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Magnetic pumping model for energizing
superthermal particles applied to observations
of the Earth's bow shock

E. Lichko® 2™ & J. Egedal’

Energetic particle generation is an important component of a variety of astrophysical sys-
tems, from seed particle generation in shocks to the heating of the solar wind. It has been
shown that magnetic pumping is an efficient mechanism for heating thermal particles, using
the largest-scale magnetic fluctuations. Here we show that when magnetic pumping is
extended to a spatially-varying magnetic flux tube, magnetic trapping of superthermal par-
ticles renders pumping an effective energization method for particles moving faster than the
speed of the waves and naturally generates power-law distributions. We validated the theory
by spacecraft observations of the strong, compressional magnetic fluctuations near the
Earth's bow shock from the Magnetospheric Multiscale mission. Given the ubiquity of
magnetic fluctuations in different astrophysical systems, this mechanism has the potential to
be transformative to our understanding of how the most energetic particles in the universe
are generated.
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uperthermal populations of ions and electrons are abundant

in a wide variety of astrophysical systems throughout the

universe, often with distributions characterized by energetic
power-law tails!2. However, the consensus on the physical
mechanisms that energize these particles is far from settled. While
it is well known that plasma can be energized by waves, most
theories of wave-particle energization (excluding shocks and
magnetic reconnection) are only effective for energizing particles
moving at velocities close to the phase velocity of the waves3~>.
We here present an analysis of particle energization by magnetic
pumping. While previous work suggests that this mechanism is
only effective up to the phase velocity of the wave®, we show that
the addition of magnetic trapping of particle orbits renders
pumping effective for heating particles moving far faster than the
wave speed, an example of which is shown in Fig. 1. This
mathematical treatment reveals the underlying Fermi heating
mechanism consistent with the formation of energetic power-law
distributions.

Diffusive shock acceleration (DSA)” is a classic example of
such a Fermi heating mechanism. Given an initial seed popula-
tion, DSA yields power-law distributions of often relativistic
electrons with Larmor radii larger or comparable to the width of
the shock front. In this Letter we find that magnetic pumping in
the fluctuations generated in the vicinity of Earth’s bow shock can
provide a seed population of pre-energized magnetized electrons.
Thus, along with mechanisms such as stochastic shock drift
acceleration (SSDA)3-10, magnetic pumping may help address the
injection problem of DSA!L:12,

Magnetic pumping is directly related to the pressure anisotropy
that naturally forms when a plasma and its magnetic field are
compressed!3. This anisotropy can be moderated by an effective
scattering frequency, v, caused by processes such as pitch-angle-
mixing by Whistler waves!4, or a limited confinement time of the
electrons in the magnetic wells, yielding a phase delay between
the perpendicular pressure, p,, and the flow perpendicular to the
magnetic field, u,. Given this phase delay, when averaged over a
pump cycle, mechanical work by p,V, - u; then becomes finite
and is the source of the energy for the magnetic pumping process.
In this process energy is transferred from magnetic fluctuations to
directly heat the plasma, bypassing the turbulent cascade!>-17.

Fig. 1 Cartoon of flux tube with spatial variation. a Cartoon of the
incoming solar wind, including the pre-bow shock magnetic fluctuations,
similar to the cartoon in Tsurutani and Rodriguez34. b The inset shows an
example flux tube and a set of trapped (red) and passing (black) particle
orbits.

Extensive prior work, however, suggests that magnetic pump-
ing is not effective for energizing superthermal particles. For
example magnetic pumping by compressional waves, related to
transit-time damping!8, is shown to be a Landau damping pro-
cess, where heating is limited to particles moving at the magnetic-
field-aligned phase velocity of the wave considered, v, = w/k,
where w is the angular frequency of the wave and kj is the
wavenumber in the direction parallel to the magnetic field!®. In
the framework of quasilinear theory Landau damping causes
velocity diffusion limited to particles near the resonance velocity,
v ~ wl/k, and is derived based on the standard procedure of
integrating the plasma kinetic equations along unperturbed par-
ticle trajectories. In contrast, here we consider a standing wave
geometry and apply the fast transit-time limit?0 to retain aniso-
tropic effects related to the full electron orbit motion.

Here we show that a quasilinear analysis with trapped electron
effects and v > w/k yields a velocity diffusion equation similar to
that obtained by Lichko 2017° for the opposite limit, v < w/kj.
More specifically, the slowly-varying background distribution f; is
governed by a diffusion equation of the form

Lo 12 (%), powrg(2) 0

ot Ao B @

where G is independent of v, but is a function of v/w, and the
magnitude of the magnetic perturbations relative to the back-
ground magnetic field, 6B/By. The result that D  wv? is evidence
of a Fermi heating process with a diffusive step size proportional
to the velocity, Av « v.

Results

Model of electron trapping. Below we will outline how Eq. (1) is
obtained and provide an evaluation of G, a metric of the effec-
tiveness of the pumping process. Meanwhile, we will compare
these predictions to observations by the Magnetospheric Multi-
scale (MMS) mission in the region of the Earth’s bow shock?!.
Within the electron foreshock there are ripples, variations in the
magnetic field itself, that have been shown to be a source of
electron acceleration, as well as other large-amplitude magnetic-
field fluctuations22-26, an example of which was recorded on
October 7th, 201527, From the time histories of |B|, n, Tops, and
Tobs! Tadiabatic- @s shown in Fig. 2a-d, the temperature increase is
greater than would be expected from compressional heating
alone. The evolving pitch-angle-averaged distribution functions
in the foreshock are shown in Fig. 2e for the times marked in
Figs. 2a-d. These distribution functions demonstrate energy
transfer consistent with a Fermi heating mechanism, where
Av « v, which in log-log format can be seen in the shift of the
energetic power-law tails at a constant slope.

We first aim to demonstrate that the observed anisotropy is
consistent with electron trapping in a standing wave perturbation
and is representative of the perturbed distribution function driven
during each pumping cycle. We consider the limit where the
bounce time, T3, is much smaller than the time scales associated
with the waves. The instantaneous particle orbits are then
described by the magnetic moment, 4 = mv2 /(2B) and the total
energy U = £ — e®, where £ = {mv?, e is the positive electron
charge, and @ is the electrostatic potential. We assume electron
energies larger than the electrostatic potential associated with the
perturbations?® such that the vx B part of the Lorentz force
dominates the orbit motion. Using the additional assumption that
electrons are well-magnetized, with the Larmor radius smaller
than the perpendicular wave length of the perturbations, p; <1,
for the parameters in this bow shock crossing the model is
appropriate for energies 100 eV <& <100 keV.
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Fig. 2 MMS data for bow shock crossing. a Plot of the average magnetic
field from MMST as a function of time. The bar on the top of the plots
denotes the part of the shock that the spacecraft is observing. The
spacecraft is initially in the solar wind (SW) approaching the Earth's bow
shock, then travels through the foreshock (FS) and the bow shock (BS)
before entering the Earth's magnetosheath (MS). The part of the plot
highlighted in light blue denotes the low density of the solar wind. This low
density affects spacecraft performance, leading to uncertainty in the
measurement of Tops/Tadiab. N this region. b Plot of the density from
MMST as a function of time. ¢ Plot of the observed temperature (Tops, = Tr
(P)/(3n)) from MMST as a function of time. d Plot of the observed
temperature as compared to the temperature expected from compressional
heating alone (Tagiab. = n%/3). e Pitch-angle-averaged distributions at the
times denoted by the colored lines in a-d. The green dashed line denotes
what the final distribution at the last point should look like if it only
underwent compressional heating from the initial yellow time point to the
final blue time point. All of these time points are chosen to be near peaks of
the magnetic fluctuations spaced upstream of this quasi-perpendicular
shock front, B, = 83°, at Alf¢nic Mach number, Ma = 6.327.

At each time point during the magnetic pump cycle an
instantaneous electron orbit is fully characterized by ¢ and €. In
turn, from the multiple time scale method202° the distribution
must be constant along these instantaneous orbits, reducing the
dimensionality of the problem.

Starting with the drift kinetic equation?
mixing, i.e.,

O with pitch-angle

af 9 NCA Y|

ar = VA E =G - Ege =
we change variables from f(t,x, v, v)) = f(t, &, x), where y=A/
(% +A), A = uBy/E, and j = J /(4vL) = 1/(VL) [3" v dx with Ly
denoting the bounce point and L the length of the flux-tube

element. Here £ and y are both constant of motion variables
where y is representative of v2 /v* along the instantaneous orbits.

ey @

Using these new variables and following the approach of Montag
et al’! and Egedal et al.32, we obtain an orbit-averaged form of
Eq. (2)

of o _
E—H(t, )Ea—gw =v(L),f (3)

where H = (2/j)(9j/dt)|, and the orbit average ((...)), is defined

in the Methods subsection Orbit averaging of the Lorentz
operator.

Electron trapping in spacecraft data. We solve Eq. (3)
numerically, assuming an initial isotropic distribution and a
standing wave magnetic field,
B(x,t) = B(x,t)/B, = 1 — (8B/B,) sin(wt) cos(kjx). The resul-
tant distribution functions are shown in Fig. 3f-i for selected
positions along the flux tube at a time f, with a representative
amplitude sin(wt,)(8B/B,) = 0.5.

Despite the idealized form of the magnetic perturbation, there
is good agreement between these model distribution functions
and the distribution functions observed by MMS, as shown in
Fig. 3a-d, over the course of a single fluctuation of commensurate
size, as shown in Fig. 3e. As documented further in the Method
subsection Observations of distributions throughout the encoun-
ter, anisotropic distributions of this form are observed on all four
MMS spacecraft throughout the event. To emphasize the need for
pitch-angle scattering the model distributions in Fig. 3f-i were
generated for v=0 and have sharper features in velocity space
compared to those observed by MMS.

Magnetic pumping model. To estimate of the aforementioned
effective scattering rate we integrate the model in Eq. (3) for
various values of v to match the MMS observations. For example,
the distribution displayed in Fig. 3k was obtained by integrating
Eq. (3) with v/(w/27) = 0.75 and provides a good match to the
MMS distribution in Fig. 3d. A more detailed description of this
matching process is detailed in the Methods subsection Obtaining
an estimate for the effective scattering frequency, as well as ref. 33,

The agreement demonstrated above suggests that the model is
capturing the anisotropic features of the observed distribution
functions. While the inferred amount of scattering is too low for
SSDA!0 to be effective, it is near optimal for magnetic pumping
and the analysis can now be extended to address the energization
of the electrons over many cycles. Following the blueprint of the
quasilinear method, we then separate the distribution function
into the slowly-varying, isotropic background distribution, f, and
the anisotropic portion of the distribution function, fi,

f=fot,&) +f1(t, %), fo(t,€) = (f(LE X)), (4)

where the pitch-angle averaging ((...)), is defined in the Method
subsection Particle conservation in ((...)),. To make Eq. (3) more
analytically tractable, the Lorentz operator is approximated with
the Krook operator, Ly = —Cy(f — (f),), where the factor Cx =
1.15/(8B/B,)"" is derived in the Methods subsection Calibrating
the Krook operator as a function of 6B/B,. In addition, the
anisotropic part of the distribution function, f;, as well as the
other relevant anisotropic terms H(t, x) and h(t,x) = H — (H),
are Fourier transformed such that f, = 3~ fie"*!, H =¥, H"ei",
and h = ¥, h"enet,

By inserting these expansions and Eq. (4) into Eq. (3) an
equation for the anisotropic part of the distribution function is
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Fig. 3 Comparison of MMS observations with model. a-d Electron
distributions recorded by the Fast Plasma Investigation (FPI) instruments
on MMS3 at 30 ms resolution for the rippled foreshock event reported in
ref. 27, for the estimated points along the fluctuation where B € {5/4,
1,3/4,1/2}. The distributions are weighted by the factor v> to visually
enhance the anisotropic features. The trapped-passing boundary is denoted
by a red dashed line. @ Magnetic-field strength along the foreshock
encounter, where the colored lines denote the times where the distributions
in a-d were taken. The purple bar on the bottom denotes the part of the
observation that is in the solar wind, followed by an orange bar that denotes
the foreshock and bow shock, then a gray bar for the part of the observation
that is in the magnetosheath. f-i Expected distribution functions computed
using Eq. (3) integrated at (8B/B,) sin(wty) = 0.5. The distributions are
evaluated at the same B inferred from the MMS data in a-d. In this
comparison we have assumed the Taylor hypothesis3>, that the changes in
B recorded by the spacecraft are mainly caused by the spatial, not temporal,
variations. For all electron distributions, the red dashed lines indicate the
trapped/passing boundaries, characterized by vf_/vﬁ = (B, +9B)/

B(ty,x) — 1. Electrons with (v, v,) in the vicinity of these boundaries follow
orbits which stagnate (v ~0) where dB/dt is maximal, causing the orbit
average of 9£/0t = u(dB/0t) to be positive. This explains the enhanced
values of f along the trapped-passing boundaries. j shows a cartoon version
of the flux tube. k shows the theoretical distribution in i scattered with the
Lorentz operator, L, for v/(w/2x) = 0.75.

found,

of h"(—inw 4+ Cyv)
"=K EZL, = ‘. 5
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Inserting f; back into Eq. (3), an evolution equation is obtained
for the slowly-varying background distribution df,/dt =
((Hf,) X>t' More explicitly we recover Eq. (1), with

.y R(H" inwt R(W" inwt
5O ol (R R ; >>x>,’ »
" 4w (n? + (Cxr/w)’)

where we recall G is a measure of the energization from a
single pump cycle. An approximate form of G that is easy to
evaluate is given in the Methods subsection Fitting the results
of G.

We validate the analytical model of Egs. (1) and (6) by
integrating Eq. (3) numerically for a range of v and considering a
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Fig. 4 Comparison of f.(v) evolution. a The energization G as a function of
the amplitude of a fluctuation, 6B/Bo, and the scattering frequency, v, for the
numerically-computed Lorentz (solid) and Krook (dashed) operators, as well
as the analytical solution. b Combined estimate of the evolution of the
distribution function from magnetic pumping and compressional heating for
the points denoted in colored lines in Fig. 2a, obtained by integrating Egs. (1)
and (6) for T=15x 2z/w, with §B/By = 0.7, and v/(w/2x) = 0.75. ¢
Reproduction of Fig. 2e. The green dashed line denotes what the final
distribution would look like if it only underwent compressional heating. Using
these conservative parameters, (Top/ T ) ppeor = O-83(Tobs/ Texp) ypass
where most of this difference stems from the giscrepancy in low energy
particles.

range of perturbation amplitudes, §B/B,. Numerical values of G in
Eq. (6) are estimated through Eq. (7),

(fs (2f /ot)dt)/ T

9 of
3 (45)

; (7)

v

w gestimate =

where T'=2n/w and the numerator and denominator are found
to be nearly linearly dependent functions of v before averaging. In
Fig. 4a, the numerical model of Eq. (3) is evaluated both with the
full Lorentz operator and its Krook approximation. The analytic
solution in Eq. (6) (dotted) is based on the Krook model and is in
good agreement with the numerical Krook result in which
the efficiency of pumping increases by a factor ~100 as B/B, is
increased from 0.3 to 0.9.

Comparison model to spacecraft data. Using the earliest spec-
trum (yellow) selected in Fig. 2e with a small amount of
smoothing as the initial condition, we apply the model in Egs. (1)
and (6) to predict the evolution of the pitch-angle-averaged dis-
tributions recorded by MMS. Compressional heating is modeled
by including —11/(3n)v(3df /9v) on the right-hand-side of Eq. (1)°.
The result of this calculation is shown in Fig. 4b and is in good
agreement with the observation from Fig. 2e, repeated for con-
venience in Fig. 4c. While there are some differences at lower
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energies, likely due to the effects of electric fields, which are
neglected in our approach, the model provides a good account for
the energization of electrons at large energies. The green dashed
lines in Figs. 2e and 4c are the final spectra when considering
compression alone, clearly underestimating the level of energi-
zation. Downstream of the shock front (for > 11:44:44UT) the
energization rate by pumping declines with the frequency of the
fluctuations, and in combination with parallel streaming losses is
consistent with a drop in the fluxes of superthermal electrons.

Discussion

We have here presented an energization mechanism, magnetic
pumping, that becomes applicable to superthermal particles,
v > w/k, when the effects of trapping are retained. The MMS
observations provide evidence that magnetic pumping has a
significant role in electron energization in the region of the
Earth’s bow shock. Given the potential universal applicability of
the model, this could have a far-reaching impact on our under-
standing of electron and superthermal ion energization in many
other plasma environments where particles with v > w/k are
observed, such as the solar corona, cosmic ray generation
pumped by magnetic turbulence in the interstellar medium, or
possibly shocks driven by supernova explosions.

Methods

Finding j as a function of . The kinetic description applied in this work is limited
to the superthermal particles characterized by speeds, v, sufficiently large that the
Lorentz force is dominated by the magnetic term, i.e., vB > E. To be more specific,
in our drift kinetic analysis we are concerned with the parallel motion along the
magnetic field, in general governed by forces due to the parallel electric field and
the magnetic mirror force. For plasma variations of scale length L, the magnitude
of these forces can be estimated as |eV®| =~ T./L and |4V B| = mv?>§B/(2B,L), and
it follows that the superthermal limit requires v* >> v2B, /(8B), where v, is the
electron thermal speed and 6B/B, is the normalized magnetic fluctuation
amplitude.

In the superthermal limit the description of the orbit motion is significantly
simplified as the value of v /v = v/1 — AB along an orbit is only dependent on
A = uB,/& (and independent of the electron energy £ with the assumption E; =
0). This strongly simplifies the calculation of the second adiabatic invariant J(v, A)
because j = J/(4vL) is then a function of only A, readily evaluated numerically for
the slowly evolving magnetic perturbation considered, as illustrated in Fig. 5, where

1 (v 1 (b
(A ) = — 7”,11 =51 | V1-AB{tx)dx.
0

4L

Given this calculation of j(A, ) over the course of a full pump cycle we can
determine A(y, ) and in turn obtain j(y, f) as shown in Fig. 5¢. This function is
fundamental to our analysis as it is related to the instantaneous rate of particle
energization. Because dJ/dt = d(vj)/dt = 0 it follows that j dv/dt+ v dj/dt = 0.
Furthermore, as j = j(y, #) and dy/dt = 0, we have dj/dt = 9j/9t|,, such that
vidv/dt = 7j’18j/8t|x. We then obtain the result implicit in Eq. (3) that

d& _20j

—| =—-¢H here H=—-—| .
dtx , Where jor

Particle conservation in ((...)) . Without loss of generality, in our analysis
magnetic-field lines in the (x, z)-plane are characterized by the flux function ¥, and
we consider a flux-tube with constant width Ay in the y direction. The width in the
z direction varies as 1/B and is parameterized by AY. The total number of particles
within our flux tube of length L must be conserved, i.e.,

N:/fd3v d%:zlfy/ dE/ dy/ A¥r,f. )

For the point x = L/2, B= B, we can evaluate AY = ByAz, where Az is the width
of the flux tube at that x location. Furthermore, because 7, = v7y /(4L) and
dédy = m*v3dvdA /B, we get

N = 2nAyAzL / vidy / AATf. 9)

Rewriting this in terms of our preferred variables, (v, y) the expression becomes

N:ZnAyAzL/ vzdv/ d)((i—j?) Tf -

(10)
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Fig. 5 j as a function of invariants. a Plot of the maximum magnetic-field
amplitude over the course of a fluctuation for a maximum magnetic field of
6B/Bo = 0.5. b Plot of j as a function of A over the course of a fluctuation for
the magnetic field in a. ¢ Plot of j(y, t) normalized by j(y, to) for the same
fluctuation. d Plot of j(y, to).

This motivates the averaging operator

S )R

11
(G I dx(i%)% (11)
such that the pitch-angle averaged distribution becomes
F(v) = {f)y- (12)
In turn, the total number of particles can then be written as
N = 2nAyAzL (/ dy <%‘) %b> / F(v)vidv (13)

From the form of Eq. (13) it is clear that Fv2dy is proportional to the number of
particles in the flux tube within a differential speed interval, dv.

Obtaining an estimate for the effective scattering frequency. We can estimate
how much scattering is needed to match the spacecraft observations by comparing
the MMS distributions to theoretical distributions generated by integrating Eq. (3)
for a range of scattering frequencies, v. By comparing the anisotropic features in the
MMS distribution to the features in this set of theoretical distribution functions, we
can estimate the effective scattering frequency. Based on a least-squared-fit analysis,
the scattering frequency that best fit this data varies as a function of velocity, where
v/(w/2m) € [0.25, 1.5]. A scattering frequency within this range, v/(w/2m) = 0.75, is
chosen to generate a comparison with the MMS data, where the resulting scattered
distribution is shown in Fig. 3(k). A more thorough investigation into how the
estimated scattering frequency varies as a function of velocity can be found in
ref. 33, while examples of theoretical distributions scattered at a set of different rates
are shown in Fig. 6.

Observations of distributions throughout the encounter. In Fig. 3 of the main
text we demonstrated anisotropic distribution with features matching those of the
numerical model. To further demonstrate that these type of anisotropic distribu-
tions are representative for the full event, we here include in Fig. 7 electron
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distribution functions measured by MMS along the entire bow shock crossing.
Compared to the peak and valley distributions in Fig. 3 these follow the expecta-
tions from the theory.

Fitting the results of G. For an easy-to-evaluate approximation of the theory, the
results of Eq. (6) can be fit as

Cyv/w

SB\ 26 SB\ 56
~0.07( ( = 31— —,
s=or(() () )stdie

where Ci = 1.15/(8B/B,)""?, as discussed in the text and the last part of this
methods section. This fitting, plotted alongside the results from Fig. 4a are plotted
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Fig. 6 Estimating the effective scattering frequency. a-d Electron
distribution functions computed using Eq. (3) integrated at (68/B,)
sin(wty) = 0.5 for a range of scattering frequencies. e Plot of the magnetic
field for the relevant bow shock crossing. f MMS3 observation of an
electron distribution function at the orange line in e, where we estimate
B=0.5.

[

in Fig. 8. We note that this approximation for G is also valid in the limit of
SB/B, — 0.

Orbit averaging of the Lorentz operator. As outlined above, our model is
averaged over the fast electron orbit motion. Locally we assume that the scattering
process is described by the familiar Lorentz pitch-angle scattering operator, £,
which is then subject to orbit averaging?%-2%. For this orbit averaging, it is con-
venient to express £ in terms of the constant of motion variable A. Starting with
the Lorentz pitch-angle scattering operator in terms of = v}/,

10 2, 0
=2 (1-8)= 14
L= 350 -8)5 (14)
we rewrite the scattering operator in terms of the new variables, A and £
2
_mibal 9 - B 15
=25 3 SvaaA K v =1/26(1 — AB)/m (15)
which then takes the form
2 o] 2 -0
L=|=—3A)— =A(1 - AB)—| . 16
(B >8A5+B ( )aAzg (16)

After averaging along the spatial dimension of the flux tube we then obtain the
orbit-averaged operator,
1 E}
CORS

24((F), —4)i
+ B/, oA | ¢

where ((...)), = 1/(7,L) fé" dx(...)/y/1 — A(B/B,) is the integral over the orbits,

where T, = v, /(4L) is the speed-normalized bounce time.

<L>x =
(17)

Calibrating the Krook operator as a function of 6B/By. As is clear from the form
of Eq. (14), the Lorentz operator describes diffusion of anisotropic features of the
distribution function, f. Accordingly, the diffusion time scales as 7, o (8€)2, where
8¢ is the typical scale for the anisotropic features of f. As the magnetic field
increases, the trapped portion of the distribution function will increase commen-
surately, yielding larger values of 6¢.

The Krook operator does not have this same dependence on 8¢, as the rate of
isotropization is in fact independent of 6. When computing the Krook collision
operator the new, scattered distribution function is formed from a linear
combination of the original distribution function, and a fully isotropized version of

70

B[nT]

11:44:45

11:44:50 11:44:55

2015-10-07 UTC

Fig. 7 Distributions along the bow shock crossing. a Magnetic field observed by MMS4 along the bow shock crossing. b-m Electron distribution functions
at the peaks and the corresponding valleys of magnetic fluctuations along the bow shock crossing are plotted. The distributions with the colored borders
are the distributions taken at the magnetic peaks at the times denoted by the colored lines in a. The adjacent distributions are taken at the associated

valleys denoted by the adjacent dashed lines in a.
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Fig. 8 Fitting the results of G. Reproduction of Lorentz distributions
generated in Fig. 4 along with the results from the approximate form of G.

the distribution function,

ft+At:‘xft+(l_a)<ft>X7 (18)

where a = exp(—vCygAt) determines the rate of isotropization.

To approximate the 8¢ dependency of £ we have introduced the coefficient Cy.
From an analysis of the kinetic equation it follows that 6 of fis similar to 8¢ of g = j2
+ A, which we used to provide a calibration for the efficiency of the Krook operator:

RUSCNN
g (@)

By repeating this computation for a multiple §B/B, we find the result scales as

Cx(6B/B,) = 1.15/(6B/B,)"" (20)

(19)

which is the result we used to compute the Krook distribution curves earlier in
the paper.

Data availability

All relevant data are available from the corresponding author upon reasonable request.
Additionally, the MMS spacecraft observations used in the production of this work can
be found in the MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/public/
datasets/fpi/ and https://www.lasp.colorado.edu/mms/sdc/public/datasets/fields/).

Code availability
All relevant code and Matlab routines are available from the corresponding author upon
reasonable request.
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