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ABSTRACT

We report key mechanistic differences between the
reverse transcriptases (RT) of human immunodefi-
ciency virus type-1 (HIV-1) and of xenotropic murine
leukemia virus-related virus (XMRV), a gammaretro-
virus that can infect human cells. Steady and pre-
steady state kinetics demonstrated that XMRV RT
is significantly less efficient in DNA synthesis and
in unblocking chain-terminated primers. Surface
plasmon resonance experiments showed that the
gammaretroviral enzyme has a remarkably higher
dissociation rate (koff) from DNA, which also results
in lower processivity than HIV-1 RT. Transient
kinetics of mismatch incorporation revealed that
XMRV RT has higher fidelity than HIV-1 RT. We
identified RNA aptamers that potently inhibit
XMRV, but not HIV-1 RT. XMRV RT is highly suscep-
tible to some nucleoside RT inhibitors, including
Translocation Deficient RT inhibitors, but not to
non-nucleoside RT inhibitors. We demonstrated
that XMRV RT mutants K103R and Q190M, which
are equivalent to HIV-1 mutants that are resistant
to tenofovir (K65R) and AZT (Q151M), are also resist-
ant to the respective drugs, suggesting that XMRV

can acquire resistance to these compounds through
the decreased incorporation mechanism reported
in HIV-1.

INTRODUCTION

Xenotropic murine leukemia virus-related virus (XMRV)
is a gammaretrovirus that was first identified in some
prostate cancer tissues (1,2) While some subsequent re-
ports confirmed the presence of XMRV in prostate cancer
samples (3–6), several others found little or no evidence of
the virus in patient samples (7–9). XMRV DNA was also
reported in 67% of patients with chronic fatigue syndrome
(CFS) (10), but several subsequent studies in Europe and
the USA failed to identify XMRV DNA in CFS patients
or healthy controls (11–15). Hence, the relevance of
XMRV to human disease remains unclear (16) and have
been challenged (17). Most recently, it has been reported
that XMRV has been generated through recombination of
two separate proviruses suggesting that the association
of XMRV with human disease is due to contamination
of human samples with virus originating from this recom-
bination event (18). Nonetheless, as a retrovirus that can
infect human cells, XMRV can be very helpful in
advancing our understanding of the mechanisms of retro-
viral reverse transcription, inhibition and drug resistance.
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XMRV RT is similar to the Moloney murine leukemia
virus (MoMLV) RT, which has been the subject of struc-
tural and biochemical studies (19–24). Most of the dif-
ferences between these gammaretroviral enzymes are at
the RNase H domain (Supplementary Figure S1).
Comparisons of human immunodeficiency virus type-1
(HIV) RT with MoMLV RT have revealed structural
and sequence differences (21). For example, HIV-1 RT
is a heterodimer composed of two related subunits
(25,26) [reviewed in (27,28)]. Its larger p66 subunit
(�66 kDa) contains both the polymerase and RNase H
domains; the smaller p51 subunit, (�51 kDa), is derived
from the p66 subunit by proteolytic cleavage and its role is
to provide structural support and optimize RT’s biochem-
ical functions (29). In contrast, structural studies have
demonstrated that MoMLV RT is a monomer of about
74 kDa, although one study reported that it may form a
homodimer during DNA synthesis (30). So far, there are
no published biochemical or structural studies on XMRV
RT. Hence, the present study on this enzyme and its com-
parison to related enzymes provides an excellent oppor-
tunity to advance our biochemical understanding of the
mechanism of reverse transcription, its inhibition and
drug resistance.

MATERIALS AND METHODS

Expression and purification of XMRV, HIV-1 and
MoMLV RTs

The plasmid pBSK-XMRV containing the coding se-
quence of XMRV RT from the VP62 clone (GenBank:
DQ399707.1) was chemically synthesized and optimized
for bacterial expression by Epoch Biolabs Inc (Missouri
City, Texas, USA). The 2013 bp XMRV RT sequence was
amplified from pBSK-XMRVRT by PCR, using the for-
ward and reverse primers 1 (all primer sequences are
shown in Supplementary Table S1), resulting in NdeI
and HindIII restriction sites. Drug resistant XMRV RT
mutants Q190M and K103R (equivalent to HIV-1 Q151M
RT and K65R) were generated by site-directed mutagenesis
using forward and reverse primers 2 and 3. The digested
amplicons were ligated into pET-28a (Novagen), resulting
into a construct that expresses an N-terminal hexa-
histidine tag. pET-28a-MRT encoding full-length
wild-type MoMLV RT was provided by Dr M. Modak
(New Jersey Medical School, Newark NJ, USA).
Expression and purification of MoMLV and XMRV

RTs were carried out similarly to our previously published
protocols (23,24). Briefly, RTs were expressed in BL21-
pLysS Escherichia coli (Invitrogen) grown at 37�C and
induced with 150 mM IPTG at OD600 0.8, followed by
16 h growth at 17�C. A cell pellet from a 3 l culture was
incubated with 40ml lysis buffer (50mM Tris–HCl, pH
7.8, 500mM NaCl, 1mM PMSF, 0.1% NP-40, 1%
sucrose and 2mg/ml lysozyme), then sonicated and cent-
rifuged at 15,000 g for 30min. The supernatant was
diluted 2-fold in Buffer A (50mM Tri–HCl pH 7.8,
1mM PMSF, 4% streptomycin sulfate and 10%
sucrose), stirred on ice for 30min and centrifuged. The
supernatant was loaded on a Ni-NTA column and

bound proteins were washed with 20ml Buffer B
(20mM Tris–HCl pH 7.5, 500mM NaCl) and 5mM imid-
azole, followed by 20ml Buffer B with 75mM imidazole.
RT was eluted in 2ml fractions with 20ml buffer B con-
taining 300mM imidazole. Fractions with RT were pooled
and further purified by size exclusion chromatography
(Superdex 75; GE Healthcare). RTs (>95% pure) were
stored in 50mM Tris–HCl pH 7.0, 100mM NaCl, 1mM
DTT, 0.1% NP-40 and 30% glycerol in 10 ml aliquots at
�20�C. Protein concentrations were determined by mea-
suring UV280 (molar extinction coefficients of 106 and
103M�1cm�1 for XMRV and MoMLV RT).

HIV-1 RT was cloned in a pETduo vector and purified
as described previously (29,31,32). Oligonucleotide se-
quences (IDT-Coralville, IA, USA) of DNA/RNA sub-
strates are shown in Supplementary Table S1.
Nucleotides were purchased from Fermentas (Glen
Burnie, MD, USA). They were treated with inorganic
pyrophosphatase (Roche Diagnostics, Mannheim,
Germany) as described previously (33) to remove PPi
that might interfere with excision assays.

Steady state kinetics

Steady state parameters Km and kcat for dATP incorpor-
ation were determined using single nucleotide incorpor-
ation gel-based assays. XMRV RT and MoMLV RT
reactions were carried out in 50mM Tris–HCl pH 7.8,
60mM KCl, 0.1mM DTT, 0.01% NP-40 and 0.01%
bovine serum albumin (BSA) (Reaction Buffer) with
6mM MgCl2 or 1.5mM MnCl2, 0.5mM EDTA, 200 nM
or 100 nM Td26/5

0-Cy3-Pd18b, 20 nM or 5 nM RT for
XMRV and MoMLV RTs, respectively and varying con-
centrations of dNTP in a final volume of 10 ml. The reac-
tions for HIV-1 RT were carried out in Reaction Buffer
with 100 nM Td26/5

0-Cy3-Pd18b, 10 nM HIV-1 RT and
6mM MgCl2 in a 20 ml reaction. All the concentrations
mentioned here and in subsequent assays reflect final con-
centration of reactants otherwise mentioned reactions
were stopped after 15min for XMRV, 4min for
MoMLV RT, and 2.5min for HIV-1. The products were
resolved on 15% polyacrylamide–7M urea gels. The gels
were scanned with a Fuji Fla-5000 PhosphorImager
(Stamford, CT, USA) and the bands were quantified
using MultiGauge. Results were plotted using GraphPad
Prism 4. Km and kcat were determined graphically using
Michaelis–Menten equation.

Gel mobility shift assays

Formation of RT-DNA binary complex: 20 nM Td31/
50-Cy3-Pd18a (Supplementary Table S1) was incubated
for 10minutes with increasing amounts of MoMLV or
XMRV RT in 50mM Tris–HCl pH 7.8, 0.01% BSA,
5mM MgCl2 and 10% (v/v) sucrose. The complexes
were resolved on native 6% polyacrylamide 50mM Tris–
borate gel and visualized as described above.

Active site titration and determination of KD.DNA

Active site concentrations and kinetic constants of DNA
binding for XMRV, HIV-1 and MoMLV RTs were
determined using pre-steady state experiments. Reactions
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with XMRV and MoMLV RTs were carried out in the
reaction buffers listed above. For XMRV RT 100 nM
protein was pre-incubated with increasing concentrations
of Td31/5

0-Cy3-Pd18a, followed by rapid mixing with a
reaction mixture containing 5mM MgCl2 and 100 mM
next incoming nucleotide (dATP). The reactions were
quenched at various times (5ms to 4 s) by adding EDTA
to a final concentration of 50mM. The amounts of 19-mer
product were quantified and plotted against time. The
data were fit to the following burst equation:

P ¼ Að1� e�kobst Þ+ksst ð1Þ

where A is the amplitude of the burst phase that represents
the RT–DNA complex at the start of the reaction, kobs is
the observed burst rate constant for dNTP incorporation,
kss is the steady state rate constant and t is the reaction
time. The rate constant of the linear phase (kcat) was
estimated by dividing the slope of the linear phase by
the enzyme concentration. The active site concentration
and T/P binding affinity (KD.DNA) were determined by
plotting the amplitude (A) against the concentration of
T/P. Data were fit to the quadratic equation (Equation 2)
using non-linear regression:

A ¼ 0:5ðKD+½RT�+½DNA� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25ðKD+½RT�+½DNA�Þ2

q

� ð½RT�+½DNA�Þ

ð2Þ

where KD is the dissociation constant for the RT–DNA
complex, and [RT] is the concentration of active polymer-
ase. HIV-1 RT’s DNA binding affinity was determined as
previously described (29).

Surface plasmon resonance assay

We used surface plasmon resonance (SPR) to measure the
binding constants of XMRV and HIV-1 RTs to double-
stranded DNA. Experiments were carried out using a
Biacore T100 (GE Healthcare). To prepare the sensor
chip surface we used the 50-biotin-Td37/Pd25 oligonucleo-
tide (Supplementary Table S1). One hundred and twenty
RUs of this DNA duplex were bound in channel 2 of a
streptavidin-coated sensor chip [Series S Sensor Chip SA
(certified)] by flowing a solution of 0.1mM DNA at a flow
rate of 10 ml/min in a buffer containing 50mM Tris pH
7.8, 50mM NaCl. The binding constants were determined
as follows: RT binding was observed by flowing solutions
containing increasing concentrations of the enzyme (0.2,
0.5, 1, 2, 5, 10, 20, 50, 100 and 200 nM) in 50mM Tris pH
7.8, 60mM KCl, 1mM DTT, 0.01% NP40 and 10mM
MgCl2 in channels 1 (background) and 2 (test sample) at
30 ml/min. The trace obtained in channel 1 was subtracted
from the trace in channel 2 to obtain the binding signal of
RT. This signal was analyzed using the Biacore T100
Evaluation software to determine KD.DNA, kon and koff.

Pre-steady state kinetics of dNTP incorporation

The optimal nucleotide incorporation rates (kpol) were ob-
tained by pre-steady state kinetics analysis using single
nucleotide incorporation assays. A solution containing

XMRV RT (150 nM final concentration) and Td31/
50-Cy3-Pd18a (40 nM) was rapidly mixed with a solution
of MgCl2 (5mM) and varying dATP (5–200 mM) for 0.1
to 6 s before quenching with EDTA (50mM) (all concen-
trations in parentheses are final, unless otherwise stated).
Products were resolved and quantified as described above.
Burst phase incorporation rates and substrate affinities
were obtained from fitting the data to Equation 1.
Turnover rates (kpol), dNTP binding to the RT-DNA
complex (Kd.dATP), and observed burst rates (kobs) were
fit to the hyperbolic equation:

kobs ¼ kpol dNTP½ �
� �

= Kd:dNTP+dNTP½ �ð Þ ð3Þ

HIV-1 RT’s DNA binding affinity was determined as pre-
viously described (29).

Fidelity of DNA synthesis

The fidelity (error-proneness) of XMRV RT was deter-
mined and compared with that of MoMLV RT and
HIV-1 RT by primer extension assays using 10 nM hetero-
polymeric Td100/5

0-Cy3-Pd18a. Reactions (10ml) were car-
ried out in Reaction Buffer containing all four dNTPs
(100mM each) or only three dNTPs (missing either
dATP, dGTP or dTTP) at 100 mM each. Incubations of
the XMRV and MoMLV (50 nM) reactions were at 37�C
for 45min and 30min for HIV-1 RT (20 nM). Reactions
were initiated by adding dNTPs, stopped with equal
volume of formamide-bromophenol blue, and an aliquot
was run on a 16% polyacrylamide–7M urea gel.

Kinetics of mismatch incorporation

For these experiments, instead of including the next correct
nucleotide (dATP) in the polymerase reactions, we used
dTTP as the mismatched incoming nucleotide. Hence,
50 nM XMRV RT was pre-incubated with 35 nM Td31/
50-Cy3-Pd18a in reaction mixture. Reactions were initiated
by adding dTTP (5–750 mM) and 5mM MgCl2, followed
by incubation (37�C) for 5min, due to the decreased
mismatch incorporation rate of XMRV. For MoMLV
RT, 30 nM RT and 20 nM DNA used and the reactions
were carried out for 2.5minutes. For HIV-1, 30 nM RT,
20 nM DNA and 0–200mM nucleotide were used and the
reactions were carried out for 2.5min. The amount of ex-
tended primer was quantified and plotted against the con-
centration of dTTP. The data were used to derive the
Kd.dNTP of incorrect nucleotide binding, the rate kpol
(using Equations 1 and 3) and the efficiency of the
misincorporation reaction (kpol/Kd.dTTP).

Determination of in vivo fidelity

ANGIE P cells, which contain a retroviral vector (GA-1)
that encodes a bacterial b-galactosidase gene (lacZ)
and a neomycin phosphotransferase gene, were plated
(5� 106 cells/100mm dish) and after 24 h were transfected
using the calcium phosphate precipitation method with a
plasmid expressing either XMRV or amphotropic MLV
(AM-MLV) (three independent transfections per vector).
After 48 h, the culture medium with XMRV or (AM-
MLV) was harvested, serially diluted and used to infect
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D17 target cells (2� 105 cells/60mm dish) in the presence
of polybrene. The infected D17 cells were selected for re-
sistance to G418 (400mg/ml) in the presence of 1 mM AZT
to suppress reinfection, and characterized by staining with
5-bromo-4-chloro-3-indoyl-b-D-galacto-pyranoside
(X-Gal) �2 weeks after G418 selection. The frequencies of
inactivating mutations in lacZ quantified as described
before (blue versus white colonies) (34).

Processivity of DNA synthesis—trap assay

Processivity reactions were carried out in Reaction Buffer
containing 20 nM Td100/Pd18, 100 mMof each dNTP,
30 nM HIV-1 RT, 50 nM MoMLV RT or 100 nM
XMRV RT and 1mg/ml unlabeled calf thymus DNA trap
in 50 mL. Enzymes were pre-incubated with Td100/Pd18 for
1min before adding dNTPs (100mM each) together with
the calf thymus DNA trap. Reactions were incubated at
37�C, and 10 ml aliquots were taken out at 3, 7.5 and
15min for HIV-1 RT or at 7.5, 15 and 30min for
XMRV RT and MoMLV RT, and mixed with equal
volume of loading dye. The effectiveness of the trap was
determined by pre-incubating the enzyme with the trap
before adding Td100/Pd18. Control DNA synthesis was
measured in absence of trap under the same conditions.
Reaction products were resolved as above.

Single turnover processivity assays

Thirty nanomolar Td31/5
0-Cy3-Pd18a was pre-incubated for

10min with 100 nM XMRV or 50 nM MoMLV RT in
Reaction Buffer, then rapidly mixed with 100 mM
dNTPs, 5mM MgCl2 for varying times (0.1–45 s) before
quenching with EDTA (50mM final). Single turnover
processivity of HIV-1 RT was assayed with 40 nM
enzyme, 20 nM DNA and 50 mM of each nucleotide were
used. The reaction products were resolved and quantified
as described above. The data were fit to a one-phase ex-
ponential decay equation for the elongation of the 18-mer
primer. The rates of appearance and extension of products
from subsequent nucleotide incorporations (19- and
27-mer) were obtained by fitting the intensities of corres-
ponding bands to double exponential (Equation 4):

P ¼ Að1� e�k1t Þ+ðe�k2t Þ+C ð4Þ

where A is the amplitude, P is the amount of 19-mer,
20-mer or higher length products, k1 is the rate of
product generation, k2 the rate of subsequent elongation
and C a constant (29,35).

Assays for reverse transcriptase inhibition

DNA synthesis by 50 nM XMRV RT or MoMLV RT was
carried out in Reaction Buffer using 20 nM Td100/
50-Cy3-Pd18a, 2.5 mM dNTP, 5mM MgCl2 and varying
amounts of NRTI (0–100 mM). Reactions were quenched
with 95% formamide after 1 h incubation at 37�C (38). In
experiments with aptamers 10 nM XMRV RT, 20 nM
Td31/5

0-Cy3-Pd18a and 50 mM dNTPs were used in the
presence of varying amounts of aptamer for 30min (0–
500 nM for m.1.3; 0–25 nM for m.1.4 and m.1.1FL). The
inhibition of DNA polymerization was monitored by

resolving the products on 15% polyacrylamide–7M urea
gels and visualized as described above. Bands correspond-
ing to full extension products were quantified using
MultiGauge Software and IC50s were obtained from
dose–response curves using GraphPad Prism.

PPi- and ATP-dependent excision and rescue of
T/PAZT-MP or T/PEFdA-MP

The ability of enzymes to use PPi or ATP to unblock
template-primers that had AZT-MP (T/PAZT-MP) or
EFdA-MP (T/PEFdA-MP) at their 3

0 primer ends was mea-
sured as follows: 20 nM of T/PAZT-MP or T/PEFdA-MP were
prepared as described before (32). They were incubated at
37�C with either 60 nM HIV-1 RT or 200 nM XMRV RT
in the presence of 0.15mM PPi or 3.5mM ATP for PPi- or
ATP-dependent rescue reactions, respectively. Reactions
were initiated by the addition of MgCl2 (6mM).
Aliquots were removed at different times (0–90min) and
analyzed as above. Rescue assays were performed in the
presence of 100 mM dATP to prevent EFdA-MP reincor-
poration, 0.5 mM dTTP, 10 mM ddGTP and 10mM
MgCl2.

Molecular modeling

The sequence of XMRV RT from the VP62 clone was
aligned with that of MoMLV RT (PDB: 1RW3) (21,22)
using ClustalW. To generate the homology model of
XMRV RT, we used the Prime protocol of the
Schrödinger software suite (Schrödinger Inc. NY). The
resulting molecular model was further energy minimized
by OPLS2005 force field using the Impact option of
Schrödinger. The final model was validated with
PROCHECK v.3.5.4.

RESULTS

Comparison of RT sequences

The XMRV and MoMLV enzymes are closely related
(�95% sequence identity) with most of the differences be-
tween them being in the RNase H domain (Supplementary
Figure S1). While XMRV and MoMLV differ signifi-
cantly from HIV-1 RT, the known polymerase motifs
(A–F) are well conserved in all three enzymes
(Supplementary Figure S1). Specifically, the active site as-
partates in Motifs A and C (Figure 9) (D150, D224, D225
in XMRV RT; D150, D224, D225 in MoMLV RT; D110,
D185, D186 in HIV-1 RT) are conserved in all three RTs.
Also, the three enzymes are similar in Motif B, which is
involved in dNTP binding and multidrug resistance (AZT
and dideoxy-nucleoside drugs) through the decreased in-
corporation mechanism (27,39–41). Specifically, all three
enzymes have a glutamine at the start of this motif (Q151
in HIV-1 RT, Q190 in XMRV RT and Q190 in MoMLV
RT). Motif D includes HIV-1 RT residues L210 and T215,
which when mutated they enhance excision of AZT from
the AZT-terminated primer terminus. This motif is mostly
different in XMRV and MoMLV RTs, where the corres-
ponding residues are N226 and A231 (Supplementary
Figure S1). K219 of HIV-1 RT Motif D is proximal to
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the dNTP-binding pocket and is also conserved in the
other enzymes (K235). The DNA primer grip (Motif E)
(36,42) in HIV-1 RT (M230G231Y232) is slightly different in
the gammaretroviral enzymes (L245G246Y247). Motif F at
the fingers subdomain of all enzymes has two conserved
lysines that bind the triphosphate of the dNTP (K65 and
K72 in HIV-1 RT; K103 and K110 in XMRV and
MoMLV RTs).

Several HIV-1 residues involved in NRTI resistance
have the resistance mutations in XMRV and MoMLV
RTs (Table 1). Hence, XMRV and MoMLV RTs have a
Val as the X residue (codon 223) of the conserved YXDD
sequence of Motif C. An M184V mutation at this position
in HIV-1 RT causes strong, steric hindrance-based, resist-
ance to 3TC and FTC (43–45), and to a lesser extent to
ddI, ABC [reviewed in (46)], and translocation defective
RT inhibitors (TDRTIs) (43) (Table 1). Similarly, the
M41L mutation, which causes excision-based AZT resist-
ance in HIV is already present in XMRV and MoMLV
RT (L81, Table 1). The gammaretroviral enzymes differ
from HIV-1 RT in several other HIV drug resistance
sites (HIV residues 62, 67, 69, 70, 75, 77, 115, 210, 215)
(Table 1). Finally, there are also differences in residues
that are essential for NNRTI binding in HIV-1 RT:
W229 changes to Y268 in XMRV RT, Y181 to L220,
Y188 to L227 and G190 to A229 (Table 1) (27,28,47–49).

Preparation of MoMLV and XMRV RTs

The sequence coding for full-length XMRV RT from the
VP-62 clone (NCBI RefSeq: NC_007815) (1) was opti-
mized for expression in bacteria, synthesized by Epoch
Biolabs and cloned as described in ‘Materials and
Methods’ section. Both XMRV RT and MoMLV RT
were tagged with a hexahistidine sequence at the
N-terminus and expressed with a yield of �2mg/l of

culture. Purified enzymes (>95% pure, Supplementary
Figure S2) were stored at �20�C. The presence of NP-40
or glycerol was critical for enzyme stability.

Steady state kinetics of nucleotide incorporation

Initial polymerase activity assays using Td31/5
0-Cy3-Pd18a

displayed overall slower polymerase activity of XMRV
RT compared to HIV-1 and MoMLV RTs. This observa-
tion led us to investigate the steady state nucleotide
incorporation properties of XMRV RT using single nu-
cleotide incorporation assays. The estimated values for
kcat (19.9min�1 for HIV-1 RT (32), 3.3min�1 for
MoMLV RT, 0.6min�1 for XMRV RT) and Km.dNTP

(0.07 mM for HIV-1 RT (32), 3.3 mM for MoMLV RT,
3.0mM for XMRV RT) show that XMRV RT has a dras-
tically reduced efficacy (kcat/Km.dNTP) at nucleotide in-
corporation, compared to both MoMLV and HIV-1 RTs.

DNA binding affinity

To assess if the efficiency of XMRV RT was also affected
by a lower DNA binding affinity we measured the DNA
binding affinity of the enzymes using three methods:
gel-mobility shift assays, pre-steady state kinetics and
SPR. Gel-mobility shift assays showed that the KD.DNA

for XMRV RT was marginally higher than that for
HIV-1 RT and MoMLV RT (data not shown) (50) sug-
gesting weaker binding to DNA.

DNA binding affinity using pre-steady state kinetics

Pre-steady state kinetics allows estimation of the fraction
of active polymerase sites as well as the KD.DNA value for
the enzyme. The amplitudes of DNA extensions using
XMRV RT and/or MoMLV RT at varying DNA concen-
trations were plotted against the DNA concentration and

Table 1. HIV-1 RT drug resistance mutations with wild-type XMRV RT and MoMLV RT residues

HIV-1
residue
numbers

HIV-1
RT wt

HIV-1 resistance mutations XMRV
RT wt

MoMLV
RT wt

3TC ABC TDF D4T EFdA

Thymidine analog
mutations (TAMs)

184 M V V – – V V223 V223
41 M – L L L – L81 L81
67 D – N N N – G105 G105
210 L – W W W – N226 N226
215 T – FY FY FY – A231 A231
219 K – QE – K235 K235

Non-thymidine analog
regimen mutations

65 K RN RN RN RN – K103 K103
70 K EG EG EG – – D108 D108
74 L – VI – – – V112 V112
75 V – TM M TM – Q113 Q113
115 Y – F F – F155 F155
69 T Ins Ins Ins Ins – N107 N107

Multi-NRTI resistance
mutations

151 Q M M M M – Q190 Q190
62 A V V V V – P104 P104
75 V – I – I – Q113 Q113
77 F – L – L – L115 L115
116 F – Y – Y – F156 F156

TDRTI Mutations 184 M V V – – V V223 V223
165 T – – – – R H204 H204

The HIV-1 RT data are based on data from the Stanford HIV Database (85).
wt=wild-type.
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the data were fit to the quadratic equation (Equation 2),
yielding a KD.DNA of 33 nM for XMRV RT, 19 nM for
MoMLV RT (Table 2) and 12.5 nM for HIV-1 RT (32).
These values did not change significantly when tested with
DNA of different lengths (data not shown). Hence, the
transient kinetic experiments confirmed the findings of
the gel-mobility shift assays showing XMRV RT to have
lower DNA binding affinity than HIV-1 RT.

Binding kinetics of XMRV and HIV-1 RT to
double-stranded DNA

Measurements of KD.DNA using gel-mobility shift assays
and pre-steady state kinetic methods do not offer insights
regarding the kinetics of binding and release of nucleic
acid from the viral polymerases. Hence, we used SPR to
measure directly DNA binding and the DNA dissociation
components of the KD.DNA. We attached on the SPR chip
a nucleic acid biotinylated at the 50 template end and
immobilized it on a streptavidin sensor chip. Various con-
centrations of either XMRV or HIV-1 RT were flowed
over the chip to measure the association (kon) and dissoci-
ation (koff) rates of the enzymes in real time (Figure 1).
HIV-1 RT had considerably slower dissociation rates than
XMRV RT, and longer dissociation phases were needed
to obtain reliable values.
Several methods were tested to best fit our data. The

‘heterogeneous ligand’ method gave the best fit for both
XMRV and HIV-1 RT. In this model the x2 values for
DNA binding to XMRV and HIV-1 RT were 9.3 RU2 and
48.1 RU2, respectively, compared to 15.1 RU2 and 152
RU2 when we tried fitting the data in a ‘homogeneous
ligand’ model. The former model assumes that RT binds
DNA in two different modes and provides two association
(kon) and two dissociation constants (koff).
Our data show that XMRV RT has a slightly faster rate

of association (kon) than HIV-1 RT. We measured two kon
values of 7.3� 106M�1s�1 and 8.2� 104M�1s�1 for XMRV
RT versus 7.6� 105M�1s�1 and 1.2� 106M�1s�1 for HIV-1
RT. Interestingly, the dissociation rate of XMRV RT was
significantly faster than that of HIV-1 RT (0.28 s�1 and
0.0045 s�1 for XMRV RT and 7.8� 10�4 s�1and
0.0076 s�1 for HIV-1 RT) (Table 3). This difference in
dissociation rate resulted in a KD.DNA at least 1 order of
magnitude higher for XMRV RT compared to HIV-1 RT
(38 and 54 nM versus 1.0 and 6.1 nM for XMRV and
HIV-1 RT, respectively) (Table 3).

Nucleotide binding affinity and optimal incorporation
efficiency

A transient-state kinetics approach was used to estimate
the dNTP binding affinity (Kd.dNTP) and maximum nu-
cleotide incorporation rate (kpol) (55). The rates at varying
concentrations of next incoming nucleotide (dATP) were
determined by plotting the amount of extended primer as
a function of time. The rates were then plotted against
dATP concentration. The data were fit to a hyperbola
(Equation 3). The Kd.dNTP for XMRV RT is 26.6mM
and the kpol is 8.9 s�1 (Figure 2) (Table 2). Under simi-
lar conditions the Kd.dNTP and kpol were 1.3 mM and
24.4 s�1 for HIV-1 RT (29) and 25 mM and 14.1 s�1 for
MoMLV RT.
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Figure 1. Assessment of KD.DNA, kon and koff using surface plasmon
resonance. SPR was used to measure the binding affinity of RTs to a
nucleic acid substrate. Increasing concentrations of each RT (0.2, 0.5, 1,
2, 5, 10, 20, 50, 100 and 200 nM) were injected over a streptavidin chip
with biotinylated double-stranded DNA immobilized on its surface as
described in ‘Materials and Methods’ section. The experimental trace
(red) shown is the result of a subtraction of the data obtained from the
channel containing the immobilized nucleic acid minus the signal
obtained from an empty channel. The black curve represents the
fitted data according to the ‘heterogeneous ligand’ model that
assumes two different binding modes for RT on the nucleic acid.

Table 3. DNA binding constants for HIV-1 and XMRV RTs from

surface plasmon resonance

HIV-1 RT XMRV RT

kon (M�1.s�1) 7.6� 105 7.3� 106

koff (s
�1) 7.8� 10�4 2.8� 10�1

KD.DNA1 (nM) 1 38 (38-fold)a

kon (M�1.s�1) 1.2� 106 8.2� 104

koff (s
�1) 7.6� 10�3 4.5� 10�3

KD.DNA2 (nM) 6.1 54 (9-fold)a

aIncrease in KD.DNA (decrease in affinity) with respect to HIV-1 RT.
(KD1-XMRV RT/KD1HIV-1-RT and KD2-XMRV RT/KD2HIV-1-RT).

Table 2. Kinetic parameters of DNA binding and synthesis by HIV-1

and XMRV RTs

Nucleotide affinity and
incorporation

HIV-1 RTa MoMLV RT XMRV RT

Kd.dNTP (mM) 1.3� 0.4 25� 5.3 26.6� 6.5
kpol (s

�1) 24.4� 0.9 14.1� 0.8 8.9� 0.6
kpol/Kd.dNTP (s�1·mM�1) 18.8 0.56 0.33
DNA binding affinity:
KD.DNA (nM) 12.5 19.0 32.5

aHIV-1 RT data published previously (29).
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Fidelity of nucleotide incorporation

To assess whether XMRV RT displays high nucleotide
incorporation fidelity we monitored the incorporation of
three dNTPs by XMRV RT and compared with HIV-1
RT (52). The results of fidelity assay are shown in
Figure 3. The lanes marked ‘4dNTPs’ for all enzymes rep-
resent the DNA synthesis using a Td100/5

0-Cy3-Pd18a

template-primer in the presence of all four dNTPs. The
subsequent lanes, marked ‘-dNTP’, correspond to the syn-
thesis of DNA in the absence of that specific deoxy-
nucleotide triphosphate. The comparison of the DNA
synthesis in the absence of one nucleotide by HIV-1 RT,
MoMLV RT and XMRV RT shows that HIV-1 and
MoMLV RTs were able to misincorporate and extend
the primer beyond the missing nucleotide more efficiently
than XMRV RT, suggesting that the latter is a less error
prone DNA polymerase. It should be noted that the
higher fidelity of XMRV is not the result of measuring a
smaller number of errors because of the decreased repli-
cation rate, as the assay conditions were optimized to
allow production of the same amount of full length prod-
uct in the presence of all four dNTPs for and MoMLV
RTs. To further investigate the fidelity of DNA synthesis

by XMRV RT, the kinetics of mismatch nucleotide in-
corporation were carried out in a quantitative manner
by monitoring the incorporation of single mismatched nu-
cleotide under pre-steady state conditions. The estimated
KD.dTTP (mismatch) and kpol values show that XMRV RT
has a lower affinity for a mismatched nucleotide but com-
parable turnover number than MoMLV RT, suggesting
that the observed higher fidelity over MoMLV RT is
due to differences during the nucleotide-binding step
(Table 4). However, compared to HIV-1 RT, XMRV
RT has decreased both affinity and incorporation rate,
suggesting that its higher fidelity is the result of both
decreased binding of mismatched nucleotides and slow
rate of incorporation.

Figure 2. Pre-steady state kinetics of nucleotide incorporation by
XMRV RT. 150 nM XMRV RT was pre-incubated with 40 nM Td31/
50-Cy3-Pd18a rapidly mixed with a solution containing MgCl2 (5mM)
and varying concentrations of dATP: 25 mM (filled square), 35 mM
(filled triangle), 50 mM (filled inverted triangle), 75 mM (filled
rhombus), 100mM (filled circle), 125mM (open square) and 150mM
(open triangle); and incubated for 0.1 to 6 s before being quenched
with EDTA. The DNA product for each dATP concentration was fit
to the burst equation (A). The burst amplitudes generated for each
dATP concentration were then fit to a hyperbola equation (B)
yielding the optimal rates of dNTP incorporation; kpol (8.9 s�1) and
dNTP binding to the RT-DNA complex; Kd.dATP (26.6 mM).
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Figure 3. Comparison of in vitro fidelity of HIV-1, MoMLV and
XMRV RTs. Extension of 10 nM Td100/5

0-Cy3-Pd18a by HIV-1 RT,
MoMLV RT or XMRV RT (20, 50 and 50 nM, respectively) in the
presence of 150mM each of three out of four nucleotides (the missing
nucleotide is marked at the bottom of each lane). Reactions were run
for 30min for HIV-1 RT and 45min for XMRV RT and MoMLV RT.
For each enzyme the first lane in each set shows the position of
unextended primer, the second lane shows full extension in the
presence of all four dNTPs, and each consecutive lane shows extension
in the presence of three dNTPs. The arrows on the right mark the
expected pauses based on the indicated composition of the template
strand.

Table 4. Kinetics of mismatch incorporation for HIV-1, MoMLV

and XMRV RTs

Enzyme HIV-1 RT MoMLV RT XMRV RT

Kd.dNTP (mM) 9� 0.3 38.9� 11.6 256� 72
kpol (s

�1) 6.81� 1.2 0.16� 0.01 0.15� 0.018
kpol/Kd.dNTP (s�1·mM) 0.756 0.0041 0.00058
Fidelitya 0.04 0.007 0.002

aFidelity is the ratio of the incorporation efficiency (kpol/Kd.dNTP) of the
mismatched nucleotide (dTTP) over that of the correct (dATP) ([kpol/
Kd]dTTP/[kpol/Kd]dATP).
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Intracellular fidelity by measuring LacZ mutation
frequency

The ANGIE P cells used for this assay are a D17-based
encapsidating cell line and contain an MLV-based retro-
viral vector (GA-1), which encodes a bacterial b-galacto-
sidase gene (lacZ) and a neomycin phosphotransferase
gene (neo). Replication fidelity is a measure of the fre-
quency of lacZ inactivation and was determined by
measuring lacZ non-expressing white colonies. The
results show that the number of white colonies was not
statistically different in the case of XMRV as compared to
AM-MLV, suggesting that under these conditions the
fidelity of XMRV is not significantly different than that
of AM-MLV (Figure 4).

Processivity of DNA synthesis

Processivity is the probability of translocation of a poly-
merase along a template and predicts the number of cycles
of nucleotide incorporation during one productive
enzyme–DNA binding event. We assessed XMRV RT’s
processivity of DNA synthesis in comparison to HIV
and MoMLV RTs using both a gel-based trap assay and
a quantitative pre-steady state assay. In the gel-based
assay, the enzymes were pre-incubated with template-
primer, then the reaction was initiated by the addition of
all four nucleotides together with calf thymus DNA,
which was used as a trap to bind free enzyme dissociated
from the substrate during the course of the reaction (38).
The length of the DNA product is an inverse measure of
termination probability, as previously described. As a
control, we used lanes where no trap was present; estab-
lishing that the same amount of total polymerase activity
(processive and non-processive) is provided in all cases.
The results indicate that XMRV RT is less processive
than HIV-1 and MoMLV RTs with shorter DNA
product after 30min of reaction in the presence of trap
(Figure 5).

To measure processivity quantitatively we applied a
single turnover processivity assay developed by Patel
et al. (35) (Figure 6). In this assay, the rates of consecutive
nucleotide incorporations under single turnover condi-
tions are monitored. The rate of elongation incorporation
(k1) and the rate of processive DNA synthesis (k2)
(Equation 4) were calculated at several template positions
for each enzyme. The ratio of the rate of processive DNA
synthesis to the rate of nucleotide incorporation (k2/k1) is
referred to as the processivity index (35). The absolute
values of these constants for HIV-1 RT, XMRV and
MoMLV RT and their ratios are collected in Table 5.
XMRV RT is clearly the least processive for each exten-
sion product. The difference in processivity varies sig-
nificantly depending on sequence or sequence context
(decrease in processivity from 3-fold up to 10-fold).
While the current data do not allow generalization of
rules for pausing at specific sites, this clearly shows con-
sistently that XMRV is not as efficient as MoMLV RT in
polymerizing processively through ‘difficult spots’.

Susceptibility of XMRV RT to NRTIs, TDRTIs and
NNRTIs

Previous studies have shown that XMRV is inhibited by
some antivirals (53–56). However, the susceptibility of
XMRV RT has not been tested against a wide variety of

HIV-1 RT MoMLV RT XMRV RT

Primer

Full length

P 1 2 43 5 1 2 43 5 1 2 43 5

Figure 5. Processivity (trap assay) of HIV-RT, MoMLV RT and
XMRV RT. DNA synthesis was monitored in the presence of calf
thymus DNA as an enzyme trap. Each enzyme (30 nM HIV RT,
100 nM MoMLV RT or 100 nM XMRV RT) was pre-incubated with
40 nM Td100/Cy3-Pd18a. Lanes 1 and 2 of each set show unlimited DNA
synthesis in the absence of trap for 5 and 10min for HIV-1 RT and 10
and 40min for XMRV RT and MoMLV RT. In Lanes 3 and 4 the
reaction is initiated by the addition of dNTPs (100 mM each) together
with the calf thymus DNA trap (0.5 mg/ml) such that the products
generated represent a single processive synthesis event for the respective
time points for each enzyme. Lane 5 shows the effectiveness of the trap
determined by incubating the calf thymus DNA with the enzyme before
addition of labeled template-primer. Processive primer extension by
HIV-1 RT and MoMLV RT in Lanes 4–6 of the left and middle
panel is higher than by XMRV RT in Lanes 4–6 of the right panel.

Figure 4. Comparison of in vivo fidelity of XMRV with amphotropic
MLV. The ANGIE P cells used for this assay contain a retroviral
vector (GA-1), which encodes a bacterial b-galactosidase gene (lacZ)
and a neomycin phosphotransferase gene. Replication fidelity is
measured by the frequency of lacZ inactivation resulting in an
increase in white colonies. The fidelity differences between the two
viruses are not statistically significant (error bars represent standard
error from three independent experiments).
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nucleoside RT inhibitors (NRTIs) that block replication
by chain-terminating the primer, or by preventing trans-
location after their incorporation into the nascent DNA
chain (TDRTIs) (32,57,58). In addition, the susceptibility
of XMRV RT to non-nucleoside RT inhibitors (NNRTIs)
or RNA aptamers that can be selected to block reverse
transcriptases (59–63) has not been established.

Hence, we performed gel-based primer extension assays
in the presence of various inhibitors. As shown in Table 6,
most of the HIV-1 RT inhibitors also block XMRV RT
with significantly varying IC50s. The most potent inhibi-
tors tested were ENdA (40-ethynyl-2-amino-20-deoxy-
adenosine) followed by EFdA. EFdA was also potent at

inhibiting wild-type XMRV replication in cell culture with
an EC50 of 40 nM from three independent experiments
(standard error was 10 nM).
Unlike HIV-1 RT, XMRV RT and MoMLV RT lack

the two tyrosine residues (Y181 andY188 in HIV-1 RT)
(Supplementary Figure S1) that are known to contribute
to NNRTI binding. Hence, the gammaretroviral enzymes
were not inhibited by the NNRTIs tested (TMC-125 and
efavirenz) (Supplementary Figure S3).

Susceptibility of XMRV RT to RNA aptamers

We also tested XMRV RT’s susceptibility to three inde-
pendent RNA aptamers that had been previously selected
against MoMLV RT (60). The aptamers inhibited XMRV
RT to varying extents with IC50s ranging from 2 to 52 nM
(Figure 7). Most notable was the m.1.1FL aptamer which
gave IC50s of 2 and 4 nM for XMRV RT (Figure 7)
and MoMLV RT respectively, without inhibiting HIV-1
RT (data not shown). These inhibition assays utilized
truncated forms of aptamers m.1.3 and m.1.4 lacking the
original primer-binding segments of the aptamers,
demonstrating that these 50 and 30 segments are not
required.

PPi-mediated excision activity of XMRV RT

A key mechanism of NRTI resistance in HIV-1 RT is
based on inhibitor excision from the primer end, using a
pyrophospholytic reaction (64,65). The pyrophosphate
donor in vivo is likely to be ATP, although PPi can effi-
ciently unblock NRTI-terminated primers. This excision
activity is present in wild-type HIV-1 RT, and is enhanced
in the presence of AZT-resistance mutations. We
measured the ability of wild-type XMRV to unblock
primers terminated with AZT or EFdA in the presence
of PPi. We found that unlike HIV-1 RT that excised
AZT-MP efficiently under these conditions, XMRV RT
had considerably lower excision activity (Figure 8).
Similar excision experiments where ATP was used
instead of PPi showed that XMRV is very inefficient in
ATP-based excision as compared to HIV-1 RT (data not
shown).

Figure 6. Single-turnover processivity assays. 30 nM Td31/Cy3-Pd18a

was combined with 100 nM XMRV RT or 50 nM MoMLV RT in
RT buffer before rapidly mixing with all four dNTPs (100 mM each)
and 5mM MgCl2 for varying incubation times (0.05–45 s) and
quenching with EDTA. Extension of the 18-mer primer (open
rhombus) ((open triangle) for XMRV RT) into 19-mer (filled square)
and 22-mer (filled square), by MoMLV RT (A) and XMRV RT (B)
was fit to a double exponential equation to determine rates of product
appearance, and subsequent processive extension of those products
(rates shown in Table 5).

Table 6. Inhibition of XMRV and MoMLV RTs

Compound IC50 (mM)

XMRV RT MoMLV RT

Adefovir-DP 0.92 1.02
Tenofovir-DP 6.4 1.51
D4T-TP 0.77 2.37
3TC-TP 21 10
EFdA-TP 0.43 0.29
ENdA-TP 0.14 0.18

D4T, stavudine or 20,30-dehydro-20,30-deoxythymidine; 3TC,
lamivudine; EFdA, 40-ethynyl-2-fluoro-20-deoxyadenosine; ENdA,
40-ethynyl-2-amino-20-deoxyadenosine.

Table 5. Single turnover processivity parameters of HIV-1, MoMLV

and XMRV RTs

Template site Processivity index (k2/k1)

HIV-1 RT MoMLV RT XMRV RT

1 6.98 0.31 0.12

1
30-CAT TGA CAA GCT CGT GGT TAC GAT CGA TAC C
50-Cy3-GTA ACT GTT CGA GCA CCT
The template site position monitored is underlined and labeled.
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Susceptibility of mutant XMRV RTs to AZT-TP and
tenofovir-DP

The HIV-1 RT mutation Q151M confers resistance to
AZT by enhancing discrimination of the nucleotide
analog leading to its reduced incorporation (37,66–68).
Another HIV-1 RT mutation, K65R, decreases suscepti-
bility to tenofovir (69,70). Since AZT and tenofovir are
potent inhibitors of XMRV (Table 6) (54–56), we wanted
to investigate whether the XMRV RT mutant equivalents
of HIV Q151M and K65R (XMRV Q190M and K103R)

would confer XMRV RT resistance to AZT and teno-
fovir. We constructed these mutant clones and tested
their susceptibility to AZT and tenofovir in the same man-
ner as wild-type XMRV RT. Interestingly, Q190M
XMRV RT has a decreased susceptibility to AZT (ap-
proximately 5-fold increase in the IC50). Similarly, the
K103R XMRV RT mutant enzyme was less susceptible
to tenofovir, increasing the IC50 by at least 2-fold.

Molecular model of XMRV RT

Given the significant sequence similarity between XMRV
and MoMLV RTs, the resulting homology model of
XMRV RT is highly similar to MoMLV RT (>1.5Å
rms) and of excellent quality. Since the input structure
of MoMLV RT did not contain the RNase H domain of
the enzyme, the XMRV RT model is also missing this
domain. The molecular model of the polymerase domain
of XMRV RT is shown in Figure 9. An alignment of the
MoMLV RT crystal structure (22) with the XMRV RT
homology model highlights the few changes in the poly-
merase domain of XMRV RT. These are L29 (P in
MoMLV), Q234 (L in MoMLV), R238 (Q in MoMLV)
and N422 (D in MoMLV). From these, residue 422 is
located in the nucleic acid binding cleft and may contrib-
ute to differences in the interactions with nucleic acid sub-
strate. However, most of the differences between the
gammaretroviral enzymes are in their RNase H domains
and also in the first 30N-terminal residues of the polymer-
ase domain, for which we do not have structural
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Figure 7. Inhibition of XMRV RT by RNA aptamers. 10 nM XMRV RT was incubated with increasing amounts of RNA aptamer in Reaction
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Figure 8. PPi-mediated unblocking of AZT-(A) and EFdA-(B)
terminated DNA. About 20 nM of (A) AZT- or (B) EFdA-terminated
Td31/Cy3-Pd18c (T/PAZT-MP or T/PEFdA-MP) was incubated with HIV-1
RT (60 nM) or XMRV RT (200 nM) in the presence of 150mM PPi and
6mM MgCl2. Aliquots of the reactions were stopped at different time
points (0–90min) and resolved on a 15% polyacrylamide–7M urea gel
as described in the ‘Materials and Methods’ section.
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information since they were not included in the original
crystal structure of MoMLV RT. The differences between
XMRV RT and HIV-1 RT are very significant. Unlike the
HIV enzyme, XMRV RT appears to be a monomer in
solution. Moreover, alignment of the HIV-1 RT–DNA
complex with XMRV RT based on their active sites at
the palm subdomains shows that the thumb subdomain
of XMRV RT would have to be repositioned to be able to
accommodate nucleic acid.

DISCUSSION

Early studies reported the presence of XMRV in stromal
cells from prostate cancer patient samples and also in CFS
clinical samples. Some of the subsequent studies confirmed
these findings whereas several others failed to identify
XMRV in prostate cancer or in CFS patients, even
when same samples were used (71). It was recently reported
that human sample contamination with mouse DNA can
occur frequently (17,72–74). Moreover, two coauthors
from this study have recently demonstrated that XMRV
is the product of recombination events between two MLV
proviruses, suggesting that XMRV may not be relevant to
human disease (18). Nonetheless, XMRV is still an im-
portant human retrovirus and comparisons with HIV
can provide valuable insights into the fundamental mech-
anisms of DNA polymerization, RT inhibition and drug
resistance. (75).

There is high degree of sequence similarity between the
XMRV and MoMLV RTs (95% amino acid identity), and
much less so with HIV-1 RT. Based on gel filtration ex-
periments we conclude that unlike HIV-1 RT, but similar
to MoMLV RT, XMRV RT exists in solution primarily as
a monomer. We also included comparisons with HIV-1
RT in this study as it has been extensively studied and
provides an excellent frame of reference.

We report here that there are significant differences in
the DNA polymerization efficiency of the three enzymes.

Although the polymerase active sites of the XMRV and
MoMLV enzymes are almost identical, there is a consid-
erable decrease in the efficiency of nucleotide incorpor-
ation by XMRV RT. Most differences in sequence are
at the RNase H domain and are likely to affect polymer-
ization by changing the positioning of DNA at the poly-
merase active site.
We have recently solved the crystal structure of the

XMRV RNase H at high resolution (1.5Å) (pdb 3P1G)
(Kirby, K.A. et al., submitted for publication). We
observed major differences in affinity for nucleic acid
that we determined with gel-mobility shift assays and
with pre-steady state kinetics. SPR experiments dissected
in more detail the specific defect of XMRV RT in binding
DNA. Surprisingly, XMRV RT can associate very rapidly
with DNA, even more so than HIV-1 RT (Figure 1 and
Table 3). However, it dissociates from DNA much faster
than the HIV enzyme, resulting in an overall reduced
binding affinity. A possible reason for the fast association
and dissociation rates of XMRV RT may be the apparent
monomeric state, which might offer facile access to the
nucleic acid binding cleft, although with less contacts
and lower affinity than HIV-1 RT, which is a heterodimer
(76,77). This high rate of XMRV RT dissociation from
DNA likely contributes to the decreased processivity
observed in our study, and may have consequences in
the recombination rates of this virus.
Previous sequences of XMRV from prostate cancer

tumors showed low variability, suggesting that the virus
may have a high fidelity of replication (1,10). Our study
demonstrated that HIV-1 RT and MoMLV RT
incorporated mismatched nucleotides and extended past
the mismatches more efficiently than XMRV RT.
Pre-steady state kinetics established that the higher
overall fidelity of XMRV RT over MoMLV RT is due
to a lower affinity for mismatched nucleotides. When
compared to HIV-1 RT, however, XMRV RT has
differs in both the nucleotide binding and incorporation
steps. Nonetheless, XMRV did not have higher fidelity
than a related amphotropic MLV virus or HIV-1 in a
cell-based assay. It is possible that the high dNTP concen-
tration in dividing cells can suppress mismatching events.
We have previously shown (39) that as nucleotide concen-
trations vary in different cell lines, this can affect viral
susceptibility to NRTIs, and possibly in this case also in-
corporation of mismatched nucleotides. Additional
cell-based studies using multiple cell lines and a large
panel of viruses should provide a better understanding
of the relation between in vivo and in vitro fidelity.
Early studies have reported susceptibility of XMRV to

some antiretrovirals that have been used in the treatment
of HIV infection (53–56). In those studies the compounds
were tested at the virus level. To better understand the
interactions of inhibitors at their RT target level we
tested here the ability of these and several more com-
pounds to block the polymerase activity of XMRV RT.
We found that two TDRTIs, EFdA-TP and ENdA-TP
were very potent RT inhibitors (IC50s: 0.43mM and
0.14mM, respectively). Unlike other NRTIs, these com-
pounds have a 30 OH group and are known to efficiently
inhibit HIV replication by blocking translocation (32,58,78).

Figure 9. Molecular model of XMRV RT. Ribbons diagram of
XMRV RT with the conserved polymerase Motifs color-coded: Motif
A (green), B (brown), C (purple), D (red), E (orange) and F (blue). The
residues that differ from MoMLV’s polymerase domain are shown in
ball and stick representation.
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Preliminary experiments demonstrated that they also
block XMRV RT by the same mechanism (data not
shown).
In HIV, moderate resistance to EFdA is conferred by

the emergence of the M184V mutation at the conserved X
position of the conserved YXDD motif of the polymerase
active site. Interestingly, XMRV and MoMLV RTs
already have a valine (V223) at this position. This differ-
ence is likely to contribute to the better potency of EFdA
against HIV-1 RT than XMRV RT or MoMLV RT
(57,58). It may also contribute to the decreased ability of
XMRV RT to unblock chain-terminated primers, as was
also reported for M184V HIV-1 RT (79) and to the
enhanced fidelity reported here for XMRV RT, which is
also reminiscent of the previously reported high fidelity of
M184V HIV-1 RT (80,81). Nonetheless, despite the
presence of a Val in the YMDD motif of XMRV RT we
found EFdA to inhibit very efficiently replication-
competent or pseudotyped XMRV, with submicromolar
EC50s (40 and 110 nM, respectively).
Previously, highly potent aptamers were selected to

inhibit MoMLV RT (60). We demonstrate here that the
three aptamers we tested have varying potency against
XMRV RT. Aptamer m.1.1FL was the most potent in-
hibitor of XMRV RT and MoMLV RT in in vitro assays
(IC50=2 and 4 nM, respectively). The fact that XMRV
and MoMLV RTs are inhibited by the same aptamers at
comparable efficiencies suggests that the RT residues that
are different in the two enzymes are not critical to the
binding of the aptamer. In contrast, heterodimeric
HIV-1 RT has a very different binding cleft and is not
inhibited by these aptamers.
Tenofovir is an essential component of HIV therapies

and is also a potent inhibitor of XMRV RT. HIV resist-
ance to tenofovir is conferred by a single codon mutation
(K65R). HIV-1 RT residue 65 is known to interact with
the incoming dNTP or the activated tenofovir analog
(tenofovir diphosphate) (82). K65R causes resistance to
tenofovir by lowering the kpol for the incorporation of
the inhibitor into the nascent DNA. We prepared
XMRV RT with the equivalent mutation, K103R, and
determined that it has decreased susceptibility to teno-
fovir. Hence, it is possible for XMRV to develop tenofovir
resistance through the same mechanism as HIV-1 RT.
HIV resistance to AZT can occur by either decreased
binding/incorporation or increased excision of the chain-
terminating NRTI (33,83). HIV-1 RTs containing the
M41L, D67N, K70R, T215Y/F, K219E/Q mutations
show enhanced removal of AZT. Our experiments show
that unlike wild-type HIV-1 RT, XMRV RT is not able to
excise NRTI-terminated primers. Similarly, it was previ-
ously shown that MoMLV RT is not capable of unblock-
ing chain-terminated primers (33).
In HIV, decreased binding of AZT is conferred initially

in the presence of the primary Q151M mutation, followed
by secondary mutations F77L, A62V, V75I and F116Y
(27,47,84). XMRV RT already differs from wild-type
HIV-1 RT in the first three of these residues (P104,
Q113 and L115 versus A62, V75 and F77) (Table 1). We
demonstrated that introducing the primary Q!M
mutation at the equivalent XMRV RT site (Q190M)

resulted in an enzyme with decreased susceptibility to
AZT. Hence, it appears that these residues can confer
AZT resistance to XMRV by reduced incorporation of
nucleotide analogs, as is the case in HIV-2 (41). At this
point we do not know if introduction of as yet unknown
mutations could endow XMRV RT with the ability to
unblock chain-terminated nucleic acids. The details of
the molecular mechanism of XMRV resistance to
tenofovir and AZT are under investigation.

In conclusion, our study provides detailed biochemical
analysis of the mechanisms of polymerization, inhibition,
fidelity, processivity and drug resistance of XMRV RT
and how it compares with the closely related enzyme
MoMLV RT and the more distantly related HIV-1 RT.
The findings enhance our understanding of the basic
mechanisms of reverse transcription.
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