W706-W711 Nucleic Acids Research, 2010, Vol. 38, Web Server issue

doi:10.1093/nar|gkq386

Published online 14 May 2010

TogoWS: integrated SOAP and REST APIs for
interoperable bioinformatics Web services

Toshiaki Katayama®*, Mitsuteru Nakao?>*

and Toshihisa Takagi®*

"Human Genome Center, Institute of Medical Science, University of Tokyo 4-6-1 Shirokane-dai Minato-ku
Tokyo 108-8639, ?Research Organization of Information and Systems, Database Center for Life Science, Faculty
of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, *Kazusa DNA Research Institute, Plant
Genome Informatics, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 and “Research Organization of
Information and Systems, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan

Received February 1, 2010; Revised April 23, 2010; Accepted April 28, 2010

ABSTRACT

Web services have become widely used in bioinfor-
matics analysis, but there exist incompatibilities in
interfaces and data types, which prevent users from
making full use of a combination of these services.
Therefore, we have developed the TogoWS service
to provide an integrated interface with advanced
features. In the TogoWS REST (REpresentative
State Transfer) API (application programming inter-
face), we introduce a unified access method for
major database resources through intuitive URIs
that can be used to search, retrieve, parse and
convert the database entries. The TogoWS SOAP
APl resolves compatibility issues found on the
server and client-side SOAP implementations. The
TogoWS service is freely available at: http://
togows.dbcls.jp/.

INTRODUCTION

In recent years, major bioinformatics centers have begun
providing SOAP-based (http://www.w3.0rg/2002/ws/)
Web services that enable users to use these database re-
sources with client programs in an automated manner.
These include the E-Ultilities service (1) provided by the
National Center for Biotechnology Information (NCBI),
Web services provided by the European Bioinformatics
Institute (EBI) (2,3), the Web API for Bioinformatics
(WABI) from the DNA Data Bank of Japan (DDBJ)
(4-7), the Protein Data Bank Japan’s (PDBj) Web
services (8) and the KEGG API service from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (9).

Thanks to these services, users can easily perform
various bioinformatics tasks through their choice of
client software and can reproduce each procedure as a
workflow.

However, when it comes to using these services in
combination, there are several limitations (10) to their
interoperability and technological implementation: (i)
there are no common ontologies for operations and
objects in these Web services, resulting in inconsistent
naming conventions and data types; (ii) this incompatibil-
ity of data types requires format conversion of objects
to use the output of one service as the input to the next
service; (iii) there are several services that require specific
SOAP features that are not always supported in the
available SOAP libraries, even for several major
programming languages; and (iv) the client developer
needs to be aware of fail-safe mechanisms, such as tem-
porary downtime of the server or the network, as well as
environmental restrictions such as the maximum size of
exchanged data.

To overcome these limitations [especially for (i) and
(i1)], the BioMoby project (11,12) was begun to provide
a central registry of operations and objects used in public
Web services, along with ontologies. In this way, a number
of BioMoby-compliant services were developed, and the
BioMoby client can find the service that is appropriate for
the type of object. The main problem here is that most
major bioinformatics service providers are not compatible
with the BioMoby standard, possibly because it requires a
considerable amount of server-side effort. Furthermore, it
is also difficult to enforce a set of standard data formats
for interoperability among these providers.

To help resolve these problems, we organized DBCLS
BioHackathons in 2008 (http://hackathon.dbcls.jp/) and

*To whom correspondence should be addressed. Tel: +81 3 5841 6754; Fax: +81 3 5841 8060; Email: mn@dbcls.jp
Correspondence may also be addressed to Toshiaki Katayama. Email: ktym@hgc.jp

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint first Authors.

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

2009 (http://hackathon2.dbcls.jp), international work-
shops focusing on Web services, drawing participants
from many backgrounds, including Web service providers,
developers of the Open Bio* libraries and client applica-
tions as well as database creators in emerging fields such
as glycoinformatics and interactomics. One interesting
topic in the BioHackathon was the attempt to resolve
the current limitations in interoperability among existing
Web services. For this purpose, a workflow was proposed
that pipelines services provided by DDBJ, PDBj and
KEGG to find homologs using BLAST and annotate
them with structural and pathway information. When
this workflow is run in the Taverna environment (13),
we again encountered the essential need for data format
conversion. The Open Bio* libraries (14), including
BioPerl (15), BioRuby (http://bioruby.org), BioPython
(16) and BioJava (17), provide parsers for major
database entry and software output formats such as the
BLAST report. However, users are required to install
these libraries and to write code to use their functionality.

Building upon discussions from the BioHackathon, we
began to develop TogoWS, an integrated Web service
(‘togo’ is a Japanese word for ‘integration’) that
provides uniform access to database resources, parsers
for database entries and converters among major data
formats. Bioinformatics Web services can be categorized
into data-retrieval services and analysis services. Although
both types of services can be exposed using either the
REST (18) or the SOAP architecture, REST is better
suited for data-retrieval services and SOAP is more
suitable for analysis services because the former can be
easily mapped to resource URIs and the latter usually
requires a long execution time or complex parameters.

In our survey, we discovered that most existing Web
services (data not shown) are designed to search and
retrieve database entries maintained at each institution.
Therefore, in TogoWS, we designed a REST-based Web
service for accessing database resources in a unified
manner, with intuitive URI notation for searching,
retrieving, parsing and converting the database entries.
Morecover, we developed a unified SOAP-based Web
service in TogoWS that proxies analysis services
provided by Japanese institutions to resolve several
incompatibilities found in these services. Supplemental
documents and source code in major programming lan-
guages (Perl, Ruby, Python and Java) are also provided.

TogoWS REST API

The TogoWS REST service provides intuitive APIs to
search, retrieve, parse and convert the database entries.
In the following sections, we will describe these interfaces
and the internal architecture of the REST service.

Database search

TogoWS provides a uniform query interface for various
databases. The result of the database search can be con-
sidered a resource that is relevant to the query string.
Therefore, we map each database name (DATABASE)

Nucleic Acids Research, 2010, Vol. 38, Web Server issue

w707

and query string (QUERY_STRING) to a URI by the
following convention:

http://togows.dbcls.jp/search/DATABASE/
QUERY__STRING

A list of currently available databases can be obtained
by accessing the following URI without a database name:

http://togows.dbcls.jp/search/

As an example, a search against the UniProt database
using the phrase ‘lung cancer’ can be represented as follows:

http://togows.dbcls.jp/search/uniprot/
lungtcancer

The returned text contains matched entry IDs, one per
line (Figure 1a). The QUERY _STRING can be a simple
keyword or a URI-encoded string containing a structured
query with logical operations. The given query is
translated by the TogoWS server and then sent to the
corresponding service.

Hit count and pagination

A database search often returns a long list of hits. To make
our search service scalable, we introduced a method for
counting and pagination. To count the number of hits,
simply add ‘/count’ to the end of the query URI:

http://togows.dbcls.jp/search/uniprot/
lungtcancer/count

Then, the user can retrieve any subset of the hits by
indicating OFFSET and LIMIT numbers in the following
format:

http://togows.dbcls. jp/search/DATABASE/
QUERY_STRING/OFFSET, LIMIT

For example, to obtain 10 results starting from the
100th hit

http://togows.dbcls.jp/search/uniprot/
lungtcancer/100,10

The user can iterate over the OFFSET value, starting
from 1 and incrementing it by LIMIT until all hits have
been retrieved.

Entry retrieval

Each database entry can be identified by a database name
and a unique identifier; therefore, it can be easily repre-
sented as a unique URI. In the TogoWS REST API, we
mapped database names and entry IDs to URIs by the
following convention:

http://togows.dbcls.jp/entry/DATABASE/
ENTRY_TID

where the ‘/entry’ prefix indicates a REST action to
retrieve the resource specified by DATABASE and
ENTRY _ID, which represent the name of the database
and the entry ID string, respectively.

W708 Nucleic Acids Research, 2010, Vol. 38, Web Server issue

(a) http://togows.dbcls.jp/search/uniprot/lung+cancer

Q7Z5Q7_HUMAN
Q5WPA9_PIG

(b) http://togows.dbcls.jp/entry/kegg-compound/C07481/name

Q6K043_HUMAN
Q56VW8_HUMAN
Q8TE®3_HUMAN
B7ZW06_HUMAN

ICaffeine l

(c) http://togows.dbcls.jp/entry/kegg-compound/C07481/mass

DLEC1_HUMAN
KKLC1_MACFA
C4QDY3_SCHMA
DLEC1_RAT

I 194.0804 l

(d) http://togows.dbcls.jp/entry/kegg-compound/C07481/enzymes

B1B5Y4_HUMAN
DLEC1_MOUSE
Q8IWWG_HUMAN

1.13.12.-

1.14.14.1

1.17.5.-

2.1.1.160

(e) http://togows.dbcls.jp/entry/kegg-compound/C07481/enzymes.json

CASC1_HUMAN

Figure 1. Examples of the TogoWS URIs and their outputs.

For example, the URI to retrieve a KEGG GENES
database entry ‘sec:YDR074W’ can be represented as
follows, and it will return the flatfile entry as a text
string, without any decoration:

http://togows.dbcls.jp/entry/kegg-genes/
sce:YDRO74wW

Multiple entries can be retrieved at once by
concatenating entry IDs with commas. Therefore,
PubMed entries ‘18077471" and °‘19151099" can be
retrieved at a time by accessing the following URI:

http://togows.dbcls.jp/entry/ncbi-pubmed/
18077471,19151099

A list of currently available databases can be obtained
by accessing the following URI without a database name:

http://togows.dbcls.jp/entry/

To obtain actual database entries, TogoWS internally
uses existing SOAP or REST interfaces provided by each
database (Figure 2). Since the TogoWS acts as a proxy to
various data sources, the user does not need to worry
about the internals of the SOAP messages or complex
CGI parameters that each database usually requires for
access. The TogoWS server also caches the retrieved
entries for a period of time to avoid overloading the
original servers.

Entry field extraction

A unique feature of the TogoWS REST API is that it
comes with built-in parsers for various database formats.
Without this, the user will need to install a bioinformatics
library such as BioPerl, BioPython, BioRuby or BioJava
and to write a program to extract the desired information
from the retrieved entries. This requirement has been a
bottleneck to the creation of an automated workflow
that consumes a list of database entries and extracts infor-
mation for the next step of the analysis pipeline. To
resolve this situation, we embedded BioPerl and
BioRuby libraries in the TogoWS server. These bioinfor-
matics libraries cover a wide range of biomedical

[["1.13.12.-

","1.14.14.1","1.17.5.-","2.1.1.160"]]

* Appropriate parameters
* Entry cache

* Built-in parsers
* Status monitor

Figure 2. Schematic overview of the TogoWS service.

databases and provide efficient parsing functionality for
various database entries. We extended the TogoWS
REST API to support extraction of the field contents
just by adding a specific field name at the end of the
URI, as follows:

http://togows.dbcls.jp/entry/DATABASE/
ENTRY_ID/FIELD

where FIELD is one of the supported field names. The list
of available field names differs from database to database
and can be obtained by accessing the following URI:

http://togows.dbcls.jp/entry/DATABASE?
fields

As described in the previous section, TogoWS will
retrieve specified entries from the original
database. Then, the cached contents are internally pro-
cessed by built-in parsers. In this manner, the user can
access any field values of the given entries without
programming.

For example, a name, a molecular weight and relevant
enzymes of the KEGG COMPOUND entry ‘C01083’

can be extracted by the following URIs, respectively
(Figure 1b—d):

http://togows.dbcls.jp/entry/kegg-
compound/C01083 /name

http://togows.dbcls.jp/entry/kegg-
compound/C01083 /mass

http://togows.dbcls.jp/entry/kegg-
compound/C01083/enzymes

Similarly, the authors and abstract of the PubMed entry
‘19151099’ can be retrieved by

http://togows.dbcls.jp/entry/ncbi-pubmed/
19151099/au

http://togows.dbcls.jp/entry/ncbi-pubmed/
19151099/ab

where ‘au’ and ‘ab’ correspond to the AU and AB
lines, respectively, of the PubMed record in MEDLINE
format.

Entry format conversion

Even though a specific field of an entry can be extracted, it
is often required to convert the data format for further
use. With the help of built-in parsers, TogoWS provides
format conversion of the entry simply by specifying the
format as a URI suffix, analogous to the extension of a
filename:

http://togows.dbcls.jp/entry/DATABASE/
ENTRY_ID.FORMAT

http://togows.dbcls.jp/entry/DATABASE/
ENTRY_ID/FIELD.FORMAT

For example, the DDBJ entry ‘M13899" can be con-
verted into the FASTA, INSDC-XML and GFF
formats by the following URIs, respectively:

http://togows.dbcls.jp/entry/ddbj/M13899
.fasta

http://togows.dbcls.jp/entry/ddbj/M13899
.xml

http://togows.dbcls.jp/entry/ddbj/M13899
.gff

Acceptable formats can vary according to the database
and currently include XML, JSON, GFF version 3 and
FASTA. In the future, RDF/XML and Turtle will also be
supported. The FASTA and GFF formats are valid for
nucleotide or peptide sequence databases, and the XML
format is available if the original database is also provided
as XML.

Format conversion can also be applied to the extracted
field. The following URI returns the associated enzymes of
the KEGG COMPOUND entry ‘C01083" in JSON format
(Figure le).

http://togows.dbcls.jp/entry/kegg-
compound/C01083/enzymes.json

The JSON format (http://tools.ietf.org/html/rfc4627) is
particularly useful when this service is used in a Web

Nucleic Acids Research, 2010, Vol. 38, Web Server issue

w709

application that retrieves relevant information on the fly
via an AJAX method.

A list of available format names differs from database
to database and can be obtained by accessing the follow-
ing URL:

http://togows.dbcls.jp/entry/DATABASE?
formats

Data format conversion

TogoWS also provides format-to-format conversion func-
tionality. Unlike the methods described above, this
method uses the HTTP POST protocol instead of HTTP
GET. The end-point URI of the data format conversion
service uses the following convention:

http://togows.dbcls. jp/convert/SOURCE
.FORMAT

For example, to convert a BLAST result to GFF
format, simply POST the BLAST report string to the fol-
lowing URI:

http://togows.dbcls.jp/convert/blast.gff

Figure 3 shows a sample Ruby program demonstrating
how to read a BLAST output stored in the file
‘blast_result.txt” and convert its contents into GFF
format:

#!/usr/bin/env ruby

require 'net/http’

require 'cgi'

blast = File.read("blast_result.txt")

data = CGI.escape(blast)

Net::HTTP.version 1 2

Net::HTTP.start ('togows.dbcls.jp') {|http]|
response = http.post('convert/blast.gff', data)
puts response.body

}

Figure 3. Ruby program to convert a BLAST output into GFF
format.

Currently, GenBank, EMBL, UniProt, BLAST,
FASTA, PSL, Sim4, HMMER, Exonerate and Wise
formats are supported as source data types. This service
is intended to be used in the workflow management
software, in which the pipeline is often bottlenecked by
incompatible data formats. TogoWS fills this kind of
gap without requiring the user to install additional
software on the local computer.

TogoWS SOAP API

The other half of TogoWS is a SOAP-based proxy service
for Japanese bioinformatics resources, including DDBJ,
PDBj and KEGG. In contrast to the REST service,
SOAP is suitable for services requiring long execution
time, returning structured objects, or expecting complex
parameters in the query. The SOAP specification itself is
an open standard and is independent of the programm-
ing languages. However, its implementation in each

W710 Nucleic Acids Research, 2010, Vol. 38, Web Server issue

programming language tends to be incomplete because of
the complexity of the specification. Because of this, there
appear to be several technical incompatibilities in each
service. We have been collaboratively working with some
of these institutions to resolve the issues; however, there
still remain problems that require modifications to their
service specifications. These problems include the use of a
MIME attachment for returning the results, the use of an
HTTP cookie for stateful transactions and different
designs for asynchronous transactions, features that are
not always supported by the SOAP library of choice.

Integrated WSDL file

Instead of asking all service providers to modify their
services, we developed the TogoWS SOAP API, which
proxies their services and thus hides the incompatibilities
and differences between them. All services across these
servers (DDBJ, PDBj and KEGG) are integrated into
only one WSDL file,

http://togows.dbcls. jp/soap/wsdl/togows
.wsdl

so that the user can use all 368 operations that were
originally spread among 26 WSDL files. Our service has
been tested in several major programming languages (Perl,
Python, Ruby and Java), so the user can use each service
in the preferred language without difficulty. This approach
also eliminates a burden from the service providers
because they do not themselves need to test or improve
the language compatibility of their services.

Sample code and documents

The TogoWS SOAP service comes with comprehensive
sample code covering all operations of the DDBJ, PDBj
and KEGG services written in four programming lan-
guages (Perl, Python, Ruby and Java). The user can
freely examine and download the code from the following
database and use them as references for further
development.

http://togodb.dbcls.jp/togows_domestic_
method

Web services often lack documentation, forcing users to
consult the WSDL file to learn what kind of operations
are available, what data types are used for input and
output, etc. However, this is not an effortless task, as
the WSDL file was not designed to be read by a human.
To remedy this problem, we have created a list of Web
service operations from existing bioinformatics Web
services worldwide:

http://togodb.dbcls. jp/togows_world_
method

This list contains information extracted from the
WSDL files, such as the description and input/output
data types for 4172 operations, including services
integrated in the TogoWS SOAP API. In addition, we
also assigned a functional classification to each operation.

Server status monitor

Web services are often used by computer programs in a
pipeline. However, it is often difficult to detect temporary
error caused by server-side problems. We have monitored
the availability of all operations in DDBJ, PDBj and
KEGG over the past 2 years. The result is stored and
summarized in the TogoWS status report:

http://togows.dbcls.jp/status

Since the monitoring is performed every day, these
records may help the user determine whether the source
of the problem is the local configuration or the remote
server. The record also contains statistical information
such as output size and response time, which has helped
service providers to detect unexpected errors several times.

DISCUSSION

In TogoWS, we proposed an integrated service focused on
the interface and compatibility of existing bioinformatics
Web services. We successfully developed a REST interface
for accessing database resources with intuitive and persist-
ent URIs. For other services, we developed a highly com-
patible SOAP interface supplemented by sample codes
and a status monitor. These services are stable and have
been used for about 2 years, but there remains room for
improvement.

We will continue to increase the number of supported
formats and databases in TogoWS. Most importantly, we
are planning to extend the TogoWS REST API to support
the Semantic Web framework. During the course of de-
velopment, we will extend the TogoWS to support private
datasets stored in the TogoDB database (http://togodb
.dbcls.jp) in addition to the major public databases. By
exporting these data in RDF format, TogoWS can con-
tribute as a provider of Linked Data.

ACKNOWLEDGEMENTS

The authors thank Mr. Tatsuya Nishizawa for his support
in the development of the TogoWS server and the partici-
pants of the DBCLS BioHackathon (http://hackathon
.dbcls.jp/), in which valuable discussions helped to
clarify bottlenecks in the current Web services in bioinfor-
matics and determined the required infrastructure to make
these services interoperable.

FUNDING

The Integrated Database Project of the Ministry of
Education, Culture, Sports, Science and Technology of
Japan. Funding for open access charge: Integrated
Database Project in Japan.

Conflict of interest statement. None declared.

REFERENCES

1. Sayers,E.W., Barrett,T., Benson,D.A., Bryant,S.H., Canese,K.,
Chetvernin,V., Church,D.M., DiCuccio,M., Edgar,R., Federhen,S.

i

et al. (2009) Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res., 37, D5-D15.

. Labarga,A., Valentin,F., Anderson,M. and Lopez,R. (2007) Web

services at the European bioinformatics institute. Nucleic Acids
Res., 35, W6-W11.

. Pillai,S., Silventoinen,V., Kallio,K., Senger,M., Sobhany,S.,

Tate,J., Velankar,S., Golovin,A., Henrick,K., Rice,P. et al. (2005)
SOAP-based services provided by the European Bioinformatics
Institute. Nucleic Acids Res., 33, W25-W28.

. Sugawara,H. and Miyazaki,S. (2003) Biological SOAP servers and

web services provided by the public sequence data bank. Nucleic
Acids Res., 31, 3836-3839.

. Miyazaki,S., Sugawara,H., Ikeo,K., Gojobori,T. and Tateno,Y.

(2004) DDBJ in the stream of various biological data. Nucleic
Acids Res., 32, D31-D34.

. Sugawara,H., Ogasawara,O., Okubo.,K., Gojobori,T. and

Tateno,Y. (2007) DDBJ with new system and face. Nucleic Acids
Res., 36, D22-D24.

. Kwon,Y., Shigemoto,Y., Kuwana,Y. and Sugawara,H. (2009)

Web API for biology with a workflow navigation system. Nucleic
Acids Res., 37, W11-W6.

. Standley,D.M., Kinjo,A.R., Kinoshita,K. and Nakamura,H.

(2008) Protein structure databases with new web services for
structural biology and biomedical research. Brief. Bioinform., 9,
276-285.

. Kanehisa,M., Goto,S., Furumichi,M., Tanabe,M. and

Hirakawa,M. (2010) KEGG for representation and analysis of
molecular networks involving diseases and drugs. Nucleic Acids
Res., 38, D355-D360.

. Stockinger,H., Attwood,T., Chohan,S.N., C6t¢,R., Cudré-

Mauroux,P., Falquet,L., Fernandes,P., Finn,R.D., Hupponen,T.,

Nucleic Acids Research, 2010, Vol. 38, Web Server issue

w711

Korpelainen,E. er al. (2008) Experience using web services for
biological sequence analysis. Brief. Bioinform., 9, 493-505.

. Wilkinson,M.D. and Links,M. (2002) BioMOBY: an open source

biological web services proposal. Brief. Bioinform., 3, 331-341.

. Vandervalk,B.P., McCarthy,E.L. and Wilkinson,M.D. (2009)

Moby and Moby 2: creatures of the deep (web). Brief. Bioinform.,
10, 114-128.

. Hull,D., Wolstencroft,K., Stevens,R., Goble,C., Pocock,M.R.,

Li,P. and Oinn,T. (2006) Taverna: a tool for building and
running workflows of services. Nucleic Acids Res., 34,
W729-W732.

. Stajich,J. and Lapp,H. (2006) Open source tools and toolkits for

bioinformatics: significance, and where are we? Brief. Bioinform.,
7, 287-296.

. Stajich,J., Block,D., Boulez,K., Brenner,S., Chervitz,S.,

Dagdigian,C., Fuellen,G., Gilbert,J., Korf,I., Lapp,H. et al. (2002)
The Bioperl Toolkit: Perl modules for the life sciences. Genome
Res., 12, 1611-1618.

. Cock,P., Antao,T., Chang,J., Chapman,B., Cox,C., Dalke,A.,

Friedberg,l., Hamelryck,T., Kauff,F., Wilczynski,B. et al. (2009)
Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics, 25,
1422-1423.

. Holland,R., Down,T., Pocock,M., Prlic,A., Huen,D., James,K.,

Foisy.S., Driger,A., Yates,A., Heuer,M. et al. (2008) BioJava: an
open-source framework for bioinformatics. Bioinformatics, 24,
2096-2097.

. Fielding,R. (2000) Architectural Styles and the Design of

Network-based Software Architectures. University of California,
Irvine.

