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Planning evaluation of a novel 
volume‑based algorithm 
for personalized optimization 
of lung dose in VMAT 
for esophageal cancer
Chen‑Xiong Hsu1,2,7, Kuan‑Heng Lin1,2,3,7, Shan‑Ying Wang1,4, Wei‑Ta Tsai1, Chiu‑Han Chang2, 
Hui‑Ju Tien1,2, Pei‑Wei Shueng2,5*, Tung‑Hsin Wu1* & Greta S. P. Mok6

Radiotherapy treatment planning (RTP) is time‑consuming and labor‑intensive since medical 
physicists must devise treatment plans carefully to reduce damage to tissues and organs for patients. 
Previously, we proposed the volume‑based algorithm (VBA) method, providing optimal partial arcs 
(OPA) angle to achieve the low‑dose volume of lungs in dynamic arc radiotherapy. This study aimed 
to implement the VBA for esophageal cancer (EC) patients and compare the lung dose and delivery 
time between full arcs (FA) without using VBA and OPA angle using VBA in volumetric modulated arc 
therapy (VMAT) plans. We retrospectively included 30 patients diagnosed with EC. RTP of each patient 
was replanned to 4 VMAT plans, including FA plans without (FA‑C) and with (FA + C) dose constraints 
of OARs and OPA plans without (OPA‑C) and with (OPA + C) dose constraints of OARs. The prescribed 
dose was 45 Gy. The OARs included the lungs, heart, and spinal cord. The dose distribution, dose‑
volume histogram, monitor units (MUs), delivery time, and gamma passing rates were analyzed. 
The results showed that the lung  V5 and  V10 in OPA + C plans were significantly lower than in FA + C 
plans (p < 0.05). No significant differences were noted in planning target volume (PTV) coverage, lung 
 V15, lung  V20, mean lung dose, heart  V30, heart  V40, mean heart dose, and maximal spinal cord dose 
between FA + C and OPA + C plans. The delivery time was significantly longer in FA + C plans than in 
OPA + C plans (237 vs. 192 s, p < 0.05). There were no significant differences between FA + C and OPA + C 
plans in gamma passing rates. We successfully applied the OPA angle based on the VBA to clinical EC 
patients and simplified the arc angle selection in RTP. The VBA could provide a personalized OPA angle 
for each patient and effectively reduce lung  V5,  V10, and delivery time in VMAT.

With the rapid development of dynamic arc radiotherapy, volumetric modulated arc therapy (VMAT) and 
tomotherapy could have better tumor coverage of the treatment plans for esophageal cancer (EC). However, 
increased low-dose exposure to the lungs is observed due to the continuous rotation of the  gantry1–4. Radia-
tion pneumonitis (RP) is one of the severe complications after radiotherapy for EC patients. Meanwhile, the 
relative lung volume receiving more than 5 Gy  (V5) and 20 Gy  (V20) and mean lung dose (MLD) are important 
dosimetric factors for  RP5–8.

Many methods for reducing the lung dose have been reported in dynamic arc  radiotherapy9, 10. However, 
the selection of gantry arc angle and dose constraints are the key factors in radiotherapy treatment planning 
(RTP). To reduce the radiation dose to the lungs, the medical physicists usually manually adjust the optimization 
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parameters, which is complex and time-consuming in inverse treatment planning. It took an average of 3.8 h to 
complete the EC treatment plan  manually11. Several automatic planning techniques were developed in RTP to 
reduce the planning time to 62–155  min12, 13. A high-quality treatment plan could provide high tumor coverage, 
low normal tissue dose, and a shorter delivery time in VMAT, e.g., an average of 6.1–6.6 min to deliver the total 
monitor unit (MUs)10, 14.

Previously, we proposed the volume-based algorithm (VBA) method to quickly calculate the optimal partial 
arcs (OPA) angle corresponding to the lung  V5 by defining the length and width of the planning target volume 
(PTV)15. We demonstrated that VBA could improve the efficiency of VMAT planning to reduce the lung  V5 
within 5 min in a phantom study. The purpose of this study was to implement the OPA angle based on the VBA 
for clinical EC patients and to compare the lung dose and delivery time between full arcs (FA) without using 
VBA and OPA angle using VBA in VMAT plans.

Materials and methods
Patient population and study design. Thirty EC patients were retrospectively included in this study. 
Each patient was replanned retrospectively to 4 VMAT plans. Figure 1 shows the flowchart of the study design. 
First, the computed tomography (CT) images were transferred to RTP. The PTV and organs at risk (OARs) were 
delineated in RTP. The FA angle without using VBA was set for each patient. Each personalized OPA angle could 
be calculated by using VBA. FA plans without (FA-C) and with (FA + C) dose constraints of OARs and OPA plans 
without (OPA-C) and with (OPA + C) dose constraints of OARs were generated. The dosimetric parameters, 
conformity index (CI), heterogeneity index (HI), delivery time, MUs, and gamma passing rate were assessed 
in 4 VMAT plans for each patient. The results of the FA-C and OPA-C plans are shown in the supplementary.

Volume delineation. The CT images were transferred to the Pinnacle treatment planning system (TPS) 
(version 9.8; Philips Medical Systems North America, Andover, MA, USA) to delineate the targets and OARs. 
The targets delineated included the gross tumor volume (GTV), clinical target volume (CTV), and planning tar-
get volume (PTV) by radiation oncologists. The GTV covered the visible primary tumor and gross lymph nodes 
on the CT images. The CTV was designed to cover a region with subclinical disease from GTV by expanding 
1 cm superiorly and inferiorly and 0.5 cm laterally on both left and right sides, anteriorly and  posteriorly16. The 
organ movements caused by breathing, swallowing, and position uncertainty in each therapy were considered 
when defining the PTV. In accordance with clinical experience, the PTV was defined by expanding the CTV on 
three dimensions by 0.8  cm17. The OARs delineated included the lungs, heart, and spinal cord by the medical 
physicist.

The optimal partial arcs angle generation in VBA. Before the treatment arc angle selection, the per-
sonalized OPA angle could be calculated using VBA for each patient according to Eqs. (1)–(2)15. The width of 
the PTV (E) was measured on the axial plane, while the axial length of the PTV (Lt) was measured vertically on 
the coronal image of the centroid of the PTV. The transverse diameter of the thorax (T), the radius of one side 
of the restricted volume (R), E, Lt, the whole lung volume  (VW), the total volume out of the field  (VOW), and the 
expected lung  V5 were input to the VBA to obtain the personalized OPA angle. When the lung  V5 was less than 
55%, the θA would be chosen as the OPA angle (Fig. 2). The OPA angle could then be applied in the RTP. Each 
OPA angle of different patients would be calculated before the RTP optimization.

(1)R =
T− E− 4

2

Figure 1.  Flowchart of study design.
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where T is the transverse diameter of the thorax, R is the radius of one side of the restricted volume, and E is 
the width of the PTV.

The R, Lt,  VW, and  VOW are then input into Eq. (2) to obtain the θA, which was the personalized OPA angle:

where Lt is the length of the PTV,  VW is the whole lung volume, and  VOW is the total volume out of the field.

Radiation treatment planning optimization. The FA and OPA plans were performed using the Pin-
nacle TPS with the 6-MV photon beam. The FA plans used two full arcs. One arc was set up in a clockwise (CW) 
direction from 180° to 179°; conversely, the second arc was performed in a counterclockwise (CCW) direction 
from 179° to 180°, and the collimator was rotated 5° extra to reduce the overlapping tongue and groove effects. 
According to tumor size, the OPA angle was calculated in the VBA.

Due to the limitation that the gantry of an Elekta Versa HD linear accelerator cannot pass from 180° to − 180°, 
the OPA angle was divided into six partial arcs in OPA plans. Three CW partial arcs were from 180 to 
(

180+
θA

4
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 to θA
4
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) to 179; conversely, Three CCW partial arcs were from 179 to (180 
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4
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4
 to (− θA

4
) , and (180 + θA

4
) to180. The VMAT fields were inversely planned and optimized using SmartArc 

module optimization in Pinnacle TPS in FA and OPA plans with the following parameters: stopping tolerance 
of 10-7, constraint leaf motion of 0.46 cm/°. The maximum delivery time was set to 120 and 40 s per arc for FA 
and OPA plans with a gantry angle spacing of 4°. The dose distributions were calculated with the adaptive con-
volution method.

A prescribed dose of 45 Gy in 25 fractions (1.8 Gy per fraction) was defined. The goal was to cover 95% of 
each PTV with the prescribed dose  (D95). The dose constraints for OARs were defined as follows based on the 
RTOG 1010 and the related  studies18, 19: the maximum dose was < 45 Gy for the spinal cord; the mean heart dose 
(MHD) was < 34 Gy and the  V40 of heart was < 50%; the MLD for the whole, right, and left lung must be < 20 Gy; 
the whole, right, and left lung  V20,  V15,  V10, and  V5 were ≤ 20%, ≤ 30%, ≤ 50%, and ≤ 55%, respectively. The dose 
constraints were adjusted to cover adequate and homogeneous target volume during the dose optimization 
process while minimizing the dose in the heart, spinal cord, and lungs.

Plan evaluation. The PTV coverage was evaluated using the CI and the HI.
The  HI20 was defined as the following equation:

where  D5% is the minimum dose delivered to the 5% of the PTV, and  D95% is the minimum dose in 95% of the tar-
get volume. The HI closer to 1 indicates better dose homogeneity. An index between 1.00 and 1.40 is  acceptable21.

(2)πR
2 360− θA

360◦
(Lt + 4)+ VOW = VW × 0.45

(3)HI =
D5%

D95%

Figure 2.  Sample patient for calculating the OPA angle in VBA. The axial and coronal views are shown on 
the VBA interface. The PTV (red area), length and width of PTV, lung volume, and the expected lung  V5 were 
shown as input. When the lung  V5 was less than 55%, the θA was 110° (solid red line), indicating an OPA angle 
of 110° for this patient. The pink area is restricted volume.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2513  | https://doi.org/10.1038/s41598-021-04571-3

www.nature.com/scientificreports/

The  CI22 was defined as Eq. (4):

where  VRI is reference isodose volume and TV is target volume. The CI closer to 1 indicates good target con-
formity and coverage. An index is acceptable between 0.9 and 2. An index between 2 and 2.5, or 0.9 and 1, is 
 tolerable22.

The information provided by the dose-volume histogram (DVH) in the RTP of the following parameters 
were recorded, i.e., MLD, lung  V5, lung  V10, lung  V15, lung  V20, MHD, heart  V30, heart  V40, and the spinal cord 
maximum dose.

The FA + C and OPA + C plans were checked for the deliverability of the plan. Sixty VMAT plans underwent 
dose verification on the treatment machine using the Octavius phantom (Octavius II, PTW Freiburg GmbH, 
Freiburg, Germany). The plans were assessed based on the gamma criteria of 3%/3 mm with a clinical passing 
threshold of 95% of  points23.

Statistical analysis. The SPSS software package (version 24.0; IBM Corporation., Armonk, NY, USA) was 
used for statistical analysis. Mann–Whitney test was used to compare the dosimetric parameters, CI, HI, deliv-
ery time, and MUs differences between FA and OPA plans. A p < 0.05 was considered statistically significant.

Ethics approval and consent to participate. All experimental procedures were approved by the 
Research Ethics Review Committee of Far Eastern Memorial Hospital (No. 108069-E). The Research Ethics 
Review Committee of Far Eastern Memorial Hospital waived the need for informed consent. All research was 
performed in accordance with relevant guidelines and regulations.

Results
Patient characteristics. Table 1 shows the detailed patient characteristics in 30 patients. Figure 3 displays 
the isodose curves and DVH of FA + C and OPA + C plans for a sample EC patient. The results showed that the 
PVT could achieve good target coverage and the OARs could also decline to the acceptable dose. The OPA angle 
for each patient is presented in Fig. 4. The range of the OPA angles was from 80° to 310°.

PTV coverage and OAR sparing. Comparisons of the PTV coverage and OAR sparing between FA + C 
and OPA + C plans are shown in Table 2. The whole lung  V5 and  V10 in OPA + C plans were significantly lower 
than in FA + C plans (p < 0.05). The median of the lung V5 between FA + C and OPA + C plans were 48.5% (range 
23.0–53.3%) and 44.5% (range 21.1–53.3%). No significant differences were noted in PTV coverage, MHD, heart 
 V30, heart  V40, and the spinal cord maximum dose between FA + C and OPA + C plans (Table 2).

(4)CI =
VRI

TV

Table 1.  Characteristics of EC patients in this study. PTV planning target volume.

Characteristics n = 30

Sex
Male 20

Female 10

Age (years)
Median 56

Range 43–78

Length of tumor (cm)
Median 18.65

Range 6.30–25.20

PTV  (cm3)
Median 769.80

Range 281.53–1234.78

Location of tumor

Upper 3

Middle 20

Lower 7

T

1 15

2 9

3 6

N
0 10

 + 20

M
0 29

1 1

AJCC stage

I 14

II 8

III 7

IV 1
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The whole lung  V5,  V10,  V15,  V20, and the MLD in OPA-C plans were significantly lower than FA-C plans 
(p < 0.05). On the contrary, the heart  V30,  V40, and MHD in FA-C plans were significantly lower than in OPA-C 
plans (p < 0.05) (Supplementary Table S1).

The MUs, delivery time, and gamma passing rates. The FA + C plans required more MUs than 
OPA + C plans (673 vs. 605 MUs, p = 0.075) (Table 3). The delivery time was significantly longer in FA + C than 
that in OPA + C plans (237 vs. 192  s, p < 0.05) (Table  3). The mean gamma passing rates with 3%/3  mm of 
the FA + C and OPA + C plans were 97.67% ± 1.09% and 96.17% ± 0.75%. There were no significant differences 
between FA + C and OPA + C plans in gamma passing rates (Table 3). The FA + C and OPA + C plans passed the 
gamma criteria. The OPA angle using VBA in VMAT could effectively reduce the delivery time for EC, but it did 
not affect the MUs and gamma passing rates.

The FA-C required fewer MUs than OPA-C plans (450 vs. 497 MUs, p = 0.001) (Supplementary Table S2). 
The delivery time was significantly longer in FA-C than in OPA-C plans (231 vs. 192 s, p < 0.05) (Supplementary 
Table S2).

Discussion
Our study implemented the OPA angle based on the VBA in VMAT for clinical EC patients. The results showed 
that OPA + C plans could significantly reduce lung  V5 and  V10 compared with FA + C plans. Moreover, the doses 
to other normal tissues could also achieve the dose constraints. Therefore, this study indicated that VBA could 
provide the personalized OPA angle, which could be applied to clinical EC patients to improve treatment plans.

In the recent years, VMAT has been shown to be dosimetrically superior to  IMRT10, 24–26. Gao et al.27 reported 
that compared with 7-field IMRT, VMAT showed better conformality and uniformity of the target. The whole 
lung  V5 and  V20 were 47% and 20% in VMAT, respectively. Zhang et al.28 compared VMAT with conventional 

Figure 3.  The isodose curves and DVH of VMAT plans for a patient. For this patient, the OPA angle was 110°. 
(a) Isodose curves of FA + C plan. (b) Isodose curves of OPA + C plan. (c) DVH for FA + C and OPA + C plan. 
The gantry arc angles were shown in (a) and (b). The red arcs were counterclockwise (CCW) direction. The 
green arcs were clockwise (CW) direction. The FA plans used two full arcs. The OPA plans used six partial arcs. 
The red line means the relative lung volume receiving more than 5 Gy  (V5) in DVH of (c).

Figure 4.  The range of OPA angles was from 80° to 310° for 30 patients. The OPA angle could be calculated 
using VBA for each patient.
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sliding window IMRT to treat upper thoracic EC. The VMAT could effectively protect the lungs from dose 
irradiation and also reduce the number of MUs and treatment time. The average of the whole lung  V5,  V10, and 
 V20 were 48%, 41%, and 19% in VMAT, respectively. Chen et al.10 indicated that compared to IMRT, VMAT 
could improve the target dose coverage and decrease the maximum dose of the spinal cord, MUs, and treatment 
time. VMAT could significantly decrease lung  V20,  V25,  V30,  V35,  V40. For lung  V5, VMAT was similar to IMRT. 
Lin et al.29 assessed VMAT for EC at all locations. They found that the patients with upper, middle, and lower 
esophageal tumors were 48%, 47%, 45% in whole lung  V5 and 20%, 16%, 12% in whole lung  V20. The major 
factors affecting lung  V5 were the arc angle factor and the dose constraint factor. In our study, the purpose of 
comparing FA-C and OPA-C plans was to investigate the arc angle factor’s effect and add the dose constraint 
factor to achieve the actual clinical situation. The OPA-C plans were not affected by the dose constraint factor 
and only the precise and personalized arc angle factor reducing the lung dose. Only one plan of lung  V5 was less 
than 55% in the 30 FA-C plans. The average of the lung  V5 was as high as 88% in FA-C plans. Sixteen plans of 
lung  V5 were less than 55% in the 30 OPA-C plans. The average of the lung  V5 decreased to 57%. After optimiza-
tion with dose constraints, the whole lung  V5 and  V10 were 48% and 30% in FA + C plans, respectively, similar to 
previous studies. In the OPA + C plans, the whole lung  V5 and  V10 could achieve 43% and 28%, lower than the 
FA + C plans. The whole lung  V5 and  V10 could be decreased by using the OPA angles.

In this study, the personalized arc angle was calculated using VBA for lung doses in clinical patients with EC. 
Although each patient with EC could achieve the defined dose target with a full arc treatment plan, it required a 
lung dose constraint to do so. However, in the present study, by defining the expected lung  V5, a corresponding 
arc angle, called the OPA angle, could be calculated in the VBA. The OPA angle was implemented in the treat-
ment plan of EC patients to achieve the goal without dose constraints for the lung dose. This study also showed 

Table 2.  Comparison of dosimetric factors between FA + C and OPA + C plans. FA + C full arcs plans with 
constraints, OPA + C optimal partial arcs plans with constraints, PTV planning target volume, CI conformity 
index, HI heterogeneity index. *Represents significant difference (p < 0.05).

Parameter FA + C OPA + C p-value

PTV

D5 (Gy) 46.88 ± 6.99 47.53 ± 7.49 0.539

D95 (Gy) 43.31 ± 6.99 43.29 ± 7.09 0.976

HI 1.08 ± 0.03 1.10 ± 0.04 0.159

CI 1.15 ± 0.18 1.18 ± 0.16 0.375

Whole lung

Mean dose (Gy) 10.37 ± 1.67 9.87 ± 1.82 0.252

V20 (%) 18.11 ± 4.09 17.14 ± 4.03 0.414

V15 (%) 23.75 ± 4.51 21.77 ± 4.57 0.094

V10 (%) 30.89 ± 5.07 28.05 ± 5.59 0.041*

V5 (%) 48.55 ± 6.82 43.38 ± 8.22 0.005*

Right lung

Mean dose (Gy) 9.81 ± 2.04 9.22 ± 2.16 0.237

V20 (%) 16.75 ± 5.08 15.79 ± 5.02 0.454

V15 (%) 21.79 ± 5.70 20.00 ± 5.62 0.219

V10 (%) 29.25 ± 6.70 26.07 ± 6.72 0.041*

V5 (%) 45.71 ± 8.81 40.79 ± 9.09 0.015*

Left lung

Mean dose (Gy) 10.95 ± 2.03 10.62 ± 2.21 0.706

V20 (%) 19.25 ± 5.51 18.82 ± 5.04 0.689

V15 (%) 24.93 ± 5.52 23.75 ± 6.02 0.553

V10 (%) 32.79 ± 6.13 30.18 ± 7.00 0.149

V5 (%) 50.46 ± 7.16 46.11 ± 9.77 0.033*

Heart

Mean dose (Gy) 20.76 ± 8.25 21.37 ± 8.30 0.813

V40 (%) 12.54 ± 10.30 13.64 ± 10.45 0.728

V30 (%) 29.21 ± 17.63 30.96 ± 17.22 0.695

Spinal cord Maximum dose (Gy) 36.92 ± 6.16 39.19 ± 5.07 0.193

Table 3.  The MUs and delivery time in FA + C and OPA + C plans. FA + C full arcs plans with constraints, 
OPA + C optimal arcs plans with constraints, MU monitor unit, s second. *Represents significant difference 
(p < 0.05).

Parameter FA + C OPA + C p-value

MUs 673 ± 183 605 ± 139 0.075

Delivery time (s) 237 ± 8 192 ± 37 0.000*

Gamma passing rate (%) 97.67 ± 1.09 96.17 ± 0.75 0.139
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that the range of OPA angles was between 80° and 310° for 30 patients, with a very wide variation in the range 
of OPA angles used for each patient. According to the formula of the VBA, the width of the PTV, the length of 
the PTV, and the whole lung volume would affect the calculation of the OPA angle. Additionally, a personalized 
OPA angle effectively reduces the lung dose and helps the medical physicist quickly to set up the arc angle for 
each patient. Therefore, by comparing the difference between FA and OPA plans, it was found that a personal-
ized OPA angle is necessary.

Gagliardi et al.30 indicated that when the heart  V30 is higher than 45% or the MHD is higher than 26 Gy, 
the risk of pericarditis would increase. Wei et al.31 demonstrated that the risk of pericarditis was 73% and 13%, 
with heart V30 > 46% and V30 < 46%, respectively. In this study, the results demonstrated that the MHD and 
heart V30 were 20.76 Gy and 29% in the FA + C plans, and the MHD and heart V30 were 21.37 Gy and 30% in 
the OPA + C plans. Lin et al.29 assessed VMAT for EC at all locations. They found that the patients with upper, 
middle, and lower esophageal tumors were 40.48 Gy, 41.40 Gy, and 36.12 Gy in maximum spinal cord dose. 
Chen et al.10 found that the maximum spinal cord dose was 38.20 Gy for 391 EC patients. Our results showed 
that the maximum spinal cord dose was 36.92 Gy and 39.19 Gy in FA + C and OPA + C plans, similar to other 
studies mentioned above. There were no significant differences in heart and spinal cord doses between FA + C 
and OPA + C plans, which were similar to other studies mentioned above. This study indicated that the OPA 
angle applied to EC patients could significantly decrease lung  V5 and  V10 with acceptable doses to the heart and 
spinal cord in the RTP.

In tomotherapy, several studies reported reducing the lung dose by restricting the irradiated angle. Chang 
et al.32 said a substantial reduction in the lung dose using a fan-shaped complete block compared to a non-block 
design for middle thoracic EC in tomotherapy. Ito et al.9 indicated that a directional block with an angle of 50 or 
60 degrees could reduce the lung dose for cervical EC in tomotherapy. In our previous study using  VBA15, the 
angle of the complete block was equal to the restricted angle, which would be set to 360°-OPA angle to control 
the radiation angle in tomotherapy. Therefore, the OPA angle could also be used in tomotherapy for EC patients 
and restrict irradiated angle to control the lung  V5 and  V10.

Reducing delivery time could be beneficial for patients and institutions. Several studies investigated the deliv-
ery time in  VMAT14, 33–35. Chen et al.10 found that the shorter delivery time of the VMAT technique may reduce 
patient discomfort during long-term treatment and improve delivery quality. Wala et al.36 indicated that using 
the optimal partial-arcs could minimize the delivery time without significantly affecting dose quality in VMAT. 
Jiang et al.14 showed the single/partial-arc VMAT (636 ± 108 and 384 ± 90 s, respectively) plan significantly 
reduced the treatment time compared to the IMRT (822 ± 156 s) plan. Especially, the partial-arc VMAT was the 
best to shorten the delivery time. In our study, the delivery time in OPA + C plans (192 ± 37 s) was shorter than 
in FA + C plans (237 ± 8 s). Therefore, the OPA angle used in VMAT plans could effectively reduce the delivery 
time to lead to better treatment quality. Additionally, the IMRT and VMAT are covered in our national healthcare 
insurance. VMAT not only produces a similar or better dose distribution than IMRT but also achieves a reduction 
in treatment time. Therefore, our institution usually uses the VMAT plans to treat esophageal cancer patients.

In our study, the prescribed dose of 45 Gy in 25 fractions was defined for esophageal cancer. Yang et al.37 
compared the patients who received the lower dose (≤ 45 Gy) radiotherapy, and higher dose (> 45 Gy) radio-
therapy for esophageal squamous cell carcinoma. They found that the higher dose radiotherapy does not increase 
pathological remission rate or improve overall survival, compared to lower dose radiotherapy. The lower radiation 
dose, including 40 Gy in 20 fractions, 41.4 Gy in 23 fractions, or 45 Gy in 25 fractions, might be a preferable 
time-dose fraction scheme. Therefore, we designed the prescribed dose of 45 Gy to simulate the esophageal cancer 
plans in Table 2. The results of 10 FA + C and 10 OPA + C plans in the prescribed dose of 50.4 Gy are shown in 
Supplementary Table S3.

The limitation of this study was that the skills and experience of operators might affect the quality of the plan. 
Even the VBA could provide the OPA angle to reduce the lung dose effectively, the doses constraints of OARs 
were still manually adjusted by operators during the optimization in RTP. Further prospective clinical studies 
enrolled more patients and operators are needed to verify VBA in RTP for EC.

Conclusion
This study successfully applied VBA to RTP of clinical EC patients. The VBA could simplify the arc angle selec-
tion in RTP, provide a personalized OPA angle for each patient. The lung  V5,  V10, and delivery time could be 
significantly reduced while the lung  V20 could be insignificantly reduced by using OPA angle in VMAT for EC.

Received: 23 September 2021; Accepted: 20 December 2021
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