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Circulator function in a Josephson 
junction circuit and braiding 
of Majorana zero modes
Mun Dae Kim

We propose a scheme for the circulator function in a superconducting circuit consisting of a three-
Josephson junction loop and a trijunction. In this study we obtain the exact Lagrangian of the system 
by deriving the effective potential from the fundamental boundary conditions. We subsequently show 
that we can selectively choose the direction of current flowing through the branches connected at the 
trijunction, which performs a circulator function. Further, we use this circulator function for a non-
Abelian braiding of Majorana zero modes (MZMs). In the branches of the system we introduce pairs 
of MZMs which interact with each other through the phases of trijunction. The circulator function 
determines the phases of the trijunction and thus the coupling between the MZMs to gives rise to the 
braiding operation. We modify the system so that MZMs might be coupled to the external ones to 
perform qubit operations in a scalable design.

While the ultimate goal of practical quantum computer is still far away, the noisy intermediate-scale quantum 
(NISQ) computing1 is expected to be realized in the near future due to the remarkable advancement in the qubit 
coherence and control. The quantum supremacy that quantum device can solve a problem that no classical 
computer can solve in any feasible amount of time is regarded as a notable milestone2. The programmable NISQ 
computing for quantum supremacy requires a scalable design of quantum circuit, which is severely challenging. 
We, here, provide an approach to cope with this challenge by proposing a scheme for a circulator function which 
enables selective coupling between arbitrary two branches at a trijunction by using a three-Josephson junction 
flux qubit as a control element in a superconducting circuit3−6.

In this study we introduce a three-Josephson junction loop consisting of three small loops with three branches 
and a trijunction as shown in Fig. 1a. Usually the Hamiltonians of the superconducting circuit with threading 
fluxes for quantum information processing have been provided phenomenologically. The effective potential in 
the Hamiltonian is given in an approximate way so that the form and the coefficients have not been precisely 
derived from the first principle. For the understanding of the system we need to know the exact form of the 
Hamiltonian and the process by which the Hamiltonian is obtained. For the superconducting loop system in the 
present study we derive the Lagrangian of system exactly from fundamental boundary conditions and obtain the 
effective potential of the system analytically. This Lagrangian describes the circulating function in the ground 
state of the system, where we can selectively couple two branches to flow currents while the other branch does 
not. This kind of study will help analyzing other systems for quantum information processing.

Circulator is a nonreciprocal three-port device that routes a signal to the next port. For the universal quantum 
computing quantum gates between different two qubits in a scalable design is required. Hence the circulator 
function which enables selective coupling between arbitrary two qubits among several qubits has been studied 
intensively. Recently Josephson junction based on-chip circulators much smaller than commercial microwave 
circulator have been proposed for the quantum information processing with superconducting devices5,7. The 
superconductor-based circulators have remarkably small photon losses compared to the commercial nonrecipro-
cal ferrite circulators8. Moreover, the superconductor-based circulators are much smaller than the commercial 
circulators so that they can be integrated into a scalable circuit.

By piercing a magnetic flux into one of three small loops we are able to make the current flow between two 
branches selectively in situ, while the other is isolated, resulting in the circulator function. Usually the circulator 
routes a signal from one port to the other. Present design, in contrast, performs a circulator function that routes 
a signal between two branches at a trijunction in a closed circuit rather than transferring the signal to outer 
port. In this way, we can connect arbitrary pair of branches to perform quantum gate operations. For the NISQ 
computing we need to perform the circulator function in a scalable circuit where the trijunctions are connected 
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with each other to form a lattice structure. We thus consider an improved design where the trijunction is located 
outside of the loop as shown in Fig. 1b, which is topologically equivalent with the design in Fig. 1a.

Further, we can use the circulator function to realize the braiding of Majorana zero modes (MZM)9,10 for 
topological quantum computing11,12. Topologically-protected quantum processing is expected to provide a path 
towards fault-tolerant quantum computing. Since quantum states are susceptible to environmental decoherence, 
protection from local perturbation is an emergent challenge for quantum information processing. Non-Abelian 
states are the building block of topological quantum computing carrying the nonlocal information. The nonlo-
cally encoded quantum information is resilient to local noises and, if the temperature is smaller than the excita-
tion gap, temporal excitation rate is exponentially suppressed. Majorana zero modes, γ , are predicted to exhibit 
non-Abelian exchange statistics, and they are self-adjoint γ † = γ in contrast to ordinary fermion operators. The 
theoretically proposed structures attracted a great deal of intention to realizing MZMs in condensed matter sys-
tems. MZMs are predicted to emerge in ν = 5/2 fractional quantum Hall states11,13, p-wave superconductors14,15, 
and one- or two-dimensional semiconductor/superconductor hybrid structures16. The branches in our scheme for 
braiding contains semiconductor/superconductor hybrid structures with p-wave-like superconductivity induced 
from s-wave superconductors via proximity effect.

In two-dimensional spinless p+ ip topological superconductors MZMs are hosted in vortices or in the chiral 
edge modes as localized Andreev-bound zero-energy states at the Fermi energy. The p-wave-like superconductiv-
ity can be induced from s-wave superconductors via proximity effect in a hybrid structure17. Semiconductor thin 
film with Zeeman splitting and proximity-induced s-wave superconductivity has been expected to be a suitable 
platform for hosting MZMs18. On the other hand, the one-dimensional semiconducting nanowire has also been 
shown to provide MZMs at the ends of the nanowire19. The MZMs should be prepared, braided, and fused to 
implement qubit operations. In one-dimensional wire the braiding is not well defined, which can be overcome in a 
wire network of trijunction. However, the original scheme17 with Josephson trijunction has not yet been explored.

Recently, an experimental evidence of MZM in a trijunction has been reported20. The nanowire trijunctions 
are manipulated by the chemical potential21, the charging energy22, and the phase23. In the present study a pair 
of MZMs can be introduced in each branch near the trijunction of Fig. 1b. Three MZMs of each pair are coupled 
through Josephson junctions with phase differences ϕ′

1,ϕ
′
2, and ϕ′

3 in the system. The three Josephson junction 
loop controls the selective coupling among three MZM pairs. By applying a threading flux into one of the loops 
of Fig. 1b we can use the circulator function to control the phases φ′

i and thus the couplings among MZMs in the 
trijunction to perform the braiding operation and, further, quantum gate operations. In contrast to the previous 
phase modulation scheme23 trying to switch off the current mediated by MZMs which are inside of the loop 
the present proposal uses circulating function to perform braiding operations. Further, our scheme enables the 
interaction between MZMs outside so that we may provide a scalable design in a one or two-dimensional lattice 
system for coupling between MZMs which belong to different trijunctions.

Figure 1.   (a) Three-Josephson junction loop with length l and geometric inductance Ls has three Josephson 
junctions with phase differences ϕi and three branches with length l′ and geometric inductance L′s . ki and k′i 
are the wave vectors of the Cooper pairs and fi the external flux threading the loops. ϕ′

i ’s are the trijunction 
phase differences. (b) A scheme that three branches and trijunction are extracted out from the three-Josephson 
junction loop and turned over: left and right branches have length l′ and geometric inductance L′s and central 
branch l̃ and L̃s . Two schemes in (a,b) are topologically equivalent with each other.
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Results
Three‑Josephson junction loop with a trijunction.  The precise fluxoid quantization condition of 
superconducting loop reads −�t + (mc/qc)

∮

�vc · d�l = n�0 with �vc being the average velocity of Cooper pairs, 
qc = 2e the Cooper pair charge, and mc = 2me the Cooper pair mass24,25. The total magnetic flux �t thread-
ing the loop is the sum of the external and the induced flux �t = �ext +�ind . With the superconducting 
unit flux quantum �0 = h/2e we introduce the reduced fluxes, ft = �t/�0 = f + find with f = �ext/�0 and 
find = �ind/�0 , expressing the fluxoid quantization condition as kl = 2π(n+ ft) with l being the circumfer-
ence of the loop, k the wave vector of the Cooper pair wavefunction and n an integer.

The scheme in Fig. 1a consists of three-Josephson junction loop and three small loops with threading fluxes 
fi = �ext,i/�0 . The fluxoid quantization conditions around three loops, including the phase differences ϕi and 
ϕ′
i across the Josephson junctions, are represented as the following periodic boundary conditions26,27,

where ki , l , and l′ are the wave vector of Cooper pairs, the length of the three-Josephson junction loop, and three 
branches, respectively, and mi ’s are integer. Here, ϕi ’s are the phase differences of Josephson junctions in the 
three-Josephson junction loop and ϕ′

i ’s phase differences of the trijunction whose positive direction, we choose, 
is clockwise as shown in Fig. 1a. Which branches carry current, while the other not, is determined by threading 
a flux, fi , into a specific loop.

The induced flux find,1 , for example, can be written as find,1 = �ind,1/�0 = (1/�0)(LsI1/3+ L′sI
′
2 − L′sI

′
3) , 

where the Cooper pair current Ii is given by

with the Cooper pair density nc and the cross section A of the loop. The induced flux, �ind,1 , consists of contri-
butions from three conducting lines, L′sI ′3, L′sI

′
2 and LsI1/3 , where Ls and L′s are the geometric inductance of the 

three-Josephson junction loop and a branch, respectively, and the inductance of one third of the loop contributes 
to the induced flux. Further, we introduce the kinetic inductances LK = mcl/Ancq

2
c and L′K = mcl

′/Ancq
2
c

25,28,29,  
and  t he n  t he  i ndu c e d  f lu xe s  b e c ome  find,1 = −(1/2π)[(L′s/L

′
K )(k

′
2 − k′3)l

′ + (Ls/LK )k1l/3] , 
find,2 = −(1/2π)[(L′s/L

′
K )(k

′
3 − k′1)l

′ + (Ls/LK )k2l/3] , and find,3 = −(1/2π)[(L′s/L
′
K )(k

′
1 − k′2)l

′ + (Ls/LK )k3l/3] 
to represent the boundary conditions as

In the system of Fig. 1a three Josephson junctions with ϕ′
i compose a trijunction which satisfies the periodic 

boundary condition ϕ′
1 + ϕ′

2 + ϕ′
3 = 2πn′ with an integer n′ . By using this condition and summing above three 

equations we can check that the boundary condition for three-Josephson junction loop can be expressed as 
(1+ Ls/LK )(k1 + k2 + k3)(l/3) = 2π

[

n+ f1 + f2 + f3 − (ϕ1 + ϕ2 + ϕ3)/2π
]

 with an integer n, which can also 
be derived directly from the fluxoid quantization condition. If we assume the superconducting branches in 
Fig. 1a have the same cross section A and Cooper pair density nc in Eq. (4), the current conservation conditions, 
I1 = I3 + I ′2, I2 = I1 + I ′3 , and I3 = I2 + I ′1 , at the nodes of three-Josephson junction loop give rise to the relations,

From the boundary conditions in Eqs. (5)–(7) in conjunction with the relations in Eq. (8) we can readily obtain 
ki and k′i in terms of ϕi and ϕ′

i as

(1)k1
l

3
− k′3l

′ + k′2l
′ + ϕ1 + ϕ′

1 =2π(m1 + f1 + find,1),

(2)k2
l

3
− k′1l

′ + k′3l
′ + ϕ2 + ϕ′

2 =2π(m2 + f2 + find,2),

(3)k3
l

3
− k′2l

′ + k′1l
′ + ϕ3 + ϕ′

3 =2π(m3 + f3 + find,3),

(4)Ii = −(ncAqc/mc)�ki

(5)
(

1+
Ls

LK

)

k1
l

3
+

(

1+
L′s
L′K

)

(k′2 − k′3)l
′ =2π

(

m1 + f1 −
ϕ1 + ϕ′

1

2π

)

(6)
(

1+
Ls

LK

)

k2
l

3
+

(

1+
L′s
L′K

)

(k′3 − k′1)l
′ =2π

(

m2 + f2 −
ϕ2 + ϕ′

2

2π

)

(7)
(

1+
Ls

LK

)

k3
l

3
+

(

1+
L′s
L′K

)

(k′1 − k′2)l
′ =2π

(

m3 + f3 −
ϕ3 + ϕ′

3

2π

)

.

(8)k1 = k3 + k′2, k2 = k1 + k′3, k3 = k2 + k′1.

(9)ki =
2π

l

3LK

L′
eff

(

mi + fi −
ϕi + ϕ′

i

2π

)

+
2π

l

(

LK

Leff
−

LK

L′
eff

)(

n+ f1 + f2 + f3 −
ϕ1 + ϕ2 + ϕ3

2π

)

,

(10)k′i =
2π

l

3LK

L′
eff

(

mi+2 −mi+1 + fi+2 − fi+1 −
ϕi+2 + ϕ′

i+2

2π
+

ϕi+1 + ϕ′
i+1

2π

)

,
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where the effective inductances are defined as Leff ≡ LK + Ls and L′
eff

≡ LK + Ls + 9(L′K + L′s) . Here and after, 
the indices, i, are modulo 3, for example, i + 1 = i + 1 mod 3.

The dynamics of Josephson junction is described by the capacitively-shunted model, where the current rela-
tion is given by I = −Ic sin φ + CV̇ = −Ic sinφ − C(�0/2π)φ̈ with the critical current Ic , the capacitance C 
of Josephson junction, and the voltage-phase relation, V = −(�0/2π)φ̇ . The quantum Kirchhoff relation then 
becomes −(�2

0/2πLK )(l/2π)ki = −EJ sin φi − C(�0/2π)
2φ̈i with the Josephson coupling energy EJ = �0Ic/2π 

and the current I = −(ncAqc/mc)�k . From the Lagrangian L =
∑

i(1/2)Ci(�0/2π)
2φ̇2

i − Ueff ({φi}) with the 
effective potential of the system, Ueff ({φi}) , the equation of motion, Ci(�0/2π)

2φ̈i = −∂Ueff /∂φi , can be derived 
from the Lagrange equation (d/dt)∂L /∂φ̇i − ∂L /∂φi = 0 . By using the quantum Kirchhoff relation the equa-
tion of motion, then, can be represented as

We can construct the effective potential Ueff ({ϕi ,ϕ
′
i}) as follows,

which consists of the inductive energies of the loops and Josephson junction energies with E′J being the Josephson 
junction energy of trijunction. We can easily check that the effective potential Ueff ({ϕi ,ϕ

′
i}) satisfy the equation of 

motion in Eq. (11) for φi = ϕi with ki ’s in Eq. (9). The kinetic inductance LK is much smaller than the geometric 
inductance Ls . For the usual parameter regime for three-Josephson junction qubit LK/Ls ∼ O(10−3)30 so that 
we can approximate the effective inductances as Leff ≈ Ls and L′

eff
≈ Ls + 9L′s.

Further, the effective potential Ueff({ϕi ,ϕ
′
i}) should also satisfy the quantum Kirchhoff relation for 

the phase variables ϕ′
i . In Fig. 1a we consider the currents Ĩi across the Josephson junction with phases ϕ′

i 
and I ′i  flowing in the branch, where the direction of Ĩi is counterclockwise and I ′i  is opposite to k′i (See 
Fig. S1a in the Supplementary Information). Then with the current conservation relation at nodes, 
I ′i = Ĩi+2 − Ĩi+1 , and the current relation of Josephson junction, Ĩi = −I ′c sin ϕ

′
i − C′(�0/2π)ϕ̈

′
i  , we 

have I ′i = −(I ′c sin ϕ
′
i+2 + C′ �0

2π
ϕ̈′
i+2)+ (I ′c sin ϕ

′
i+1 + C′ �0

2π
ϕ̈′
i+1) .  Using the equation of  motion, 

C′
i(�0/2π)

2ϕ̈′
i = −∂Ueff/∂ϕ

′
i , obtained from the Lagrange equation, the quantum Kirchhoff relation reads

We can confirm that the effective potential Ueff ({ϕi ,ϕ
′
i}) in Eq. (12) also satisfies the quantum Kirchhoff relation 

in Eq. (13) with k′i in Eq. (10).

Limiting case.  In the system of Fig. 1a we can consider the limit that the length of branches goes to zero, l′ → 0 , 
and thus two nodes at the either ends of a branch collapse to a point. As a result, we have three loops with geo-
metric inductance Ls/3 which meet at the trijunction. In this limit L′s → 0 and L′

eff
≈ Ls + 9L′s → Leff ≈ Ls . 

Hence the effective potential Ueff ({ϕi ,ϕ
′
i}) in Eq. (12) becomes

which describes the inductive energies of three loops with geometric inductance Ls/3 and the Josephson junction 
energies25,31,32, complying with the intuitive picture.

Circulator function.  In order to perform the NISQ computing we need to construct a scalable design with 
the circulator function, where the trijunctions are connected to others and the current directions can be con-
trolled in situ in the circuit. However, in the design in Fig. 1a the trijunction is inside of the loop so it is not pos-
sible to couple the branches with others outside. Hence we consider an improved design where the trijunction 
is located outside of the loop as shown in Fig. 1b. In the Supplementary Information we show an archetype for a 
scalable design. Actually the inner branches and the trijunction are turned over, but the design is topologically 
equivalent with the design in Fig. 1a. Here the length l̃  of central branch is not equal with others anymore.

We then introduce more general boundary conditions for the scheme in Fig. 1b including the phase differ-
ences across the Josephson junctions as

(11)
�2

0

2πLK

l

2π
ki − EJ sin φi = −

∂Ueff

∂φi
.

(12)

Ueff ({ϕi ,ϕ
′
i}) =

3�2
0

2L′
eff

[

(

m1 + f1 −
ϕ1 + ϕ′

1

2π

)2

+

(

m2 + f2 −
ϕ2 + ϕ′

2

2π

)2

+

(

m3 + f3 −
ϕ3 + ϕ′

3

2π

)2
]

+

(

�2
0

2Leff
−

�2
0

2L′
eff

)(

n+ f1 + f2 + f3 −
ϕ1 + ϕ2 + ϕ3

2π

)2

−

3
∑

i=1

(EJ cosϕi + E′J cosϕ
′
i),

(13)−
�2

0

2πLK

l

2π
k′i =

∂Ueff

∂ϕ′
i+2

−
∂Ueff

∂ϕ′
i+1

− E′J sin ϕ
′
i+2 + E′J sin ϕ

′
i+1.

(14)

Ueff ({ϕi ,ϕ
′
i}) =

�2
0

2(Ls/3)

[

(

m1 + f1 −
ϕ1 + ϕ′

1

2π

)2

+

(

m2 + f2 −
ϕ2 + ϕ′

2

2π

)2

+

(

m3 + f3 −
ϕ3 + ϕ′

3

2π

)2
]

−

3
∑

i=1

(EJ cosϕi + E′J cosϕ
′
i),
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with integers mi . The boundary condition in Eq. (15) describes the outmost loop containing the Joseph-
son junctions with phase differences ϕ1 and ϕ′

1 and the conditions in Eqs. (16) and (17) the left and right 
loop in Fig.  1b. With the geometric and kinetic inductances L̃s and L̃K = mcl̃/Ancq

2
c  for the central 

branch, respectively, the induced fluxes become find,1 = −(1/2π)[(L′s/L
′
K )(k

′
2 − k′3)l

′ + (Ls/LK )k1l/3],

find,2 = −(1/2π)[−(L′s/L
′
K )k

′
3l
′ + (L̃s/L̃K )k

′
1 l̃ − (Ls/LK )k2l/3]  a n d  find,3 = −(1/2π)[(L′s/L

′
K )k

′
2l
′−

(L̃s/L̃K )k
′
1
l̃ − (Ls/LK )k3l/3] to give rise to the relations similar to those in Eqs. (5), (6) and (7) where k′1l′ ’s are 

replaced with k′1 l̃ . From these relations in conjunction with the relations in Eq. (8) we can similarly calculate ki 
and k′i with i = 1, 2, 3 in terms of ϕi and ϕ′

i (see the Supplementary Information).
In order to induce current flowing between the branches across ϕ′

1 , we initially apply the flux �ext,1 so that 
f1 = �ext,1/�0 = f  , but f2 = f3 = 0 . We then can easily check that the following effective potential satisfies the 
equation of motion in Eqs. (11) and (13),

where L̃eff ≡ LK + Ls + 3(L′K + L′s)+ 6(L̃K + L̃s) is the effective inductance of the central branch. By manipu-
lating the third term in Eq. (18) (see the Supplementary Information) we can obtain the effective potential of 
the system in Fig. 1b as

If we consider that the inductances of left, right and central branches are all equal, l̃ = l′ , L̃s = L′s , L̃K = L′K , and 
thus L̃eff = L′

eff
 , the effective potential Ueff({ϕi ,ϕ

′
i}) in Eq. (19) can be reduced to Ueff ({ϕi ,ϕ

′
i}) in Eq. (12) for the 

system in Fig. 1a with f1 = f  and f2 = f3 = 0 . Figure 2 shows the effective potential for the design in Fig. 1b, 
which is qualitatively similar to that for the model in Fig. 1a.

We introduce a coordinate transformation such as ϕp = (ϕ2 + ϕ3)/2,ϕm = (ϕ2 − ϕ3)/2,ϕ
′
p = (ϕ′

2 + ϕ′
3)/2, 

and ϕ′
m = (ϕ′

2 − ϕ′
3)/2 . The effective potential in Eq. (19), then, can be expressed as

(15)k′2l
′ − k′3l

′ + k1
l

3
+ ϕ1 + ϕ′

1 =2π(m1 + f1 − f2 − f3 + find,1),

(16)−k′3l
′ + k′1 l̃ − k2

l

3
− ϕ2 − ϕ′

2 =2π(−m2 − f2 + find,2),

(17)k′2l
′ − k′1 l̃ − k3

l

3
− ϕ3 − ϕ′

3 =2π(−m3 − f3 + find,3),

(18)

Ueff ({ϕi ,ϕ
′
i}) =

3�2
0

4L̃eff

(

−m2 +m3 +
ϕ2 + ϕ′

2

2π
−

ϕ3 + ϕ′
3

2π

)2

+
1

2

(

�2
0

2L′
eff

+
�2

0

Leff

)(

n+ f −
ϕ1 + ϕ2 + ϕ3

2π

)2

−
3�2

0

2L′
eff

(

m1 + f −
ϕ1 + ϕ′

1

2π

)(

n+ f −
ϕ1 + ϕ2 + ϕ3

2π

)

+
9�2

0

4L′
eff

(

m1 + f −
ϕ1 + ϕ′

1

2π

)2

−

3
∑

i=1

(EJ cosϕi + E′J cosϕ
′
i),

(19)

Ueff ({ϕi ,ϕ
′
i}) =

3�2
0

2L′
eff

(

m1 + f −
ϕ1 + ϕ′

1

2π

)2

+
3

2

(

�2
0

2L′
eff

+
�2

0

2L̃eff
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m2 −
ϕ2 + ϕ′

2

2π

)2

+

(

m3 −
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3

2π

)2
]

+

(

3�2
0

2L′
eff

−
3�2

0

2L̃eff

)(

m2 −
ϕ2 + ϕ′

2

2π

)(

m3 −
ϕ3 + ϕ′

3

2π

)

+

(

�2
0

2Leff
−

�2
0

2L′
eff

)(

n+ f −
ϕ1 + ϕ2 + ϕ3

2π

)2

−
∑

i

(EJi cosϕi + E′Ji cosϕ
′
i).

(20)

Ueff (ϕp,ϕm,ϕ
′
p,ϕ

′
m,ϕ1) =

3�2
0

2L′
eff

�

m1 − n′ + f −
ϕ1 − 2ϕ′

p

2π

�2

+

�

�2
0

2Leff
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�2
0

2L′
eff

��
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2π

�2

+
3

2

�

�2
0

2L′
eff

+
�2

0

2L̃eff

�





�
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m

2π

�2
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�

m3 −
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+
3
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where we use ϕ′
1 = 2πn′ − (ϕ′

2 + ϕ′
3) = 2πn′ − 2ϕ′

p . Figure 2a shows the effective potential Ueff  as a function 
of (ϕp,ϕm) for m1 = m2 = m3 = n = n′ = 0 , which is minimized with respect to ϕ′

p,ϕ
′
m and ϕ1 . If the value of 

the external flux f = 0.5 , two degenerate current states, clockwise and counterclockwise, are superposed so 
that we cannot determine the direction of current. We thus set the value of the external flux f = 0.42 to obtain 
a stable minimum. The effective potential Ueff (ϕp,ϕm) along the dotted line in Fig. 2a is shown in Fig. 2b, where 
Ueff (ϕp,ϕm) has a minimum at ϕp/2π ≈ 0.124 . Figure 2c shows the profile of effective potential Ueff (ϕp,ϕm) as 
a function of ϕm for ϕp/2π ≈ 0.124 . Here the effective potential has the minimum at ϕm = 0, i.e.,ϕ2 = ϕ3 . Fig-
ure 2d show that ϕ′

m = 0, i.e.,ϕ′
2 = ϕ′

3 at the minimum of the effective potential Ueff (ϕp,ϕm) . From Eqs. (4) and 
(9) we can see that k2 = k3 and thus I2 = I3 and from Eq. (10) k′1 = 0 , and thus I ′1 = 0 , which is consistent with 
the current conservations, I3 − I2 = I ′1 = 0 , in Eq. (8). Hence, in Fig. 1b we can determine the direction of cur-
rent such as I ′3 = −I ′2 �= 0 , and I ′1 = 0 . If we consider the case that f3 = f , f1 = f2 = 0 or f2 = f , f1 = f3 = 0 , the 
currents become I ′2 = −I ′1 �= 0 , I ′3 = 0 or I ′3 = −I ′1 �= 0 , I ′2 = 0 , respectively. Hence we can selectively determine 
the direction of currents flowing through a trijunction by threading a magnetic flux into a specific loop in the 
design of Fig. 1b, which can realize the circulator function in a scalable design.

Braiding of Majorana zero modes.  We can use the circulator function for the braiding of Majorana zero 
modes (MZM) for topological quantum computing. As shown in Fig. 4a we introduce three pairs of MZMs 
in the semiconducting nanowire with p-wave-like superconductivity induced from s-wave superconducting 
branch via proximity effect. For the quantum computing the scheme for quantum gate operation should be 
provided. Hence we consider the system of Fig. 1b because for the system of Fig. 1a the MZMs are inside of the 
loop so that the MZMs cannot interact with MZMs outside23.

In Fig. 3a we show the currents I ′1 = I3 − I2 , I ′2 = I1 − I3, and I ′3 = I2 − I1 of the system in Fig. 1b as a 
function of f1 − f2 . If f1 = f = 0.42 with f2 = f3 = 0 , the current direction is determined such that I ′1 = 0 , but 
I ′2 = I ′3 �= 0 . In this case the current flows between the branch with γ2 and the branch with γ3 . This is the initial 
state of the system shown in Fig. 4b, where the three MZMs, γ ′

1, γ
′
2 and γ ′

3 , are tunnel-coupled with each other 
through the Hamiltonian22,23

with Majorana Josephson energy EM and coupling energy α . Then the current carried through MZMs across 
trijunction is given by

(21)HT = iEM

(

γ ′
1γ

′
2 cos

ϕ′
3

2
+ γ ′

2γ
′
3 cos

ϕ′
1

2
+ γ ′

3γ
′
1 cos

ϕ′
2

2

)

+ iα

3
∑

i=1

γiγ
′
i

Figure 2.   (a) Contour plot for the effective potential Ueff for the system in Fig. 1b as a function of ϕp and ϕm for 
f1 = f = 0.42, and f2 = f3 = 0 . (b) Profile of Ueff along the dotted line in (a) for ϕm = 0 . At ϕp/2π ≈ 0.124 Ueff  
has the minimum. (c) The profile of Ueff for ϕp/2π ≈ 0.124 shows ϕm = 0 at the minimum of Ueff . (d) Plot of 
ϕ′
m as a function of ϕm which shows ϕ′

m = 0 at the minimum of Ueff for ϕp/2π ≈ 0.124 and ϕm = 0.
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with a 4π-periodic behavior33. Actually we have ϕ′
1/2π ≈ 0.246 and ϕ′

2/2π = ϕ′
3/2π ≈ −0.123 at the minimum 

of the effective potential Ueff (ϕp,ϕm) in Fig. 2a. Then the current I1 has a larger amplitude than I2 = I3 as 
shown in Fig. 3b, which is denoted as a solid (dotted) line for I1(I2 and I3) in the trijunction of Fig. 4b. As 
shown in Eq. (22) the current mediated by MZMs Ii ∝ sin ϕ′

i/2 , while the Cooper pair current Ĩi ∝ sin ϕ′
i . If we 

consider a simplified model such that the Josephson junctions in the three-junction loop in Fig. 1a are removed 

(22)Ii =
2e

�

∂

∂ϕ′
i

HT = −
2πEM

�0

iγ ′
i+1γ

′
i+2 sin

ϕ′
i

2

Figure 3.   (a) Currents I ′i in branches as a function of (f3 − f1)/2 . When f1 starts from f1 = 0.42 with 
f2 = f3 = 0 , the currents |I ′1| = |I ′3| �= 0 with |I ′1|=0. As f3 increases while f1 decreases to zero, the current 
flow changes so that |I ′1| = |I ′2| �= 0 with |I ′3| = 0 . (b) Currents Ii carried through MZMs across trijunction. 
For f1 = 0.42 and f2 = f3 = 0 the current I1 has larger amplitude than |I2| = |I3| , but for f3 = 0.42 and 
f1 = f2 = 0 , |I3| becomes larger, so the asymmetry is changed.

Figure 4.   (a) Three MZM (red circle) pairs are introduced at the end of branches where three MZMs, γ ′
i  , are 

coupled through a Josephson trijunction. Braiding sequence of system in (a): by applying adiabatically the 
fluxes (b) f1, (c) f3 , (d) f2 , and finally (e) f1 again, the green and yellow MZMs are exchanged with each other 
to complete a non-Abelian braiding procedure. In the branches represented as dotted line there is no current 
flowing. In trijunction thick red line corresponds to a large current amplitude of Ii.
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as in the previous study23, the boundary condition becomes approximately ϕ′
i − 2π fi ≈ 0 . Here, even if we set 

fi = 0.5 and thus ϕ′
i ≈ π , we cannot switch off the current mediated by MZMs as Ii  = 0 while Ĩi ≈ 0 . Hence, 

instead of switching off Ii we change the current direction by using circulating function to perform the braiding 
operation.

In general, for fi = 0.42 with fi±1 = 0 we have ϕ′
i/2π ≈ 0.246 and ϕ′

i±1/2π ≈ −0.123 . The different phases 
are due to the current direction, resulting in the asymmetry in the amplitude of Ii at the trijunction. In next 
stage we adiabatically apply the flux f3 , while decreasing f1 (See Eq. (S27) of Supplementary Information for 
general fi ). In Fig. 3a, then, |I ′1| increases while |I ′3| decreases. In the meanwhile, |I ′2| decreases to zero and then 
grows up to the maximum value. Finally for f3 = 0.42 with f1 = f2 = 0 , we have I ′3 = 0 , but I ′1 = I ′2 �= 0 . Hence 
the current direction is changed: the current Ii flows between the branch with γ1 and the branch with γ2 but 
there is no current in the branch with γ3 as shown in Fig. 4c, and meanwhile the green MZM loses its weight in 
γ3 and gains weight in γ1 . Here the current I3 has a larger amplitude than I1 = I2 , and thus the asymmetry in 
the amplitude of Ii is changed. In this way, between t = τ and t = 2τ , the yellow MZM loses its weight in γ2 and 
gains weight in γ3 as shown in Fig. 4d. At the last stage the green MZM loses its weight in γ1 and gains weight in 
γ2 . As a result, the green and yellow MZMs are exchanged with each other as shown in Fig. 4e, completing the 
braiding operation.

In Fig. 5 we show an architecture for a scalable design for a superconducting circuit with MZMs. Two MZMs 
belong to different trijunctions (the green box in Fig. 5) can be coupled or fused to perform quantum gate opera-
tions and quantum measurements. For the green box operation, for example, we can introduce a gate voltage 
applied to the sector between two MZMs to control the chemical potential of the nanowire34. Though the system 
in Fig. 5 is one-dimensional, we can extend it to two-dimensional lattice straightforwardly.

Discussion
In conclusion, we proposed a scheme for the circulator function in a superconducting circuit consisting of 
three small loops and branches which meet at a trijunction. Usually the effective potential in the Hamiltonian 
for superconducting circuit is phenomenologically obtained. However in this study we obtained the boundary 
conditions from the fundamental fluxoid quantization condition for the superconducting loop to derive the 
effective potential of the system analytically, which is required for accurate and systematic study for the quantum 
information processing applications. We expect that this kind of study can be applied to other systems.

At the minimum of the effective potential we can see that two branches carry current while the other does 
not. By applying a magnetic flux into one of the loops we can determine which branches among three carry the 
current, achieving the circulator function. For the NISQ computing we need to perform the circulator function 
in a scalable design. We thus introduced an improved model where the trijunction is extracted out from the out-
most loop to interact with other external branches. For the improved design we obtained the ground state of the 
system from the effective potential, and showed that it can perform the circulator function in the trijunction loop.

Instead of switching off the current mediated by MZMs in the previous study, in this study we selectively 
choose the current directions to give rise to MZM braiding. We thus use the circulator function to achieve a 
non-Abelian braiding operation by introducing three pairs of MZMs in the branches that meet at a trijunction 
in the improved model where MZMs are introduced outside of the loop. The circulator function determines the 
phases of the trijunction and thus the coupling between the MZMs. Initially we apply a magnetic flux into one 
of the three loops to selectively couple two pairs of MZMs. By applying adiabatically a flux into another loop 
while decreasing the previous flux we are able to gain the weight of MZM while losing in the previous branch. 
Consecutive executions in this way can perform the braiding operation between two MZMs. This scheme could 
be extended to a scalable design to implement braiding operations in one- or two-dimensional circuits.

Figure 5.   A scalable design for a superconducting circuit with MZMs. Two MZMs in each circuit of Fig. 4a can 
be coupled in the green box to form a one-dimensional lattice structure.
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