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Introductory Paragraph

Differential gene expression profiling can be used to uncover the mechanisms by which 

GWAS associations contribute to pathology1,2. Given that most GWAS hits are regulatory 

and transcript abundance is in a sense closer to the phenotype2, we hypothesized that 

summation of risk-allele associated gene expression, namely a Transcriptional risk score 

(TRS), should provide accurate estimates of disease risk. We integrate summary-level 

GWAS and eQTL data with RNA-Seq from the RISK study, an inception cohort of pediatric 

Crohn's disease (CD)3,4. We show that TRS based on genes regulated by IBD variants not 

only outperform Genetic risk scores (GRS) in distinguishing CD from healthy samples, but 

also serve to identify patients who in time will progress to complicated disease. 

Furthermore, our dissection of eQTL effects may be used to distinguish genes whose 

association with disease is either through promotion or protection, thereby linking statistical 

association to biological mechanism. The TRS approach constitutes a potential strategy for 

personalized medicine that enhances inference from static genotypic risk assessment

While GWAS have been very successful in identifying thousands of genetic variants 

associated with disease, the predictive performance of GRS is limited by the amount of 

heritability they explain, which is usually low5-8. Given that the majority of variants 

discovered by GWAS are likely to influence gene regulation, risk scores based on gene 

expression could constitute an alternative to classical genetic risk scores (GRS). We 

explored the performance of the TRS in the RISK study, which was designed to identify 

factors that increase risk of a complicated course of disease and included ileal biopsies from 

215 complication-free CD patients and 35 controls profiled at diagnosis with RNA-Seq3,4,9. 

After careful monitoring for 3 years, 27 of the CD patients progressed to stricturing or 

penetrating disease, allowing us to ask whether genomic profiles could be used to inform 

mechanisms of pathogenesis and predict disease status.
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We started by considering 232 independent SNPs associated with inflammatory bowel 

disease (IBD) or one of its main forms, Crohn's disease (CD) or Ulcerative colitis (UC)10. 

Assigning relevant genes at GWAS loci can be challenging, but eQTL studies provide an 

effective way to uncover which gene is likely to account for the discovered pathogenic 

effects. We queried the blood eQTL browser (see URLs), a large meta-analysis of eQTL 

effects on peripheral blood11, to ascertain genes regulated by IBD-predisposing variants. 

Around half (n=122, 52.6%) of IBD SNPs act as or are in strong LD (r2>0.8) with at least 

one cis-eQTL in peripheral blood, for a total of 157 independent candidate genes (∼1.3 

candidate genes per SNP, Supplementary Table 1).

The RNA-Seq samples from the RISK study consist of ileal biopsies, so we next asked 

whether the aforementioned eQTLs are also active in small intestine (Online Methods). In 

line with previous studies12-14, we observed considerable sharing of signals (Supplementary 

Table 2), with strong concordance in direction of effects (70%, P=1.7×10-6, sign test) and 

including just two cases of reversal of sign between blood and ileum confirmed in GTEx 

(PNKD and RGS14, Supplementary Fig. 1). This overlap indicates that eQTL effects at 

IBD-associated SNPs can be used to polarize gene expression relative to risk in order to 

understand which allele is associated with pathogenesis at each gene. For instance, IBD-risk 

allele G at rs12627970 increases abundance of SYNGR1 (Fig. 1a), whereas risk allele G at 

rs2930047 downregulates DAP (Fig. 1b). We can hence polarize transcript abundance, so 

that in these examples predicted risk of IBD would be highest in individuals with high and 

low expression of SYNGR1 and DAP, respectively. Summing z-scores over all contributing 

transcripts identified as eQTL in blood, the TRS is correlated with the GRS, but suggests 

that different individuals have the highest risk of disease (Fig. 1c).

A TRS based on all 157 candidate genes ascertained from the blood eQTL browser 
distinguishes CD from control individuals (ΔSD=0.51; P=0.0019, Supplementary Fig. 2a), 

but with just a slight improvement on the performance of a classical weighted allelic sum 

GRS based on the very same IBD-associated SNPs that also have eQTL activity (ΔSD=0.51; 

P=0.02). However, this set includes some number of false joint associations due for example 

to pleiotropy, linkage, or reduced effect sizes in ileum. Several recent methods such as coloc 

and SMR have been developed to ask in a formal statistical framework whether independent 

signals are consistent with the same variant producing the signal in both studies15-17. We ran 

coloc15 for all 157 independent genes (Online Methods), and prioritized 29 genes that have 

the strongest evidence for colocalization of association signals (H4>80% using GWAS p-

values for CD, UC and IBD, Supplementary Table 3 and Supplementary Fig. 3).

The high confidence set of 29 candidate genes excelled both at distinguishing disease status 

(Fig. 2a) as well as progression to complicated disease, namely stricturing (B2) or 

penetrating/fistulizing (B3) disease according to the Montreal classification system (Fig. 2b). 

The TRS distribution of Crohn's disease samples was highly significantly greater than that of 

non-IBD individuals, who almost entirely fall below the mean risk score of the cases 

(ΔSD=1.46; P=1×10-13). Similarly, the small group that progressed to complicated disease 

showed significantly higher scores than individuals who remained in the milder B1 state 

(ΔSD=0.63; P=5×10-5). Importantly, this discrimination appears regardless of tissue 

inflammation, since inflamed and non-inflamed B1 individuals have similar TRS scores 
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(Supplementary Fig. 4). To ensure the robustness of these observations, we repeated the 

analyses based on a partially overlapping set of 39 genes detected by SMR as targets of 

IBD-associated variants (PSMR<2.3×10-4, 5% Bonferroni, Online Methods and 

Supplementary Table 4). This larger list of genes rendered similar results, distinguishing 

again between B1 and B2/B3 disease behavior (TRS: ΔSD=0.44; P=0.007, Supplementary 

Fig. 5a,b), confirming the power of TRS.

In contrast, none of the comparisons between Montreal classification groups rendered 

significant differences when using the corresponding GRS based on GWAS-associated SNPs 

(e.g. ΔSD=0.26; P=0.18 and ΔSD=0.21; P=0.18, respectively, for the loci ascertained by 

coloc Fig. 2a,b). Furthermore, genome-wide polygenic risk scores (PRS) assessed using LD 

pruning8 across the full range of inclusion thresholds failed to approach the TRS 

performance, peaking at ΔSD=0.69 and P=9×10-4 for 668 SNPs at p<0.001 for the disease-

control comparison (Supplementary Fig. 6). Consistent with recent GWAS results indicating 

independent genetic contributions to susceptibility and prognosis in Crohn's disease18, no 

PRS approached significance for disease progression, which further highlights the enhanced 

resolution provided by TRS.

The above results are based on ileal gene expression profiles, but using eQTL that are likely 

enriched for immune functions, since they were detected in blood from healthy adults. 

Applying the approach to an independent sample of peripheral blood gene expression, the 

TRS also distinguished 61 pediatric Crohn's disease cases and 12 controls (ΔSD=1.2; 

P=4×10-5). We next hypothesized that ileal mucosal samples might include effects that are 

not observed in peripheral blood, but can be important for IBD pathology, and hence likely 

to improve the power of TRS. eQTL mapping in 365 RISK samples identified associations 

at P<10-5 for 40 SNPs with 46 genes that fall in the vicinity (<1Mb) of the 232 SNPs 

associated with IBD (Online Methods, Supplementary Table 5). These include previously 

known active associations such as FUT2 and ERAP214,19,20. The list of ileum effects 

includes 27 genes not described in the blood eQTL browser, 7 of which were selected by 

coloc as having joint eQTL and GWAS effects consistent with a causal contribution to IBD 

(H4>80% for the three considered phenotypes, Supplementary Table 5). A TRS based on 

this short list of 7 loci, using the direction of effect of each eQTL in ileum to polarize risk, 

failed to separate samples according to disease status (ΔSD=0.17; P=0.32) or course of 

disease (ΔSD=-0.11; P=0.53). Surprisingly, a 14-gene TRS including 7 more ileum-specific 

loci exclusively detected by SMR also failed to discriminate cases and controls.

In addition to cis-effects, gene expression is also influenced by a combination of trans-acting 

genetic effects and environmental effects, both of which tend to produce coordinated 

patterns of gene expression that may disrupt the expected coherence of the signs of the 

eQTL and GWAS effects21,22. Specifically, IBD pathology is accompanied by altered 

expression of many genes as a response to altered intestinal microbiota23,24. For example, 

Fig. 3a shows how ADCY3 is upregulated in Crohn's disease individuals, consistent with the 

eQTL direction shown by IBD risk allele rs13407913-G (β=0.14; P=4×10-16), whereas 

CD302-LY75 is induced in the mucosa of Crohn's patients despite being down-regulated by 

the GWAS risk allele rs4664304-G (β=-0.065; P=4×10-7, Fig. 3b). Detailed exploration on a 

gene-by-gene basis shown on Fig. 3c,d suggests that this type of disruption may account for 
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the poor performance of the 14-gene TRS based on ileum eQTL effects. The 3 genes 

reacting in a coherent fashion (ΔSD>0.3 between cases and controls in the predicted 

direction) enhance the TRS performance, but they are offset by the 5 genes whose 

incoherence (ΔSD>0.3 in the opposite direction) diminishes the TRS. The other 6 genes are 

stable with respect to disease status, not showing a significant difference in expression 

between cases and controls.

By contrast, for the 57 genes detected by either coloc or SMR as target genes based on 

eQTL effects in blood, there was a clear excess of coherent (n=25) associations over 

incoherent ones (n=13) (Fig. 3e,f). Clearly, most of the coherent and incoherent genes are 

strongly co-regulated, implying that environmental or other trans-effects mediate the 

paradoxical deviation between observed and predicted direction of effect, rather than 

confounding effects of secondary cis-acting alleles. Examples of incoherence include 

CD226, an immunoglobulin receptor involved in control of viral infection25 and implicated 

in several autoimmune diseases26, which is induced in CD patients (ΔSD=1.07) in spite of 

being downregulated by the GWAS risk allele rs727088-G (P=1×10-46, Supplementary Table 

3). Similarly, TNFRSF18 is a receptor of the TNF family with a key role in maintaining self-

tolerance27,28 that is also induced in patients (ΔSD=1.49) even though the risk allele 

decreases its expression (Supplementary Table 3). The functional evidence for both genes 

suggests a scenario in which induction is protective (e.g. to clear infection in the 

gastrointestinal tract), and hence individuals with the GWAS risk allele are more prone to 

developing chronic inflammation because they fail to induce expression sufficiently to fully 

engage in the defensive response.

Consistent with this interpretation, analysis of the ImmVar consortium data on 4h and 48h ex 

vivo response to stimulation29 indicates a common theme for all thirteen incoherent genes. 

The nine genes that are incoherently upregulated in CD patients are also induced in CD4+ T 

cells after 48h stimulation with anti-CD3/CD28 beads, whereas three of four genes that are 

incoherently downregulated in affected individuals are also suppressed after immune 

stimulation (Fig. 4a). The coherently regulated genes do not show such a consistent pattern 

(Fig. 4b), suggesting that their disease response may not be due to immune stimulation. This 

difference between the two sets of genes is significant (p=0.03, Fisher's exact test), and 

similar results apply to the effects of stimulation with LPS or infection with Influenza virus 

(not shown).

Overall, the contrasting behavior of coherent and incoherent genes is consistent with the 

notion that gene-regulatory IBD risk alleles have detrimental effects through two different 

mechanisms: some directly promote disease because they regulate gene expression in a 

manner that is inherently pathogenic, and others fail to safeguard individuals by 

insufficiently engaging in protective shifts of gene expression. Intriguingly, the latter class 

generally has odds ratios around 1.1, which is significantly lower than for the remainder 

(Fig. 4c). Biopsy gene expression profiling of larger cohorts should confirm this inference 

and further refine our ability to distinguish active and protective risk mechanisms. Other 

interpretations are also possible, including the possibility that eQTL effects in the ileum are 

not contributing strongly to pathogenesis, and processes unique to individual genes. An 

excellent example of the latter is the one incoherent gene which contravenes our model, 
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CISD1, which encodes mitoNEET, an Fe/S-domain protein localized to the mitochondria 

where it is required for redox sensing30. Mitochondrial function is protective against 

progression in Crohn's disease4,31, yet transcription of CISD1 is downregulated in patients 

overall, strongly induced in T-cells by ex vivo stimulation, and the risk allele increases 

expression.

The existence of incoherent associations highlights the fact that we have much to learn about 

the relationship between eQTL effects and disease pathogenesis. This phenomenon is likely 

also to apply to other autoimmune and inflammatory diseases, and further dissection will in 

turn improve the development of TRS that are predictive of progression to complicated 

disease, with implications for therapeutic treatment.

URLs

Blood eQTL browser, http://genenetwork.nl/bloodeqtlbrowser/;

GTEx, http://www.gtexportal.org/home/;

IIBDGC trans-ancestry meta-analyses association data, https://www.ibdgenetics.org/

downloads.html;

SMR, http://cnsgenomics.com/software/smr/index.html;

coloc R package, https://cran.r-project.org/web/packages/coloc/index.html;

1000 Genomes Project, http://www.internationalgenome.org/1000-genomes-browsers;

Online Methods

Cohort and Outcome Classification

The RISK study is an observational prospective cohort study that aims to develop risk 

models for predicting complicated course in children with Crohn's disease (CD). From 2008 

to 2012, the RISK study recruited more than 1,800 treatment-naive patients with suspected 

diagnosis of CD at 28 pediatric gastroenterology centers in North America3,4. This disorder 

is a chronic inflammatory condition of the gastrointestinal tract that results from an 

inappropriate activation of the immune system thought to be due to a combination of host 

genetic makeup, enteric flora and microbial or other pathological triggers. A minority of 

patients progress with time to complicated disease that may require surgery and/or intensive 

pharmacological therapy. We used the Montreal criteria to classify patients according to 

disease behavior, distinguishing non-complicated B1 disease (non-stricturing, non-
penetrating disease) from complicated disease, composed by B2 (stricturing) and/or B3 

(penetrating) behavior32,33.

We ascertained 245 samples from the RISK study that had been profiled with ileal RNA-Seq 

and genotyped with the IlluminaTM (San Diego, CA, USA) high-density Immunochip array. 

35 of the ascertained individuals lacked gut inflammation and were classified as non-IBD 

controls. The remaining selected individuals showed persisting CD and remained in 
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complication-free B1 status at least through 90 days from initial diagnosis. After three years 

of follow-up, 17 and 10 patients progressed to B2 and B3 status, respectively. We joined the 

latter 27 samples to form a group of patients with complicated disease course. The majority 

of individuals were of European ancestry (n=210, 85.7%), with smaller fractions of samples 

with African (n=10, 4.1%) and other/mixed (n=25, 10.2%) ethnic origins. More details about 

outcome classification are available in Kugathasan et al4.

Along with disease behavior, disease location plays a key role in the natural history and 

clinical course of patients diagnosed with CD. Since a recent study showed that GRS for 

IBD distinguishes patients with ileal/ileocolonic disease with those with only colonic 

disease34, we asked whether the TRS also distinguishes these two classes of CD. According 

to the Paris modification32 of the Montreal classification, pediatric disease is also classified 

into L1 (ileal only), L2 (colonic only), L3 (ileocolonic) and L4 (upper GI tract). For 

Supplementary Figure 4 we combined L1 and L3 into inflamed B1 since the biopsies were 

taken from the ileum, whereas L2 is un-inflamed relative to the site of biopsy. No L4 cases 

were available. The analysis confirms that the TRS indeed distinguishes L1/L3 from L2 

disease.

Processing of RNA-Seq from Ileal biopsies and SNP data from the RISK Cohort

RNA was isolated from ileal biopsies obtained from colonoscopy at diagnosis, and profiles 

of gene expression were determined using RNA-Seq as previously reported. Reads were 

mapped to the human genome (hg19) with TopHat 2.0.13 using default parameters35. 

Aligned reads were transformed with SAMtools36 to quantify the number of reads at the 

gene level with HTSeq-0.6.137 using default “union” mode. Raw counts were compiled and 

processed with edgeR38 to obtain normalized counts through trimmed mean of M-values 

normalization. An in-house R script was then used to inverse rank transform expression 

estimates for each gene into a standard normal distribution with mean 0 and variance 1. For 

comparison with GTEx, the data was further transformed into the ‘reads per kilobase per 

million mapped reads’ metric (RPKM)39 and 13,769 genes with RPKM>1 and >6 read 

counts in at least 10 individuals were retained. The correlation between the median RPKM 

per gene in RISK with the median RPKM per gene in 53 tissues available from GTEx 

(GTEx_Analysis_v6_RNA-seq_RNA-SeQCv1.1.8_gene_median_rpkm.gct, see URLs) had 

a median Spearman correlation of 0.57 (range 0.39 – 0.88), with the largest correlations 

corresponding to GTEx “Small_Intestine.Terminal_Ileum” (rs=0.88), “Colon.Transverse” 

(rs=0.79) and “Stomach” (rs=0.72), confirming similarity of the RISK biopsy data to an 

external bowel dataset.

The Immunochip was designed to densely genotype 186 distinct loci containing markers 

associated at genome-wide significance levels (P<5×10-8) with 12 autoimmune and 

inflammatory diseases, including Crohn's disease and ulcerative colitis. The array was 

designed to contain all 1000 Genomes pilot phase (September 2009 release) SNPs within 

0.1cM recombination blocks (HapMap 3 CEU) around the top associated marker by 

GWAS40. The initial calling of the Immunochip array before QC contained 192,523 variants. 

We used the Bioconductor SNPlocs.Hsapiens.dbSNP.20120608 package41 to map autosomal 

SNPs to GRCh37 and remove i) non-biallelic variants, ii) SNPs not in HW equilibrium 
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(P<10-3) and iii) variants not present in the 1000 Genomes Phase I variant set (March 2012 

release). At this point there were 161,540 remaining SNPs. We further removed 49,253 

variants with MAF<5% and 10,874 SNPs with >1% missing data rate across all individuals. 

After QC there were 101,413 genotyped variants available for analysis and all 245 

individuals presented <0.1% genotype missing rates. To check relatedness among samples, 

we calculated pairwise IBD based on 26,233 SNPs obtained after LD pruning using the 

PLINK routine “—indep 50 5 2”, confirming minimal overall relatedness (PI_HAT<0.05 for 

99.3% pairwise comparisons) with just three pairs of first-degree relatives (PI_HAT>0.25).

Selection of SNPs and candidate genes associated to IBD by GWAS

Because our goal was to uncover genes involved in susceptibility to CD, we considered as 

candidates all genes with a transcription start site (TSS) located ±1 Mb of each of the 232 

independent GWAS SNPs previously associated with Inflammatory Bowel Disease10. We 

examined 7,389 SNP-gene pairs, including 6,180 unique candidate genes (32 genes 

considered per SNP on average, range: 5 to 620 genes). The eQTL blood browser (see 

URLs) was queried to ascertain which genes are under control of IBD-associated SNPs. We 

observed 163 instances in which the GWAS SNP (n=129) or a SNP in LD (n=34, at r2>0.8 

in 1KG CEU) act as eQTL (FDR<5%) for the candidate gene located <1Mb from the 

associated SNP (Supplementary Table 1). In total this resulted in selection of 157 unique 

genes (six genes were under control of two different IBD SNPs).

Mapping study in RISK cohort to build ileal TRS

A fraction of eQTL variants are known to act in a tissue-specific manner13. We used the 

RISK ileal biopsies to perform a targeted eQTL study focused on the 7,389 SNP-gene pairs. 

This analysis aimed to confirm whether eQTL discovered in peripheral blood are also shared 

in ileal tissue, and to detect ileal-specific eQTLs that can be used to pinpoint at new 

pathogenic candidate genes.

We applied several QC steps to remove batch effects and normalize the matrix of gene 

expression in order to carry out the eQTL mapping study. First, we performed a sex 

incompatibility check comparing the gender recorded for each individual to the expression 

of XIST and chrY genes EIF1AY, RPS4Y1, DDX3Y and KDM5D. A heatmap based on the 

expression of the five genes did not show any gender mismatch. Next, we tried to identify 

outlier samples using D-statistics as done by GTEx13. For each sample, mean correlation of 

expression with the remaining samples was calculated. All samples showed D>0.9 with no 

obvious visual outliers from the average correlation of 0.972, and hence all samples were 

kept for further analysis.

Finally, supervised normalization procedures were used to remove global effects present in 

the matrix of expression data. The transcriptome shows pervasive co-regulation of transcript 

abundance that leads to modules of co-regulated genes that share similar biological 

functions42. Biological variables such as disease can also induce massive changes in gene 

expression (e.g. thousands of genes are differentially expressed among groups in the RISK 

study4). Moreover, hidden batch effects and other unknown cofounders can induce spurious 

correlations at the genome-wide level. All these sources of biological and/or technical 
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variability can hamper the detection of local acting cis-eQTL. We first used unsupervised 

surrogate variable analysis (SVA)41 to identify hidden confounding factors, deliberately 

protecting known variables such as gender and disease status (to be included as covariates in 

the eQTL mapping step). The algorithm detected 14 surrogate variables (sv) that were 

removed using the supervised normalization of microarray (SNM) procedure42. Specifically, 

we fit gender and disease status as biological variables and removed the effects of the 14 

estimated sv by including these as adjustment variables with the rm=T option.

The eQTL mapping was performed using a linear mixed model implemented in GEMMA43, 

which allows adjustment for population structure and relatedness among individuals as a 

random effect through a genetic relationship matrix (GRM) based on the LD-pruned SNP 

dataset. We tested for associations between genotype and normalized gene expression, 

including gender and disease status as covariates. Supplementary Table 2 reports association 

results for 136 available SNP-gene pairs (ileal eQTL association data was not available for 

the remaining 21 pairs).

Gene selection with SMR and coloc

Detection of nominally significant associations both for eQTL and with IBD at a single SNP 

does not necessarily imply that the SNP is responsible for both effects. Several recent 

methods have been designed to increase confidence that colocalization of signals implies 

that the gene affected by the regulatory SNP is also responsible for the trait association. 

Coloc uses a Bayesian framework to infer whether the two signals are due to a single site, or 

two sites in linkage disequilibrium within a genomic region of interest15. It calculates 

posterior probabilities to quantify the support for five different hypotheses regarding the 

presence and sharing of causal variants between the two traits under consideration. 

Similarly, summary-data based Mendelian randomization (SMR) combines GWAS and 

eQTL summary association data to prioritize target genes with evidence for causal or 

pleiotropic effects17. We applied both methods to ascertain target genes from the list of 157 

aforementioned candidate genes.

We used GWAS summary data for CD, UC and IBD from the publicly available IIBDGC 
GWAS plus Immunochip trans-ancestry MANTRA meta-analyses (see URLs). For each of 

the three disease phenotypes, we processed the data considering the sample size indicated in 

Table 1 in Liu et al.10. For the eQTL effects, we used the cis-eQTL summary data from the 

largest existing immune-related dataset, namely the eQTL blood browser (see URLs), and 

converted the reported z-statistics into β and s.e. values following the guidelines from the 

SMR Supplementary Note by Zhu et al.17. The assigned sample size was 5,311, using 

Europeans from the 1000 Genomes Project as the reference sample for minor allele 

frequencies and LD patterns (see URLs). For the coloc analyses, we considered as validated 

target genes 29 independent loci with 80% or larger posterior probability of the hypothesis 

of one causal variant common to both traits (H4) for all three of the phenotypes. For the 

SMR analyses, Supplementary Figure 3a shows the strong relationship between the SMR p-

value and highly significant p-values for both the GWAS and eQTL effects. This validates 

the selection of loci (such as red and brown dots in the figure) that passed Bonferroni for all 

three of the considered phenotypes (significance threshold P<2.3×10-4 for one phenotype 
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since the p-values are highly correlated). However, it also highlights the likely dependence 

of the SMR statistic on the significance of the eQTL effects which in turn are strongly 

influenced by the sample size, as noted by Zhu et al17. In general, inclusion of more high 

confidence genes would be expected to improve TRS in part by reducing the variance of the 

score, and it is therefore likely that the small sample size for the ileal eQTL results 

contributes to the weaker diagnostic performance relative to the larger blood-derived gene 

set. We also replicated the case-control comparison with an analysis of 13 of the 26 genes 

recently reported from immune cell-type specific eQTL44 for which replicated directional 

effects could be inferred (ΔSD=0.73; P=3×10-5), but again larger sample sizes will be 

needed to establish a high-confidence set of such genes. Due to low density of variants on 

the Immunochip and the likely presence of multiple causal effects at each locus, 

computation and interpretation of SMR's HEIDI scores was compromised for half of the 

loci, and since only four were inferred to be unambiguously causal by this test (P<2.3×10-4 

for the three phenotypes), it was deemed not useful for selection of genes for TRS 

computation. 15 of the loci are common to SMR and coloc, implying that the methods are 

complementary. Summary results for all considered genomic regions are available in 

Supplementary Tables 3 and 4.

In addition, we used coloc to select causal genes among the 27 genes controlled by ileum-

specific eQTL (P<10-5) discovered in the mapping study described above. To do so, we 

extended the eQTL mapping study ±500 Kb around the susceptibility SNP for each of the 

genomic regions and processed the association data in order to run coloc and SMR on these 

regions. We considered as validated 7 target genes that showed H4>80% for all three of the 

disease phenotypes. Due to the low number of loci detected through coloc, we 

complemented the analyses with 7 more loci that passed SMR for all three phenotypes 

(Bonferroni adjusted P<0.00185 inclusion threshold for one phenotype). Summary results 

are available in Supplementary Table 5.

Calculation of GRS and TRS

We carried out several comparisons to contrast the predictive power of TRS vs. GRS based 

on the corresponding GWAS SNPs (those that act as eQTL for the selected genes). For GRS, 

we used the “score” routine available in PLINK to generate genetic risk scores weighted 

using the logOR for IBD from GWAS meta-analysis10 (reported in Supplementary Table 1; 

weighting by the logOR for CD rendered very similar scores at each comparison). In turn, 

the calculation of the TRS consisted of three steps. First, we used the eQTL activity of 

GWAS SNPs to infer the direction of risk at each gene selected for the TRS. We used “High 
Expr.” and “Low Expr.” (available in Supplementary Tables 1 to 5) to denote whether the 

risk allele associated with disease leads to increased (“High Expr.”) or decreased (“Low 
Expr.”) gene expression. Next, we polarized expression values so that elevated risk, 

irrespective of the sign of the effect on expression, adds to the TRS. This was done simply 

by changing the sign of the z-score for genes labelled as “Low Expr.” (e.g. expression z-

scores of -1.5 and +1.3 would transform into +1.5 and -1.3, respectively as indicated on the 

y-axis of Fig. 1b). Finally, we obtained the TRS for each individual by summing the 

polarized z-scores over all genes and rank normalizing the distribution. We used t-tests to 

compare the performance of GRS and TRS between groups.
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Calculation of PRS

Polygenic risk scores (PRS) have emerged as the gold standard for overall prediction from 

GWAS. We used the P+T (pruning+threshold)8 method to build a PRS based on independent 

SNPs that passed different significance thresholds in GWAS. To avoid loss of power due to 

the inclusion of correlated SNPs, we first selected 15,135 LD-pruned SNPs from the RISK 

Immunochip data (by running PLINK's indep-pairwise routine on 5,000 randomly selected 

individuals from the UK Biobank). Then, we used PLINK's score routine to calculate a 

battery of PRS based on variants selected across the complete spectrum of significance 

thresholds for inclusion (from 329 SNPs at P<0.00001 to 9,214 SNPs at P<0.5) in the 

IIBDGC GWAS plus Immunochip trans-ancestry MANTRA meta-analyses for IBD (see 

URLs). The performance of the PRS for both the case-control comparison and the indolent-

complicated disease comparison at different thresholds is reported in Supplementary Figure 

6. The performance of PRS between groups was tested through t-tests.

Coherence and incoherence

For the evaluation of coherence between eQTL and disease effects, we first evaluated 

whether each transcript is significantly differentially expressed between control and CD 

samples by at least 0.3 SD units (P∼0.05). Despite the small sample size of controls, clear 

co-regulation of the up- (Fig. 3c,e) or down- (Fig. 3d,f) regulated genes is clearly visualized. 

Next, we classified as coherent genes for which the direction of the eQTL effect is the same 

as the disease (that is, increased expression of the risk allele as well as elevated expression in 

cases relative to controls; or decreased expression of the risk allele and repressed expression 

in the cases). Incoherent genes are those with the opposite relationship (that is, either 

increased expression of the risk allele and repression in cases, or vice-versa). Stable genes 

are those without clear differential expression between cases and controls.

Whereas our initial proposal for TRS assumed no global impact of disease on gene 

expression2, the RISK dataset shows that fewer than half of the candidate genes are stable by 

the above definition. Coherence mathematically tends to enhance the performance of the 

TRS since it elevates the difference between cases and controls for each gene. By contrast, 

incoherence diminishes TRS performance since the polarized eQTL effect is counteracted 

by the influence of disease. Since there is an excess of incoherent associations for the ileal 

eQTL, the TRS performance is compromised. However, since there is no global differential 

expression of the GWAS candidate genes between B1 and complicated B2/B3 cases, 

coherence and incoherence do not affect the ability of the TRS to discriminate these 

conditions.

Functional evidence from ImmVar project

We used data from the ImmVar project (GEO accession GSE60235) to gain further insight 

into the coherent and incoherent behaviors detected for some genes included in the TRS. 

The dataset includes expression profiling with Affymetrix Human Gene 1.0 ST array of 

resting and activated T-cells from 15 healthy human individuals collected under 5 different 

conditions29. We downloaded the matrix of normalized gene expression and selected 

experiments corresponding to three conditions, namely, “Unstimulated 4hr” (n=15), 

“Activated 4hr” (n=15) and “Activated 48hr” (n=15). For each gene of interest, we 
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transformed expression estimates into a standard normal distribution with mean 0 and 

variance 1 and performed pairwise comparisons to explore the changes in gene expression at 

4h and 48h after stimulation with anti-CD3 and anti-CD28 beads. The changes in average z-

score for the selected genes are reported in Fig. 4. We observed similar patterns for both 

coherent and incoherent genes analyzing a similar ImmVar project that profiled changes in 

monocyte-derived dendritic cell gene expression after stimulation with LPS or Influenza 

(GEO accession GSE53166)45.

Data availability

The RNA-Seq data for the 245 individuals included in this study have been deposited in 

NCBI's Gene Expression Omnibus (GEO) and are accessible through GEO Series accession 

number GSE93624 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93624).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Transcriptional Risk Scores (TRS) integrate GWAS and eQTL results to measure 
individual risk of disease based on transcript abundance
(a) Allele rs12627970-G increases susceptibility to IBD and is associated with elevated 

expression of SYNGR1. Some individuals with the risk genotype GG show average or even 

low expression levels, and some individuals with the protective genotype AA have high 

expression, suggesting that abundance of SYNGR1 provides a different estimate of 

individual risk of disease than the genotype. (b) By contrast, risk allele rs2930047-G is 

associated with lower expression of DAP, implying that reduced levels of DAP increase risk 

of IBD, and hence that inversion of the z-score measures polarized risk of disease. (c) 

Summation of the polarized transcriptional activity according to eQTL activity (the left-hand 

y-axis in panels a) and b) summed over all genes, and further standardized, is correlated with 

an allelic sum GRS plotted on the x-axis, but provides an independent predictor of IBD.
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Figure 2. Transcriptional Risk Scores based on ileal gene expression at diagnosis distinguish 
status and course of Crohn's disease
A total of 29 genes were predicted by coloc to be the target of the association with IBD 

discovered by GWAS. In contrast to classical GRS based on allele counts, risk scores based 

on summation of standardized expression of these IBD-associated genes (TRS), after 

polarization according to direction of risk, (a) distinguish between individuals with Crohn's 

disease (n-210) and (n=35) controls and (b) between CD patients that remain in B1 (n=183) 

and CD patients that go on to develop complicated disease (B2 and/or B3) within three years 

after diagnosis (n=27). Differences between groups (in SD units) along with p-values (two-

sided t-test) are reported for each comparison.
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Figure 3. Gene expression polarized according to predicted direction of risk uncovers two 
divergent mechanisms of association with disease
For about half of the eQTL, trans- and environmental effects result in coordinated 

modification of gene expression in cases relative to controls. (a) Example of a coherent 

association, where individuals with risk genotype GG show increased expression of 

ADCY3, consistent with the prediction based on the direction of effect of this allele as an 

eQTL in ileal tissue. Left and right columns of individual points with each genotype 

correspond to cases and controls respectively. (b) Example of an incoherent association, 

where in this example individuals with the risk allele have reduced expression in the 

opposite direction to the overall increased levels of CD302-LY75 in cases. (c,d) Considering 

eQTL discovered in ileal tissue, 8 genes are controlled by ileal eQTL that increase their 

expression (c), and 6 that decrease their expression (d). Purple and light blue bars above the 

heatmaps indicate cases (n=210) and controls (n=35) respectively, and orient how 3 genes 

are coherent (green bars), 5 are incoherent (red), and 6 stable (orange) with respect to 

disease. (e,f) Considering eQTL discovered in blood, 26 genes are upregulated by the allele 

associated with IBD (e), and 31 genes are downregulated (f). In this case, 25 genes are 

coherent, and just 13 incoherent. The heatmap is color-indexed according to the z-score of 

each gene from low (blue) to high (red) expression.
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Figure 4. Incoherent genes show similar patterns in stimulated immune cells and are more 
weakly associated with IBD according to GWAS
Changes in gene expression after 4h and 48h in primary T cells stimulated with anti-

CD3+CD28 beads as reported by the ImmVar Consortium. (a) All but one of the 13 

incoherent genes one show changes in expression at 48h that mimic the inconsistent 

tendencies observed in CD patients of the RISK cohort. (b) Coherent genes show more 

diverse changes in patterns of expression. (c) Incoherent genes have significantly lower 

Odds Ratio of association to IBD by GWAS, than do coherent or stable genes.
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