1 
Classification of metabolites that differentiate three legume types.  

Superclass Class Number of differentiating 
metabolites 

Cowpea Pigeon 
Pea 

Common 
Bean 

Benzenoids Benzene and 
substituted derivatives 

0 1 2 

Hydrocarbons Unsaturated 
hydrocarbons 

0 2 0 

Lipids and lipid-like 
molecules 

Fatty Acyls 2 7 14 
Glycerolipids 12 19 15 
Glycerophospholipids 24 29 36 
Prenol lipids 2 2 15 
Saccharolipids 0 0 2 
Sphingolipids 1 3 2 
Steroids and steroid 
derivatives 

4 3 12 

Organic acids and 
derivatives 

Carboximidic acids 
and derivatives 

0 0 7 

Carboxylic acids and 
derivatives 

0 1 0 

Organic phosphoric 
acids and derivatives 

0 0 1 

Peptidomimetics 1 0 0 
Organic nitrogen 

compounds 
Organonitrogen 
compounds 

0 0 3 

Organic oxygen 
compounds 

Organooxygen 
compounds 

2 1 4 

Organoheterocyclic 
compounds 

Azoles 0 0 1 
Benzopyrans 1 0 0 
Indolizidines 1 0 1 
Lactones 0 0 1 
Pyrrolidines 0 1 0 
Quinolizines 0 0 1 
Tetrapyrroles and 
derivatives 

1 0 0 

Phenylpropanoids 
and polyketides 

Cinnamic acids and 
derivatives 

1 5 0 

Linear 1,3- 
diarylpropanoids 

1 0 0 

Macrolactams 0 0 1 
Macrolides and 
analogues 

0 0 1 

Tannins 0 1 0 
NA NA 22 46 66 
Total 75 121 185  
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metabolites (equivalent to 78.0%) differentiating Tukara from the other 
varieties were higher in abundance in Tukara than the other varieties. 
Details can be found in Supplementary Table 3. 

3.2. Comprehensive metabolic pathway coverage for cowpea and pigeon 
pea using two metabolomics platforms 

The types of compounds detected and identified from Platform 1 and 

Fig. 2. Volcano plots illustrating compound differences between two legume types. (A) cowpea versus common bean fold change volcano plot. (B) pigeon pea versus 
common bean fold change volcano plot. (C) cowpea versus pigeon pea fold change volcano plot. Metabolites with positive log2(fold change) values are higher in the 
first group of the comparison. Metabolites with negative log2(fold change) values are higher in the second group of the comparison. 
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2 in this study provided breadth and depth to the measurable differences 
in composition between cowpea and pigeon pea. The results from 
Platform 2 were distinct from the metabolite lists that differentiate 
cowpea varieties from pigeon pea in Platform 1. There were 49 me
tabolites common to all cowpea varieties, and 337 common to both 
cowpea and pigeon pea on Platform 2. By cowpea variety, Platform 2 did 
not detect metabolites unique to Dagbantuya or Tukara, but pheophytin 
A was uniquely detected for Sangyi. There were eight metabolites 
detected uniquely to pigeon pea (Adua), although none of these were 
detected on Platform 1. Both Platform 1 and 2 were used to create a list 
of unique metabolites that may have utility as food chemical markers 
and dietary exposure biomarkers of intake in people with further vali
dation. Both platforms provided unique strengths and helped overcome 
the limitations of a single platform. Given that the number of detected 
metabolites and annotations differed across platforms, we also lever
aged the opportunity for increased sensitivity to measure abundances 
using distinct compound annotation software. 

Platform 1 consistently detected pipecolic acid (p-value = 1.22E-16) 
as differentiating between legume types, whether by ANOVA or fold 
change analysis. Although pipecolic acid had higher abundance in 
common bean, pipecolic acid results support that it is common metab
olite across all legume types analyzed in this study. The relative abun
dance comparisons are visualized in Fig. 4. 

Metabolites that differentiated cowpea from the other legume types 
were identified by Platform 1, since this analysis compared cowpea to 

both pigeon pea and common bean. To narrow down the list of cowpea 
metabolites to focus on, we looked for metabolites that were common 
between both the legume analysis (described in section 3.1.1), as well as 
the cowpea varietal analysis (described in section 3.1.3) and put an 
intentional focus on metabolites that were higher in cowpea than the 
other legumes. We identified 3-(all-trans-nonaprenyl)benzene-1,2-diol 
(p-value = 0.0057), N-tetracosanoylphytosphingosine (p-value =

0.0002), and sitoindoside II (p-value = 0.0039), which may be identi
fiers of cowpea consumption. These metabolites were all higher in 
cowpea than the other two legumes (Fig. 4). 

For cowpea varietal comparisons, Platform 2 did not result in iden
tification of metabolites unique to Dagbantuya, which provided ratio
nale to focus on Platform 1 for this variety. Based on the ANOVA, post- 
hoc differentiation, and reports in the literature, tonkinelin (p-value =
3.25E-05) is considered unique to the cowpea variety Dagbantuya. 
Platform 2 analysis did result in metabolite identification of pheophytin 
A as unique to the cowpea variety Sangyi. Due to its detection in one 
variety only and based on Platform 2 having a higher level of annotation 
confidence, pheophytin A was specifically designated to the cowpea 
variety Sangyi. Both Platform 1 and 2 detected the compound linoleoyl 
ethanolamide and for distinguished abundance by variety. Platform 1 
showed that linoleoyl ethanolamide was significantly lower in Tukara 
than in Dagbantuya and Sangyi (p-value = 0.0045), and Platform 2 only 
detected the compound in Dagbantuya and Sangyi. Because important 
metabolites can also be low in abundance, or absent, linoleoyl 

Fig. 3. Cowpea variety metabolomes examined together by (A) Hierarchal cluster dendrogram based on Euclidean distance and Ward clustering. (B) Principal 
Component Analysis (PCA) scores plot of cowpea variety data. (C) One-way ANOVA plotting -log10(p-values) of all detected metabolites. Metabolites with significant 
differences in means across cowpea variety are plotted in pink (n = 320), metabolites with no significant difference in mean across cowpea variety are plotted in grey 
(n = 455). (D) Venn diagram indicating the number of metabolites that differentiate cowpea varieties based on Fisher’s least significant difference (LSD) post- 
hoc analysis. 
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ethanolamide warrants further investigation as a metabolite related to 
consumption of Tukara. 

Relating to pigeon pea, Platform 1 detected piptamine (p-value =
0.0031) as significant and differentiating from cowpea and common 
bean (Fig. 4). Platform 2 detected eight compounds unique to pigeon 
pea, including tryptophan betaine, chiro-inositol, phenyl
acetylglutamate, gamma-glutamyl-GABA, N,N-dimethylalanine, as well 
as three unnamed compounds (Supplementary Table 2). Based on the 
ANOVA significance, post-hoc differentiation, and fold change of pipt
amine on Platform 1, this compound is highlighted for further investi
gation as a metabolite that may be indicate pigeon pea consumption 
when compared to other cowpeas or beans. 

4. Discussion 

Legumes contain a diverse and beneficial range of chemical com
pounds with many established health and nutritional benefits. The 
metabolic profiles of different legume types in fully cooked forms that 
are safe for consumption by people are limited. This study applied an 
intentional focus on the comparative analysis of local cowpea varieties 
and pigeon pea commonly consumed by households in Ghana. Two 
separate metabolite detection and analysis workflows supported the 
generation of novel compound lists for cooked cowpea and pigeon pea. 
The two platforms had different food chemical extraction reagents and 
elution techniques applied to garner a comprehensive chemical profile. 
Different extraction and elution methods alongside the column separa
tion and detection platforms allowed for highly specialized distinctions 
in chemical identity to be revealed for these legumes and with broader 
coverage of metabolic pathways and chemical sub-classes, namely for 
lipids and amino acids. The results demonstrated the increased capacity 
to decipher metabolite relationships between legumes and between 
cowpea varieties. This study shows strong support for the cowpea 
metabolite profile as more similar to that of common bean than it is to 

the pigeon pea. Notably, these findings mirror the phylogenetic re
lationships that have been previously shown (Ji et al., 2019). Impor
tantly, these results support a novel finding that the cowpea Dagbantuya 
and Sangyi metabolite profiles are more similar to each other than to the 
Tukara cowpea variety. 

Metabolomics is an incredibly informative tool for food composition 
profiling and can aid plant breeding as well as nutrition studies. The 
identification of food chemical biomarkers for use in dietary exposure 
assessments from consumption relates to the growing needs in assessing 
compliance to feeding interventions and without the bias of self- 
reported data (Hedrick et al., 2012). Advancing our knowledge for 
which food metabolites are present in staple legume-based diets is 
relevant to future understanding of their bioactivity in the gut. These 
bioactive molecules identified herein may also guide and inform crop 
breeding efforts aimed at either increasing, maintaining, or reducing 
phytochemicals that have important nutritional and agronomic traits. 
Metabolomics-assisted breeding is a functional screening approach to 
select for desired phenotypes early in the breeding process (Fernie & 
Schauer, 2009). This report shows that cowpeas and pigeon pea contain 
metabolites such as 3-(all-trans-nonaprenyl)benzene-1,2-diol, N-tetra
cosanoylphytosphingosine, sitoindoside II, and piptamine, which have 
many established health benefits and represent promising targets for 
breeding programs within West Africa and as well as geographically 
distinct regions. 

This study identified three novel cowpea metabolites; 3-(all-trans- 
nonaprenyl)benzene-1,2-diol, N-tetracosanoylphytosphingosine, and 
sitoindoside II, that have published literature suggesting associations 
with human health benefits (Bentinger, Tekle, & Dallner, 2010; Dahlén 
& Pascher, 1972; Poon et al., 1999; Satmbekova et al., 2018). The 3-(all- 
trans-nonaprenyl)benzene-1,2-diol is a prenol lipid that plays a role in 
E. coli Coenzyme Q biosynthesis (Poon et al., 1999). Coenzyme Q has 
well established anti-inflammatory properties (Bentinger et al., 2010). 
N-tetracosanoylphytosphingosine is a sphingolipid, which exhibits 
immunological activity (Dahlén & Pascher, 1972). Sitoindoside II is a 
steroid/steroid derivative that is found in the plant Cichorium intybus L., 
often used in traditional medicine for its diuretic, anti-inflammatory, 
cardiotonic, liver tonic, and digestive benefits (Satmbekova et al., 
2018). These metabolites merit recognition within cowpea breeding 
programs and for examination as candidate dietary exposure biomarkers 
in people after regular cowpea consumption. 

Novel cowpea metabolites of varietal distinction from this study 
include tonkinelin, pheophytin A, and linoleoyl ethanolamide, for 
Dagbantuya, Sangyi, and Tukara, respectively. These components have 
not been previously reported from cowpea, but information is known 
from other plants and cellular function studies with in vitro assays. 
Tonkinelin is a fatty acyl that has been identified in Uvaria tonkinensis 
and has established acetogenic effects (Chen & Yu, 1996). Pheophytin A 
is involved in chlorophyll metabolism and contributes to dark pigment 
colors (Yilmaz & Gökmen, 2015). Pheophytin A metabolite that con
tributes to pigmentation. . Sangyi has the darkest pigmentation of the 
cowpea varieties analyzed. Linoleoyl ethanolamide is a carboximidic 
acid/derivative that has anti-inflammatory effects (Ishida et al., 2013). 

The pigeon pea analysis highlighted the benezenoid metabolites 
piptamine, and phenylacetylglutamate, as well as the amino acid de
rivative N,N-dimethylalanine. Piptamine is a known antibiotic, first 
isolated from Piptoporus betulinus (Schlegel, Luhmann, Hartl, & Grafe, 
2000). The bioactivity for this compound when delivered from food 
remains unclear and merits further investigation for impact by post- 
harvest and processing conditions. Phenylacetylglutamate has been 
recognized as a uremic retention product and although there is little 
evidence for this compound from pigeon pea to have this direct bio
logical effect, one study was able to demonstrate an anti-proliferative 
effect on cancer cells under certain conditions (Vanholder, Pletinck, 
Schepers, & Glorieux, 2018). N,N-dimethylalanine is another pigeon pea 
metabolite that has not been extensively characterized, but this com
pound had been previously investigated to characterize the mechanism 

Table 2 
Classification of metabolites that differentiate three cowpea varieties.  

Superclass Class Number of differentiating 
metabolites 

Dagbantuya Sangyi Tukara 

Benzenoids Benzene and 
substituted 
derivatives 

0 2 0 

Lipids and lipid-like 
molecules 

Fatty Acyls 11 3 6 
Glycerolipids 13 6 13 
Glycerophospholipids 16 5 23 
Prenol lipids 4 1 3 
Sphingolipids 2 0 1 
Steroids and steroid 
derivatives 

10 3 2 

Nucleosides, 
nucleotides, and 
analogues 

Purine nucleosides 0 1 0 

Organic acids and 
derivatives 

Carboximidic acids 
and derivatives 

0 0 1 

Carboxylic acids and 
derivatives 

1 1 1 

Organic phosphoric 
acids and derivatives 

0 0 1 

Organic oxygen 
compounds 

Organooxygen 
compounds 

3 0 4 

Organoheterocyclic 
compounds 

Quinolines and 
derivatives 

0 0 1 

Tetrapyrroles and 
derivatives 

0 0 1 

Phenylpropanoids 
and polyketides 

Cinnamic acids and 
derivatives 

1 0 0 

Linear 1,3- 
diarylpropanoids 

0 1 0 

NA NA 40 4 25 
Total 101 27 82  
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in which neoagarotetraose alleviates intestinal inflammation. The N,N- 
dimethylalanine pathway was suggested to play a role in the prebiotic 
actions of neoagarotetraose (Liu et al., 2020). We put forth that pigeon 
pea derived metabolites in the diet do merit evaluation for actions in the 
human gut. 

Legumes and particularly cowpeas can help alleviate malnutrition 
and support healthy growth of children in low-income countries where 
cowpeas are prevalent and well adapted for local climates (Stephenson 
et al., 2017). These cooked legume flours analyzed herein have been fed 
in controlled doses to children and pregnant women from Ghana. The 
studies supported feasibility of increasing cowpea doses over a period of 
20-days and ongoing analysis will guide dietary exposure biomarker 
identifications and assessments using the blood and urine that were 
collected. This study substantially contributes to the food metabolite 
profile analysis of cowpea and seeks to link findings with promising 
agronomic traits, nutritional value, and preferential consumption 
observed by local communities in Sub-saharan Africa (Abizari et al., 
2013; Jayathilake et al., 2018). 

Study limitations exist for this non-targeted metabolic profiling 
approach. In particular, metabolite identification and annotation can 
vary across platforms due to differences in instrument sensitivity and 
software. The majority of metabolites identified using both platforms, 
were annotated and classified though RAMClustR, MSFinder and in- 
house libraries, supporting the premise that computational annotation 
tools can provide valuable insight in the absence of spectral libraries. 

Targeted quantification of the metabolite levels using internal standards 
would give useful information on the absolute quantities of compounds 
available after consumption. Integrating data sets from this study with 
additional cowpea varieties and from biospecimens collected after 
legume consumption in people may improve our knowledge of bioac
tivity alongside identification of relevant chemical biomarkers. 

5. Conclusions 

This study supports that the analysis of metabolic profiles from 
cooked flours of three different cowpea varieties and pigeon pea 
commonly consumed in Ghana had strong capacity to identify novel 
components and distinguish the food chemical profile from a reference 
legume (common bean). The use of two distinct metabolite extractions 
and profiling workflows bolstered our knowledge base of metabolite 
relationships between cowpea, pigeon pea, and common bean that 
mirrored genetics. The metabolite profiles of cowpea varieties Dag
bantuya and Sangyi were considered to be more similar to each other 
than the variety, Tukara based on metabolite abundance and over
lapping identifications. This study identified several novel metabolites 
associated with each legume species and cowpea variety, including 
Dagbantuya (tonkinelin), Sangyi (pheophytin A), Tukara (linoleoyl 
ethanolamide), and pigeon pea (piptamine). These findings have 
advanced our knowledge of the food chemical profiles provided from 
human dietary intake of cowpea and pigeon pea because the analysis 

Fig. 4. Median scaled relative abundance for metabolites distinguishing cowpeas, common bean and pigeon pea using Platform 1. Metabolites for (A) all legume 
types, (B-D) cowpea, (E) pigeon pea. Metabolite abundances are in arbitrary relative abundance units (au). 
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was conducted used fully cooked forms. Future work to quantify and 
validate the metabolites for differentiating legumes in the diet is needed 
alongside an integrated biomarker analysis from feeding studies with 
these foods. The utility of food specific analysis is to support ongoing 
breeding strategies geared towards improving nutrition and food 
function. 
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