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LCAT1 is an oncogenic LncRNA by stabilizing the IGF2BP2-CDC6
axis
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Long non-coding RNAs (lncRNAs) is known to play vital roles in modulating tumorigenesis. We previously reported that LCAT1, a
novel lncRNA, promotes the growth and metastasis of lung cancer cells both in vitro and in vivo. However, the underlying
mechanism(s) of LCAT1 as an oncogenic regulator remains elusive. Here, we showed that LCAT1 physically interacts with and
stabilizes IGF2BP2, an m6A reader protein, by preventing its degradation via autolysosomes. IGF2BP2 is overexpressed in lung
cancer tissues, which is associated with poor survival of non-small cell lung cancer patients, suggesting its oncogenic role.
Biologically, IGF2BP2 depletion inhibits growth and survival as well as the migration of lung cancer cells. Mechanistically, the LCAT1/
IGF2BP2 complex increased the levels of CDC6, a key cell cycle regulator, by stabilizing its mRNA in an m6A-dependent manner. Like
IGF2BP2, CDC6 is also overexpressed in lung cancer tissues with poor patient survival, and CDC6 knockdown has oncogenic
inhibitory activity. Taken together, the LCAT1-IGF2BP2-CDC6 axis appears to play a vital role in promoting the growth and migration
of lung cancer cells, and is a potential therapeutic target for lung cancer. Importantly, our finding also highlights a previously
unknown critical role of LCAT1 in m6A-dependent gene regulation by preventing autolytic degradation of IGF2BP2.
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INTRODUCTION
Lung cancer is the second most commonly diagnosed malignant
cancer and the primary cause of cancer-related mortalities
worldwide, with 2,206,771 new cases of lung cancer and
1,796,144 deaths resulting from lung cancer in 2020 [1]. Despite
advances in surgery and treatment strategies over recent decades,
including target therapy and immunotherapy, the overall survival
rate of patients with lung cancer remains poor [2]. Further and
fuller understanding of the molecular mechanisms that promote
lung cancer initiation and progression are still required to
formulate yet more effective treatment strategies.
Long non-coding RNAs (lncRNAs) are a class of non-coding

RNAs whose transcripts are of more than 200 nucleotides in
length and make up most of the human transcriptome [3].
LncRNAs participate in almost all spheres of human biology but
most notable here is their strong role in tumor development [4–6].
It has been reported that several lncRNAs, including MALAT1, TUG,
NEAT1, and LCAT3 are dysregulated in lung cancers, acting to
modulate lung tumor development and progression [7–9]. Our
recent study provided an example of this, showing that LCAT3
recruits FUBP1 to the FUSE region of the MYC promoter, thereby
activating MYC transcription to promote lung cancer cell growth

and metastasis [10]. However, the specific functions and molecular
mechanisms of most other lncRNAs in lung cancer remain elusive.
Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2)

plays a vital role in the post-transcriptional regulation of RNAs [11].
N6-methyladenosine (m6A) modification is the most prevalent
internal RNA modification in eukaryotic cells [12, 13]. A recent
study has shown that IGF2BP2 functions as a reader protein for
m6A modification [14]. The fate of m6A-modified RNAs rely on the
functions of different proteins that recognize them (such as
IGF2BP1–3, YTHDF1–3, and YTHDC1–3) [14–16]. These m6A reader
proteins may affect the splicing [17], stability [12] and/or
translation of targeted RNAs [18]. These findings expand the
understanding of the function of IGF2BP2 in contributing to
tumorigenesis and progression. However, the specific role of
IGF2BP2 in lung cancer remains to be investigated.
We recently identified a novel lncRNA, LCAT1, which is

overexpressed in lung cancer and correlated with poor prognosis
in lung cancer patients. Biologically, LCAT1 promotes the growth
and metastasis of lung cancer cells both in vitro and in vivo [19],
but the underlying mechanism(s) by which LCAT1 acts as an
oncogenic regulator remains to be thoroughly defined. In the
present study, by employing RNA pull-down, mass spectrometry
(MS) and RNA immunoprecipitation (RIP) assays, we found that
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LCAT1 physically interacts with IGF2BP2 and stabilizes IGF2BP2 by
protecting it from autolytic degradation. Biologically, IGF2BP2
knockdown suppressed growth, colony formation and migration
of lung cancer cells. Mechanistically, the LCAT1/IGF2BP2 complex
stabilized CDC6 mRNA via the m6A modification to increase the
translation of CDC6, which then promoted the growth and survival
of lung cancer cells. Taken together, our study revealed that the
LCAT1-IGF2BP2-CDC6 axis has oncogenic activity and may serve as
a potential therapeutic target as well as a prognostic biomarker for
lung cancer.

MATERIALS AND METHODS
Cell lines and cell culture
The human lung cancer cell lines A549, Calu1, and HOP62 were obtained
from the American Type Culture Collection (Manassas, VA, USA). They were
cultured in RPMI-1640 medium (Gibco, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (FBS, Thermo Fisher Scientific, Rockford, IL, USA)
in a humidified atmosphere with 5% CO2 at 37 °C. The HEK-293T cell line was
grown in Dulbecco’s modified essential medium (DMEM, Gibco) supple-
mented with 10% FBS in a humidified atmosphere with 5% CO2 at 37 °C.

Reagents and antibodies
The reagents and antibodies used in this study are listed in Supplementary
Table 1.

siRNA and transfection
The small interference RNAs (siRNAs) targeting IGF2BP2 and CDC6
(Supplementary Table 2) were designed using the website: http://
rnadesigner.thermofisher.com/ and synthesized by RiboBio (Guangzhou,
China). All siRNAs were transfected into lung cancer cells at a final
concentration of 50 nM using GenMuteTM reagent according to the
manufacturer’s instructions.

RNA isolation and quantitative RT-PCR
Total RNA from frozen human lung cancer tissues, adjacent tissues, and
cultured cells were extracted using Trizol reagent (Invitrogen, Carlsbad, CA,
USA). The cDNA was then synthesized using HiScript® II Reverse
Transcriptase (Vazyme, Nanjing, China) according to the manufacturer’s
instructions. qRT-PCR was performed using an SYBR Green PCR Mix Kit
(Vazyme).

Cell proliferation and colony assays
Cell proliferation and colony assays were conducted as previously reported
[19]. For the proliferation assay, cells were seeded into 96-well plates with a
density of 1000 cells/well. CCK-8 reagents (MCE, Monmouth Junction, NJ,
USA) were then added into cells at the indicated time and incubation
about 2 h before the OD measurement. Cell proliferation was also assessed
using a Cell-Light EdU DNA cell proliferation kit (RiboBio, Guangzhou,
China), following the manufacturer’s instructions. For the colony assay,
1500 control cells and the treated cells were seeded into 12-well plates and
cultured for one week. Colonies were fixed with methanol and stained with
0.1% crystal violet.

Migration assay
Cell migration assays were conducted by using transwell chambers
(Corning Costar, Tewksbury, MA, USA). Briefly, 3 × 104 cells were seeded
into the upper chamber of each insert with 300 μl serum-free medium and
500 μl medium with 10% FBS added into the lower chambers. After
incubating at 37 °C for 12 h, the cells were fixed and stained with 0.1%
crystal violet. Cell numbers were counted in three random areas.

Western blot analysis
Cells were lysed in RIPA buffer and proteins were quantified using a
PierceTM BCA Protein Assay Kit (Thermo Scientific). Equal amounts of
proteins were loaded and separated in a 10% polyacrylamide SDS gel, and
then transferred to a PVDF membrane (Millipore, Burlington, MA, USA).
After incubation with the intended primary antibody and secondary
antibody, proteins were detected using Pierce ECL Western Blotting
Substrate reagent (Thermo Scientific).

RNA pull-down
Biotin-labeled targeted LCAT1 sense and antisense probes were synthe-
sized by Life Technologies (Carlsbad, CA, USA). The RNA pull-down assay
was conducted by using a Pierce™ Magnetic RNA-Protein Pull-Down Kit
(Thermo Scientific) according to the user guide. In brief, 50 pmol biotin-
labeled probes were incubated with streptavidin beads for 1 h at room
temperature. Cell lysate from Calu1 cells were then added to the beads
and incubated overnight at 4 °C. Subsequently, the proteins were eluted
from the beads and separated by 10% SDS-PAGE followed by silver
staining.

RNA immunoprecipitation (RIP) assay
RIP was performed using a Magna RIP Kit (Millipore) following the
manufacturer’s instructions. Briefly, a total of 5 × 106 cells were lysed in
115 μl RIP lysis buffer for 10min. Five micrograms of the intended antibody
was used for each immunoprecipitation assay and was conjugated to
protein A/G magnetic beads by incubation for 1 h at room temperature,
followed by washing three times with RIP wash buffer and incubation with
RIP lysates overnight at 4 °C. RNA was then extracted by phenol,
chloroform and isoamyl alcohol according to the user guide, and was
quantitated by real-time PCR.

RNA-seq and data analysis
The RNA sequencing library was prepared as described previously [20].
Briefly, total RNA was extracted from Calu1 transfected with IGF2BP2 siRNA
(si-IGF2BP2 1# or si-IGF2BP2 2#) or Control siRNA (n= 3). mRNA libraries
were constructed using the TruSeq Sample Preparation Kit (Illumina). The
mRNA libraries were multiplexed and sequenced using an Illumina HiSeq
X10 sequencer. Transcriptome data were analyzed as previously described
(Supplementary Table 3) [21].

Enrichment analysis of IGF2BP2 targets
IGF2BP2 functions as a reader protein for m6A modification [14]. Therefore,
we downloaded the list of IGF2BP2 targets that were identified by PAR-
CLIP and RIP-seq [14, 22]. Of these IGF2BP2 targets, 2573 transcripts were
expressed in lung cancer cell lines. We then assessed if these IGF2BP2
targets are enriched in the list of genes that are altered by the knockdown
of either LCAT1 or IGF2BP2 in lung cancer cells. We plotted the cumulative
distribution of fold changes (knockdown versus control) for IGF2BP2
targets and non-IGF2BP2 targets using the “ggecdf” function of the R
package “ggpubr”. The difference in the cumulative distribution of
log2(fold change) between IGF2BP2 targets and non-IGF2BP2 targets
was examined by Kolmogorov–Smirnov test.

m6A dot blot
The m6A dot assay was performed as previously described [23]. Briefly,
RNA was diluted to a certain concentration and denatured by incubation at
95 °C for 5 min. Denatured RNA was then loaded onto a nylon membrane
(GE Healthcare, Chicago, IL, USA) followed by UV crosslinking. The
membrane was then blocked in 5% non-fat milk for 1 h at room
temperature. Subsequently, the membrane was incubated with an anti-
m6A antibody (1:1000; Synaptic Systems) overnight at 4 °C. After
incubation with anti-rabbit IgG secondary antibody (Cell Signal Technol-
ogy), the membrane was detected using the ECL system (Bio-Rad, Hercules,
CA, USA). Finally, the membrane was stained with methylene as a loading
control.

Gene-specific m6A qPCR
mRNA was purified from total RNA by using a polyA SpinTM mRNA Isolation
Kit (NEB, Ipswich, MA USA). m6A modifications on target genes were
detected using a Magana MeRIP m6A Kit (Millipore) according to the
manufacturer’s instructions. In brief, 18 μg of purified mRNA was sheared
into ~100 nt oligonucleotides in a fragmentation buffer and then
incubated with anti-m6A antibody (Synaptic Systems)-conjugated or
normal mouse IgG-conjugated beads at 4 °C overnight. Eluted RNA was
then prepared for MeRIP-qPCR analysis.

RNA stability assay
For the RNA stability assay, lung cancer cells transfected with IGF2BP2 and
LCAT1 siRNA were treated with 5 μg/mL actinomycin D (Sigma-Aldrich, St.
Louis, MO, USA) to suppress transcriptional activity. Treated cells were
collected at different time points, followed by RNA isolation and qPCR.
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Animal experiments
For the in vivo tumorigenicity assay, female BALB/c nude mice (ages
4–5 weeks) were randomly divided into two groups (n= 5 per group).
A549 cells (2 × 106) that had been stably transfected with sh-LCAT1 or
scramble were implanted subcutaneously into the nude mice. Tumor
growth was measured once a week and tumor volumes were calculated
with the following formula: Volume (cm3)= (length × width2)/2. After
4 weeks, the mice were euthanized and tumors were collected and
weighed. All experiments were performed in accordance with the Guide
for the Care and Use of Laboratory Animals (NIH publication 80-23, revised
1996), with the approval of Zhejiang University, Hangzhou, China.

Survival analysis
RNA-seq data for IGF2BP2 and CDC6 in lung adenocarcinoma samples
from The Cancer Genome Atlas (TCGA) were downloaded from the ICGC
Data Portal (https://dcc.icgc.org). Clinical information such as overall
survival (OS) and disease-free survival (DFS) time for these TCGA patients
was also retrieved from the ICGC Data Portal. To further evaluate the
clinical significance of IGF2BP2 and CDC6, two additional public lung
cancer datasets (GSE30219 and GSE81089) with complete clinical
information and commonly used in previous studies were downloaded
from Gene expression Omnibus (GEO) databases [24, 25]. Patients were
divided into two groups according to the median expression of IGF2BP2 or
CDC6. Survival distributions in two different groups were visualized using
Kaplan–Meier curves. Differences in OS and DFS between the two groups
were assessed by a log-rank test.

Statistical analysis
All statistical analyses were performed using the R Statistical Package.
Results were obtained from at least three independent experiments and
data were presented as the mean ± SD. For comparisons of two groups,
two-tailed paired Student’s t-tests were conducted. Comparison of
multiple groups was made using a one- or two-way ANOVA.

RESULTS
LCAT1 physically interacts with and stabilizes IGF2BP2, an
m6A reader protein
To further explore the mechanism by which LCAT1 acts as an
oncogenic regulator in lung cancer cells, we conducted RNA pull-
down, followed by silver staining to identify potential LCAT1
binding proteins (Fig. 1A). This effort led to the identification of a
distinct protein band of ~70 kDa, detected only in LCAT1 sense
probe (Fig. 1B). This band was then cut from the gel for MS
analysis. Among the highly enriched proteins, the well-known RNA
and DNA binding protein IGF2BP2 drew our attention for its
prominent role as an m6A reader in tumorigenesis (Supplementary
Table 4). Western blotting assays confirmed that IGF2BP2 was
significantly enriched in the sense-LCAT1 but not the antisense-
LCAT1 pull-down fraction in both lung cancer cell lines (Fig. 1C).
This interaction was further verified by RNA immunoprecipitation
(RIP) assay with anti-IGF2BP2 or anti-IgG antibodies. The amount
of LCAT1 RNA in the coprecipitation was measured by qPCR and
showed that LCAT1 was significantly enriched in the IGF2BP2 RIP
group compared with the IgG group (Fig. 1D, E).
In addition, to identify the specific region of LCAT1 that

interacts with IGF2BP2, we constructed three LCAT1 deletion
mutants based on the secondary structure of LCAT1 predicted by
RNAfold Webserver (Fig. 1F). IGF2BP2 mainly binds to the region
between 257–896 nucleotides of LCAT1 (Fig. 1G). Likewise, a series
of IGF2BP2 truncation mutants were constructed based on the
domain structure of IGF2BP2 (Fig. 1H). FLAG-tagged-based pull-
down showed that LCAT1 mainly binds to the KH domain of
IGF2BP2 (Fig. 1I). Collectively, these results indicated that LCAT1
physically interacts with the m6A reader protein IGF2BP2.

LCAT1 regulates IGF2BP2 protein stability
Then, we measured the IGF2BP2 levels after LCAT1 knockdown.
Interestingly, we found that LCAT1 knockdown significantly
reduced IGF2BP2 protein levels, whereas IGF2BP2 knockdown

had little, if any, effect on LCAT1 expression (Fig. 2A and
Supplementary Fig. 1A, B). We then determined whether LCAT1
binding would affect IGF2BP2 stability by cycloheximide (CHX)
treatment to block new protein synthesis, and found that LCAT1
knockdown significantly shortened IGF2BP2 protein half-life (Fig.
2B, C). However, treatment with the proteasome inhibitor MG-132
could not restore reduced IGF2BP2 levels in LCAT1 knockdown
cells (Fig. 2D), suggesting IGF2BP2 reduction was not via
enhanced degradation by the ubiquitin-proteasome system (UPS).
It is well-known that cellular proteins can also be degraded

through the lysosome pathway [26, 27]. Notably, we found that
endogenous IGF2BP2 levels in lung cancer cells were significantly
increased by various autophagy inhibitors, including Bafilomycin
A1, 3-MA and NH4Cl (Supplementary Fig. 1C), but remarkably
reduced by autophagy activators Rapamycin, AZD8055 and EBSS
(Supplementary Fig. 1D), strongly suggesting that basal levels of
IGF2BP2 are dynamically regulated by a lysosomal system in lung
cancer cells. More importantly, IGF2BP2 reduction upon LCAT1
knockdown was completely rescued by Bafilomycin A1 (Fig. 2E) as
well as by siRNAs targeting ULK1, a key regulator of autophagy
[28, 29] (Fig. 2F and Supplementary Fig. 1E, F). Taken together,
these results demonstrated that LCAT1 binds to and stabilizes
IGF2BP2 via blockage of lysosome degradation.
Previous studies have shown that IGF2BP2 is frequently

dysregulated in multiple human cancers [30–32]. IGF2BP2, for
example, modulated lncRNA DANCR expression in pancreatic
cancer to promote cell proliferation by acting as an m6A reader
[33]. However, whether and how IGF2BP2 affects lung cancer cells
remains to be determined. We first evaluated the clinical
significance of IGF2BP2 in human cancers and analyzed RNA-seq
data from TCGA projects. It was found that IGF2BP2 was widely
upregulated in a variety of cancers, including head and neck,
cervical and uterine, esophageal (Supplementary Fig. 2A), and
lung cancers (Fig. 2G, H). The upregulation of IGF2BP2 in lung
cancer was consistently verified using different datasets (Fig. 2I, J).
Then, we evaluated the mRNA levels of IGF2BP2 in 35 fresh lung
cancer tissues and their adjacent normal tissues by qPCR. The
qPCR result confirmed that the expression of IGF2BP2 was
significantly increased in lung cancer tissues compared with
adjacent normal tissues (Fig. 2K and Supplementary Fig. 2B). More
importantly, lung cancer patients with higher expression of
IGF2BP2 were associated with shorter overall survival and
disease-free survival time in TCGA dataset (Fig. 2L and Supple-
mentary Fig. 2C). It was also observed that patients with higher
expression of IGF2BP2 tended to have a worse prognosis in the
Gene expression Omnibus (GEO) datasets (Fig. 2M, N). Overall,
these results demonstrate that IGF2BP2 is upregulated and
associated with poor outcomes in lung cancer.

IGF2BP2 promotes the growth, survival, and migration of lung
cancer cells
We next determined the biological function of IGF2BP2 and found
that IGF2BP2 knockdown in lung cancer cells (Fig. 3A, B)
significantly suppressed the growth (Fig. 3C) and colony formation
(Fig. 3D, E), whereas ectopic IGF2BP2 expression (Supplementary
Fig. 3A, B) moderately promoted cell growth and survival
(Supplementary Fig. 3C, D). We then investigated the cell cycle
transition by flow cytometry and found that IGF2BP2 knockdown
resulted in the accumulation of cell populations in the G0/G1
phase (Supplementary Fig. 3E, F). Consistently, the expression
levels of some key regulators of the cell cycle, such as CyclinB1,
CyclinD1, and p27, were altered (Supplementary Fig. 3G). In
addition, the EdU-based proliferation assay also showed that
IGF2BP2 knockdown inhibited DNA replication, as a readout of
reduced cell proliferation (Fig. 3F, G). IGF2BP2 knockdown also
significantly inhibited the migration capacity of lung cancer cells
(Fig. 3H, I). We then directly examined the biological cross-talk
between LCAT1 and IGF2BP2, and found that growth suppression,
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triggered by LCAT1 knockdown, as we previously shown [19],
could be largely reversed by IGF2BP2 overexpression (Fig. 3J),
suggesting that the biological effect of LCAT1 on cancer cell
growth is mediated, at least in part, through IGF2BP2. Finally, we
evaluated the effect of IGF2BP2 knockdown on the in vivo
tumorigenicity using a xenograft nude mouse model. A549 lung
cancer cells with stable IGF2BP2 knockdown (Supplementary Fig.
3H, I) showed significantly suppressed growth, reflected by
reduced tumor size and weight (Fig. 3K, L). Taken together,
IGF2BP2 is required for the growth and survival of lung cancer

cells, supporting the notion that IGF2BP2 could be an attractive
therapeutic target for lung cancer treatment.

CDC6 is a downstream target of the LCAT1/IGF2BP2 complex
To elucidate the underlying mechanism by which IGF2BP2 affects
the growth and survival of lung cancer cells, we employed the
RNA-seq technology to reveal potential pathways altered upon
IGF2BP2 knockdown in lung cancer cells, given the fact that
IGF2BP2 is an m6A reader, essential for the stability, location and
translation of target RNAs [14], with high-likelihood on
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transcription regulation. Indeed, unbiased transcriptome analysis
showed that a large number of genes were significantly either
upregulated or downregulated in response to IGF2BP2 knock-
down (Supplementary Fig. 4A). These genes, potentially regulated
by IGF2BP2, were enriched in many important cancer-related
pathways (Supplementary Fig. 4B, C).

We next downloaded the list of IGF2BP2 targets that were
identified by PAR-CLIP and RIP-seq [14, 22]. Of these IGF2BP2
targets, 2573 transcripts were detected in lung cancer cells. We
compared the expression changes (represented by log2(fold
change)) of IGF2BP2 targets (i.e., 2573 transcripts) and non-
IGF2BP2 targets in lung cancer cells with IGF2BP2 knockdown.
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Interestingly, IGF2BP2 targets had a significantly higher proportion
of negative log2(fold change) values than non-IGF2BP2 targets,
implying that knockdown of IGF2BP2 globally and preferentially
inhibited the expression of IGF2BP2 target genes in lung cancer
cells upon IGF2BP2 knockdown (Fig. 4A, B). Given the physical
association between LCAT1 and IGF2BP2, and the positive
regulation of IGF2BP2 by LCAT1, we found that LCAT1 depletion
also preferentially inhibited the expression of IGF2BP2 targets (Fig.
4C, D). We then performed an integrative analysis of RNA-seq of
cells with knockdown of either LCAT1 or IGF2BP2. This yielded a
total of 42 IGF2BP2 targets that were simultaneously altered in
cells with either LCAT1 or IGF2BP2 knockdown (Fig. 4E). Thirteen
of 42 targets were downregulated both in LCAT1 and IGF2BP2
knockdown cells (Fig. 4F). Among them, the top five down-
regulated genes were selected for further evaluation by qPCR
assay. The qPCR results indicated that cell division cycle 6 (CDC6)
was the most significantly downregulated gene when LCAT1 or
IGF2BP2 was silenced, which was chosen for further investigation
(Supplementary Fig. 4D–G).
We then measured the levels of CDC6 in lung cancer cells with

either IGF2BP2 or LCAT1 knockdown. Expectedly, both the mRNA
and protein levels of CDC6 were dramatically decreased upon
knockdown of IGF2BP2 (Fig. 4G, H) or LCAT1 (Fig. 4I, J). Conversely,
the levels of CDC6 were increased upon ectopic expression of
either IGF2BP2 or LCAT1 (Supplementary Fig. 4H, I). Combinational
knockdown of both IGF2BP2 and LCAT1 did not further decrease
the levels of either CDC6 mRNA or CDC6 protein (Fig. 4K, L),
indicating that CDC6 is subjected to positive regulation by the
lineal LCAT1-IGF2BP2 axis.
Finally, we analyzed RNA-seq data from TCGA to further

investigate the correlation between CDC6 and IGF2BP2 or LCAT1.
It was found that the CDC6 expression was positively correlated
with IGF2BP2 or LCAT1, but to a less extent (Fig. 4M, N). Taken
together, CDC6 appears to be a direct target downstream of the
LCAT1/IGF2BP2 complex for positive regulation with oncogenic
potential in lung cancer cells.

CDC6 is upregulated and promotes the growth of lung cancer
cells
CDC6 is a known key player in modulating DNA replication and
maintaining cell cycle checkpoint control [34, 35], and is also
actively involved in tumorigenesis [36, 37]. For instance, CDC6 was
shown to exert its oncogenic activity by repressing the transcrip-
tion of E-cadherin and activating adjacent replication origins [38].
CDC6 is highly expressed in various human cancers, including lung
cancer (Supplementary Fig. 5A–E). The upregulation of CDC6 was
further verified in our collection of paired lung cancer tissues
(n= 35), using qPCR assay (Supplementary Fig. 5F). Importantly,
lung cancer patients with higher CDC6 expression have the worse
clinical outcome (Supplementary Fig. 5G–I).
As mentioned above, CDC6 is a downstream target of the

LCAT1-IGF2BP2 axis and is upregulated in lung cancer tissues.
Next, we determined the biological consequence of CDC6
knockdown in lung cancer cells. Indeed, upon CDC6 knockdown
in A549 and Calu1 cells (Fig. 5A, B), cell proliferation (Fig. 5C) and

colony formation ability were significantly decreased based on
CCK-8 and colony formation assays (Fig. 5D, E). As expected, when
CDC6 was knocked down, the proportion of S-phase cells was
apparently reduced (Supplementary Fig. 6A, B) and several cell
cycle-related proteins such as CyclinB1, CyclinD1, and CDK2 were
correspondingly significantly downregulated (Supplementary Fig.
6C). Consistently, EdU assays showed that CDC6 depletion
inhibited DNA replication in lung cancer cells (Fig. 5F, G). In
addition, the silencing of CDC6 resulted in a marked reduction in
cell migration ability (Fig. 5H, I). Then, the rescue experiment was
performed to validate the specificity of the LCAT1-IGF2BP2-CDC6
axis. Forced expression of CDC6 could overcome the cellular effect
caused by LCAT1 knockdown (Fig. 5J, K and Supplementary Fig.
6D, E). These results suggest that the effect of the LCAT1-IGF2BP2
axis may be mediated, at least in part, by CDC6.

LCAT1/IGF2BP2 complex enhances CDC6 mRNA stability in an
m6A-dependent manner
We next elucidated the underlying mechanism by which the
LCAT-IGF2BP2 axis stabilizes the CDC6 level. Given that IGF2BP2 is
an m6A reader, known to regulate the stability of its target RNAs
and the rate of mRNA translation [14], we, therefore, determined
whether IGF2BP2 regulation of CDC6 is in a manner dependent
on the m6A modification. The MeRIP-qPCR assays in A549 and
Calu1 cells confirmed that the CDC6 mRNA was much enriched
using the m6A antibody group, compared to the IgG control (Fig.
6A), indicating that CDC6 mRNA is subjected to m6A modifica-
tions. Next, we conducted RIP assays using the anti-IGF2BP2
antibody and found that the CDC6 mRNA was notably enriched
(Fig. 6B). m6A modifications are deposited by m6A methyltrans-
ferases complex (MTC; i.e., m6A writer), which is composed of
METTL3, METTL14, WTAP, and possibly VIRMA and RBM15. Among
them, METTL3 is the core catalytic subunit of MTC and is essential
for m6A modification [13, 39]. Therefore, we chose METTL3, the
core m6A writer, to investigate whether the interaction between
IGF2BP2 protein and CDC6 mRNA is dependent on m6A
modifications. We employed the CRISPR/Cas9 system to knockout
METTL3 in A549 cells and generated two stable knockdown
clones (2# and 6#) (Fig. 6C). Subsequent dot blot assays
confirmed that METTL3 knockdown cells indeed had decreased
total m6A levels (Fig. 6D). Remarkably, the enrichment of CDC6
mRNA in the IGF2BP2 immunoprecipitation was abolished upon
METTL3 knockdown (Fig. 6E), strongly suggesting that the
IGF2BP2-CDC6 mRNA interaction is largely dependent of the
m6A modification of CDC6 mRNA. Finally, we determined whether
the CDC6 mRNA stability is indeed affected by the knockdown of
either LCAT1 or IGF2BP2 in two lung cancer cell lines. The
knockdown cells were treated with actinomycin D (to block new
mRNA synthesis) for intended hours, and the CDC6 mRNA level
was then measured by qPCR at each time point. The results
showed that depletion of either IGF2BP2 or LCAT1 shortened the
half-life of CDC6 mRNA (Fig. 6F, G). Taken together, these results
demonstrated that the LCAT1-IGF2BP2 axis indeed regulates the
stability of CDC6 mRNA, which is in a manner dependent on m6A
modification.

Fig. 4 CDC6 is a downstream target of the LCAT1/IGF2BP2 complex. A, C Volcano plots showing enrichment of IGF2BP2 target genes that
were altered in IGF2BP2 knockdown (A) or LCAT1 knockdown (C) Calu1 cells. The numbers of significantly downregulated (log2 FC <−1,
P < 0.05, two-sided Student’s t-test) or upregulated (log2 FC > 1, P < 0.05, two-sided Student’s t-test) genes in the IGF2BP2 target group and
non-target group are displayed. Vertical dashed lines indicate the cut-off of log2 FC of 1 or –1, while the horizontal dashed line indicates the
cut-off of a P value of 0.05. FC, fold change. B, D Cumulative density of mRNA log2 FC in IGF2BP2 target and non-target genes upon IGF2BP2
(B) or LCAT1 (D) knockdown. E Venn diagram of the cross-comparison of three datasets: RNA-seq of IGF2BP2 knockdown; RNA-seq of LCAT1
knockdown; and IGF2BP2 targets. F Heatmap of target genes. G, H qPCR and western blot were performed to detect CDC6 expression in
IGF2BP2 knockdown and control cells. I, J qPCR and western blot were performed to detect CDC6 expression in LCAT1 knockdown and
control cells. K, L qPCR and western blot were conducted to determine the impacts of LCAT1 and IGF2BP2 silencing on CDC6 expression.
M Scatter plot of IGF2BP2 and CDC6 mRNA expression in lung cancers from the TCGA. N Scatter plot of LCAT1 and CDC6 mRNA expression in
lung cancers from the TCGA. Student’s two-sided t-tests were used. *P < 0.05, **P < 0.01, ***P < 0.001.
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DISCUSSION
LncRNAs have been reported to participate in tumorigenesis and
tumor progression of a variety of cancers, including lung cancer
[40–44]. However, only a few lncRNAs have been thoroughly
characterized in lung cancer. In our previous study, we identified
and characterized a novel lncRNA, LCAT1, in lung cancer [19]
where LCAT1 is upregulated and associated with poor prognosis

in lung cancer patients. LCAT1 was found to act as a ceRNA to
regulate RAC1 function by sponging miR-4715-5p. However, this
only partially explained the function of LCAT1 as an oncogenic
lncRNA in lung cancer, and the additional underlying mechanism
of LCAT1 action remained to be elusive.
In addition to acting as a miRNA sponge to regulate the function

of target genes, lncRNAs more generally operate via physical
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interactions with regulatory proteins to affect their biological
functions [45–47]. In the present study, we pursued further the
mechanism of LCAT1 action by employing RNA pull-down, MS and
RIP assays to identify potential binding proteins of LCAT1, of which
IGF2BP2 was found as one of the major candidates.
IGF2BP2 is a member of the insulin-like growth factor 2 (IGF2)

mRNA-binding proteins family and participates in post-
transcriptional gene regulation [48, 49]. IGF2BP2 consists of two
RRM domains and four KH domains, responsible for its RNA-
binding function. To define how LCAT1 interacted with IGF2BP2,
we mapped the KH domain of IGF2BP2 as the LCAT1 binding
region via a series of deletion mutants. Interestingly, we further
found that LCAT1 can maintain the protein stability of IGF2BP2 by
preventing its degradation by autolysosomes. However, the
mechanism by which IGF2BP2 binds to LCAT1 through its KH
domain to prevent it from being degraded by autolysates is
unclear and requires further investigation.
Accumulating lines of evidence show IGF2BP2 as upregulated in

multiple human cancers and suggest its important role in
tumorigenesis and tumor progression [50, 51]. For instance,
IGF2BP2 promotes colorectal cancer cell proliferation and survival
via disturbing RAF-1 degradation by miR-195 [52]. Several miRNAs,
such as miR-320b and miR-485-5p, inhibit the progression of lung
cancer by targeting IGF2BP2 [32, 53]. Indeed, in our study, IGF2BP2
was upregulated in lung tumor tissues, and its expression was
highly predictive of poor prognosis for lung cancer patients.
Through both loss-of-function (siRNA-based knockdown) and gain-
of-function (ectopic overexpression) assays, we found that IGF2BP2
is a positive regulator of proliferation, colonic survival, and
migration in lung cancer cells both in in vitro and in vivo.
What is the underlying mechanism of IGF2BP2 acting as an

oncogenic protein? Importantly, the IGF2BP family members were
well-known to function as m6A readers, which recognize the
m6A-modified target RNAs to regulate their stability or translation.
The m6A is the most abundant RNA modification and its biological
function depends on an m6A reader protein. For instance, the m6A
reader IGF2BP3 recognizes and binds to the m6A site on HDGF
mRNA, thereby enhancing the stability of HDGF mRNA in gastric
cancer [54]. Likewise, IGF2BP2, an important m6A reader protein, may
affect many of its downstream target genes. However, which target
genes primarily affect lung cancer remained to be determined.
To further elucidate the mechanism of LCAT1-IGF2BP2 action in

our experimental setting, we went on and identified a handful of
downstream targets of IGF2BP2. We followed up with one of these
candidates, CDC6 (cell division cycle 6), a critical cell cycle regulator
that plays an essential role in the maintenance of genome stability
[55] via recruiting cdt1-MCM2-7 complexes to the origin of
replication [56]. CDC6 is also known as an oncogenic target [57].
Previous studies have shown CDC6 as dysregulated in many
cancers, such as pancreatic cancer [58], mantle cell lymphoma [59],
and hepatocellular carcinoma [60]. However, the biological role of
CDC6 in lung cancer remains to be further elucidated. To this end,
we thoroughly characterized CDC6 as a new m6A target of the
LCAT1/IGF2BP2 complex, which promotes CDC6 expression in lung
cancer cells. Specifically, using MeRIP-qPCR assays, we found that
CDC6 mRNA was modified by N6-methyladenosine, which was
then recognized by the m6A reader protein IGF2BP2. The
recognition between IGF2BP2 and CDC6 mRNA could be abolished
by knocking out the m6A-modified core methylase METTL3,
suggesting that the recognition is m6A-dependent. We further
demonstrated that the LCAT/IGF2BP2 complex could enhance the
stability of CDC6 mRNA, thereby leading to the upregulation of
CDC6 protein expression. Importantly, CDC6 is upregulated in lung
cancer and its higher expression is associated with a worse
outcome for lung cancer patients. Biologically, CDC6 promoted cell
proliferation, colony formation, and migration of lung cancer cells,
and forced expression of CDC6 can overcome the cellular effects
caused by the blockage of the LCAT1-IGF2BP2 axis, implicating that

the effect of LCAT1-IGF2BP2 is at least in part mediated by
downstream CDC6.
In summary, our study fits a novel working model as follows: LCAT1

binds and stabilizes an m6A reader protein IGF2BP2 by preventing its
lysosomal degradation. Stabilized IGF2BP2 then upregulates the
expression of CDC6 in an m6A-dependent manner. CDC6 then acts as
an oncogenic protein to promote the proliferation, survival, and
migration of lung cancer cells (Fig. 6H). Thus, the oncogenic LCAT1-
IGF2BP2-CDC6 axis appears to be a potential therapeutic target for
lung cancer and may serve as a promising prognostic biomarker,
given its association with poor patient survival.
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