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Abstract: The vibrational density of states (VDOS) of solids in the low-energy regime controls the
thermal and transport properties of materials, such as heat capacity, heat conduction, free energy and
entropy. In α-Cristobalite, the low-frequency part of vibration density of states (VDOS) has many
common features with the Boson peak in silica glass of matched densities. Recent theoretical work
reported that anharmonic phonon–phonon interactions were critical for the low-frequency part of
VDOS in α-Cristobalite. Therefore, it is urgent to identify the role of different anharmonic interactions
from first principles. In this paper, we focus on the main peak of the low-frequency part of VDOS in
α-Cristobalite. Calculated by our own developed codes and first principles, we find that the quartic
anharmonic interaction can increase the frequency of the peak, while the cubic anharmonic can
reduce the frequency and change the shape of the peak. Meanwhile, the anharmonic interactions
are critical for the temperature effect. Therefore, we calculated the temperature-dependent property
of the peak. We find that the frequency of the peak is directly proportional to the temperature.
The atomic displacement patterns of different temperatures also confirm the above conclusion.
All our calculations converged well. Moreover, our basic results agree well with other published
results. Finally, we highlight that our codes offer a general and reliable way to calculate the VDOS
with temperature.

Keywords: phonon; temperature-dependent behavior; vibration density of states; anharmonic interactions

1. Introduction

The vibrational spectra of solids play important role in thermodynamics physics [1,2],
where the low-energy vibrational spectra are described by the Debye model as proportional
to phonon frequency squared [3,4]. Boson peak is an anomaly in VDOS (vibration density
of states) that appears in glasses upon normalizing the VDOS g(ω) by the Debye lawω2 [5].
Therefore, Boson peak is the characteristic anomalous behavior of the low-frequency part of
VDOS [6]. In early years, there was consensus that Boson peak, which is usually observed
in disordered crystals and amorphous phases, was the feature of disorder [7,8]. Hence,
based on disorder, many theories were developed to explain the origins of Boson peak in
glasses [9–18]. In 2014, in some ordered crystals, for example, α-Cristobalite, α-Quartz,
Coesite, the low-frequency part of VDOS had many common features with Boson peak in
silica glass [19–21]. According to the published experiments, for α-Cristobalite and silica
glass with matched densities, the DOS of silica glass appeared as the smoothed counterpart
of DOS of the corresponding crystal, which illustrates that two systems have the same
number of the excess states relative to the Debye model, the same number of states in
the low-energy region, and the same specific heat. In 2015, the similarity was attributed
to the atom displacement patterns of α-cristobalite. A recent theoretical paper reported
that anharmonic phonon–phonon interactions are critical for the low-frequency part of
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the VDOS in α-cristobalite [22]. Therefore, it is urgent to identify the role of anharmonic
interactions for the low-frequency part of VDOS in α-cristobalite from first principles.

Unraveling the anharmonic interactions of VDOS in α-Cristobalite remains as a chal-
lenge. Recently, the phonon Green function method by using elastic constants was used to
calculate the VDOS at the low-frequency region [22]. However, we found that the method
completely fails in α-Cristobalite. The ratio of shear modulus to bulk modulus G/K is 2.38
and the Poisson ratio lies in the vicinity of the value −0.2, which led to wrong phonon
velocity and frequency [22–27]. Therefore, we developed the codes for phonon Green
functions from first principles to calculate the VDOS accurately. Because the anharmonic
interactions include the phonon–phonon cubic and quartic interactions, we must identify
the role of different phonon–phonon interactions for the VDOS. In detail, we focus on the
main peak of the low-frequency part of VDOS in α-Cristobalite. We present that the quartic
interaction can induce frequency shift of the peak, while the cubic interaction can simulta-
neously change both the frequency and shape of the peak. However, the effect of the cubic
interaction is weak. In fact, the anharmonic interactions are critical for temperature effect.
Therefore, we show the temperature-dependent behavior of the peak. The frequency of the
peak shifts to higher frequency and is directly proportional to temperature. Moreover, we
also show the Transverse Acoustic (TA) branches’ dispersion for different temperatures.
Meanwhile, we present that the atom displacement patterns of α-Cristobalite are similar
at different temperatures. We find that the atoms have similar vibration direction, but
different vibration amplitude. This result agrees well with the temperature-dependent
behavior of the VDOS. In conclusion, we identify the roles of anharmonic interactions for
the VDOS and offer a way to calculate VDOS accurately.

2. Methods

Generally, the phonon–phonon interactions include the following terms:

U = harmonic + cubic + quartic + · · · (1)

where the second and third terms are anharmonic interactions and the last plus (+)
means even higher orders that are normally neglected. We use 4 × 4 × 4 supercells
and Perdew−Burke−Ernzerh of exchange-correlation functional with 38Ry cut-off to cal-
culate the phonon dispersions with harmonic approximation in α-Cristobalite by using
Alamode-1.1.0 [28–30] and Quantum Espresso-6.4.1 [31,32]. And we use 2 × 2 × 2 su-
percells with 70Ry cut-off to calculate the cubic and quartic anharmonic interaction force
constants (IFCs). The displacement distance of atoms is chosen as 0.03 Å. In the self-
consistent phonon (SCPH) calculation of α-Cristobalite, we use the parameters 2 × 2 × 2 of
kmesh_scph and kmesh_interpolate to generate the effective second order IFCs with differ-
ent temperatures. In addition, the off-diagonal elements of the loop diagram are neglected
in the SCPH calculation. The vibration density of states is calculated with 30 × 30 × 30
q-points. However, there are no available codes to calculate VDOS, including all the various
phonon–phonon interactions. Here, for the first time, we developed some codes to achieve
this goal. The following are algorithms for the calculations. Firstly, from the calculated
phonon–phonon interactions we can obtain the phonon eigenfrequency by [33,34]:

Ωλ = ω
(2)
λ + ∆ω

(3)
λ + ∆ω

(T)
λ + ∆ω

(4)
λ (2)

Here λ = (q, j), q is the q-point index and j is the phonon band index. ω
(2)
λ is the

phonon frequency in harmonic approximation. ∆ω
(3)
λ . and ∆ω

(T)
λ are frequency corrections

given by the cubic anharmonic, and ∆ω
(4)
λ is a frequency correction provided by the

quartic anharmonic. The phonon linewidth Γqj can be deduced from the cubic anharmonic
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interaction [35,36]. Now considering the anharmonic interactions, we can construct the
phonon propagators by the Green functions [22,37]:

Gqj(ω) =
1

ω2 − Ω2
qj + iωΓqj

(3)

Here the eigenfrequency Ωqj that includes the cubic and quartic anharmonic and the
phonon linewidth Γqj are used to construct the phonon propagators. Finally, the VDOS is
calculated by the imaginary part of the propagators:

g(ω) =
−2ω

3N ∑
qj

ImGqj(ω) = ∑
qj

−2ω

3πN
×

−ωΓqj

(ω2 − Ω2
qj)

2
+

(
ωΓqj

)2 (4)

The summation includes all the q-points and phonon branches. N is the number
of atoms in the unit cell. The weights for different q-points have been considered. The
phonon Green functions codes for calculating VDOS will be released later. The calculation
equipment is the computer cluster, which is composed of Intel(R) Xeon(R) Silver 4110 CPU.

3. Discussion and Results

We now applied the above algorithms and developed codes to calculate VDOS of α-
Cristobalite. Firstly, only harmonic approximation was considered to calculate the phonon
dispersion and VDOS. Our calculation results with harmonic approximation agree well
with the reference [38]. The system is stable under harmonic approximation (Figure 1a),
and the VDOS is shown in Figure 1b. We focused on the main peak of the VDOS at the
low-frequency part. The peak of VDOS in crystal theoretically is an acoustic Van Hove
singularity. The Van Hove singularity is the shoulder of the phonon dispersion where
the density of states is not differentiable. Hence, from Figure 1a,b, it is observed that the
frequency of the peak is indeed TA singularity (Van Hove singularity) at M (0.5,0.5,0). The
Van Hove singularity usually results from the piling up of the vibrational states near the
boundary of the Brillouin zone. The M point is indeed at the boundary of the Brillouin
zone. Therefore, the vibration states at M (0.5,0.5,0) are the main contribution to the peak.
We will focus on the vibration states at M (0.5,0.5,0) to check the roles of the anharmonic
interactions.
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Figure 1. (a) The Phonon dispersion of α-Cristobalite. The red line is the frequency of the main peak at 44 cm−1. (b) The
vibrational density of states (VDOS) of α-Cristobalite with harmonic approximation. The red line is the location of the
main peak.

The anharmonic interactions generally include the phonon–phonon cubic and quartic
interactions. Firstly, we consider the quartic interaction to calculate the VDOS at different
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temperatures. Later, we will check the role of the cubic interaction and show that the
effect of the cubic interaction on the VDOS is weak. We used the SCPH algorithm to
generate the effective harmonic force constants for considering the quartic interaction. The
low-frequency part of the VDOS at different temperatures has been plotted in Figure
2. Because the phase change happens in α-Cristobalite at around 520 K, the maximum
temperature was limited to 500 K. It is observed that the main peak shifts to higher
frequency with increasing temperature in Figure 2. We show the TA branches’ dispersion
and frequency of the peak with increasing temperature in Figure 3. It is obviously seen
that in Figure 3a the shoulder of the TA branches at M (0.5.0.5 0) shifts to higher frequency,
which corresponds to the shift of the main peak. Figure 3b illustrates that the frequency
of the main peak increases in direct proportion to temperature. Meanwhile, we present
the atom displacement patterns at M (0.5,0.5,0) with 0 K and 300 K in Figure 4. The atom
displacement pattern of 0 K agrees well with the published result [39]. It is clear to see
that the vibration direction of the atoms changes little in Figure 4. This phenomenon can
be explained from two perspectives. According to the lattice dynamic, the amplitude of
the vibration is related to the frequency of phonon. Therefore, it is reasonable that the
atoms should have larger vibration amplitude with increasing temperature. Moreover,
the SCPH algorithm considers first order contribution to the phonon self-energy from the
quartic interaction. According to the perturbation theory analysis, the first order phonon
self-energy from the quartic interaction is the real number, which mainly contributes to the
frequency correction. Thus, the frequency of phonon increases with increasing temperature.
Meanwhile, the eigenvector of phonon that is related to the vibration direction of atoms
changes little.
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Figure 3. (a) The dispersion of TA branches with increasing temperature. (b) The frequency of the main peak of the VDOS
with increasing temperature. Every point corresponds to the frequency of TA branches’ shoulder at M (0.5,0.5,0).
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Figure 4. (a) Atom displacement patterns at 0 K. (b) Atom displacement patterns at 300 K. The vibration directions are
depicted by green arrows, on an arbitrary scale for better visualization. The red balls are O atoms. The blue balls are
Si atoms.

Another physical quantity of interest is the cubic anharmonic interaction [40]. The
cubic interaction can give both frequency shift and phonon lifetimes as the forms of bubble
and tadpole. Here, we consider both tadpole and bubble contributions to phonon frequency
based on the perturbation theory [41,42]. The frequency shift of tadpole and bubble is
given by [33],

∆ω
(T)
λ =

}
8ωλ

∑
λ1

∑
ν2

V(3)
λ,−λ(0,ν2)

V(3)
λ1,−λ1,(0,ν2)

× 2n1 + 1
ω1ω2(ω2)P

(5)

∆ω
(3)
λ = }

16ωλ
∑

λ1λ2

∣∣∣V(3)
λ−λ1−λ2

∣∣∣2δq−q1−q2 ×
n1+n2+1

ω1ω2(ωλ−ω1−ω2)P

+ }
16ωλ

∑
λ1λ2

2
∣∣∣V(3)

λλ1−λ2

∣∣∣δq+q1−q2 ×
n1−n2

ω1ω2(ωλ+ω1−ω2)P

(6)

where, n is the Boson–Einstein distribution and V(3) is the potential obtained by the cubic
anharmonic IFCs [43]. δ is the Dirac function. ω is the phonon frequency. The subscript
λ = (q, v), q refers to the phonon wave vector and v represents phonon dispersion branch.
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} is the reduced Planck constant. The Cauchy principle value 1
(x)p

= x
x(x2+ε2)

, where

the infinitesimal ε is a broadening factor. Meanwhile, the cubic anharmonic can provide
phonon linewidth Γ(3)

λ (ω). We present the phonon–phonon scattering results from the cubic
anharmonic interaction in Figure 5. The result agrees well with the published paper [38].
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Figure 5. The phonon lifetimes due to the phonon–phonon cubic interaction at 300 K.

Then, we used the phonon propagator algorithm to calculate the VDOS with the
phonon lifetimes and frequency correction. Although the cubic interaction contributes
little to the main peak of the low frequency part, the effects of the cubic interaction are
important. The cubic anharmonic interaction can lead the frequency of the peak shifts to
lower frequency as shown in Figure 6a. In addition, it is noticed that the shift of frequency
mainly appears at the low-frequency part. Due to the limited lifetimes, there is a slight
change on the shape of the low-frequency part of the VDOS. Furthermore, if the cubic
anharmonic interaction is strong, i.e., phonon–phonon scattering is strong [43–45], the
frequency of the peak may be overestimated without the cubic anharmonic interaction.
These calculation results identify the role of the cubic anharmonic interaction for the VDOS.
It is seen in Figure 6b that the peak is predominantly contributed from TA phonon branches,
while the Longitude Acoustic (LA) branch contributes a little to the peak. This result agrees
well with the analysis of the harmonic phonon. Moreover, we checked the error of the
calculation data. The experiment at room temperature shows that the frequency of the peak
is about 7.06 meV [39]. However, our calculation result at 300 K is about 8.92 meV. The
lattice parameters in our calculation are 5.103 and 7.135 angstrom, which are different from
the experiment value 4.978 and 6.948 angstrom [39]. Due to the different lattice parameters,
the error can be understood.
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Finally, we discuss the calculation method. As usual, for the fast calculation, the elastic
constants can be used to generate the sound velocity [22,46]:

c2
T =

µ

ρ
, c2

L =
K + 2(d−1)

d µ

ρ
(7)

µ is the shear modulus, K is the bulk modulus, d is the dimension, ρ is the density. The
sound velocity will be used to calculate the phonon frequency:

ωL,T = cL,Tq − iDL,Tq2 (8)

where q is the wave vector, DL,T is the constant. Combing the frequency and DL,T, the
phonon propagators can be constructed to calculate the low-frequency region of the VDOS.
However, this method does not work well in α-Cristobalite. According to the experiment
and calculation from first principles, the ratio of the shear modulus to the bulk modulus
µ/K is 2.38. Moreover, the Poisson ratio lies in the vicinity of the value −0.2. Furthermore,
using the Equation (7), the phonon velocity of the TA is about 417.26 m/s. However, the
average phonon velocity of the TA along the symmetry path is 2402.08 m/s. Hence, it
is evident that the calculation method of the VDOS by using shear and bulk modulus is
not reliable.

4. Conclusions

In conclusion, we studied the lattice dynamics of VDOS with increasing temperature
in α-Cristobalite. We developed the codes to use the phonon Green function method to
calculate the VDOS. This way can include different phonon–phonon interactions. We
calculated the low-frequency part of the VDOS with increasing temperature, which shows
that the frequency of the main peak at low-frequency part increases in direct proportion to
temperature. This temperature-dependent behavior can be explained from phonon-self
energy analysis and atom displacement patterns. Furthermore, we identified the roles of
cubic and quartic interactions for the main peak at the low-frequency part of VDOS in
α-Cristobalite. We report that the quartic anharmonic can increase the frequency of the
peak, while the cubic anharmonic can reduce the frequency of the peak and change the
shape of the peak. Furthermore, the effect of the cubic interaction is weak in α-Cristobalite.
Moreover, we confirmed that the calculation method by using the elastic constants may
obtain the unreasonable phonon velocity which leads to the unreasonable VDOS. Over all,
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our work provides the temperature-dependent behavior of VDOS in α-cristobalite from
first principles and identifies the role of the cubic and quartic interactions for the VDOS.
Our codes provide a general and reliable calculation method for VDOS, including different
anharmonic interactions.
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