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Abstract

The interest in the development and the therapeutic use of long-acting injectable (LAI) products for chronic or long-term treatments has grown
exponentially. The complexity and the multiphase drug release process represent serious issues for an effective modeling of the PK properties of LAI
products. The objective of this article is to show how convolution-based models with piecewise-linear approximation of the nonlinear drug release
function can provide an enhanced modeling tool for (1) characterizing the complex PK profiles of LAI formulations with completely different drug
release properties, and (2) addressing key questions supporting the optimal development of LAI products by simulating the PK time course resulting
from different dosing strategies. Convolution-based modeling and simulation were implemented in NONMEM, and 3 case studies were presented
to assess the performances of this new modeling approach using PK data of LAI products developed using different technologies and administered
using different routes:microsphere technology and aqueous nanosuspension intramuscularly administered and biodegradable polymer subcutaneously
administered. The performance of the convolution-based modeling approach was compared with the performance of conventional parametric models
using a reference data set on theophylline. The results of the comparison indicated that the nonparametric input function provided a more accurate
description of the data either in terms of global measure of goodness of fit (ie, Akaike information criterion and Bayesian information criterion) or in
terms of performance of the fitted model (ie, the percent prediction error on Cmax and AUC0-t).
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The interest in the development and in the therapeu-
tic use of long-acting injectable (LAI) products for
chronic or long-term treatments has grown exponen-
tially during the last decades.1 LAI products present a
number of clinical advantages with respect to conven-
tional oral therapies such as reduced dose frequency,
enhanced adherence to treatment, avoidance of first-
pass metabolism, longer apparent body half-life, and
better control of the clinical response with overall
improvement of the quality of life.2,3 The increasing
prevalence of chronic disorders, such as schizophrenia,
diabetes, cardiovascular diseases, HIV, and cancer, and
the increasing demand for minimally invasive treat-
ments have further fueled the growth of the LAI drug
delivery products.

Different technologies have been used in the de-
velopment of LAI products including injectable drug
crystal suspensions,4 polymer-based microspheres and
polymer-based or lipid liquid crystal in situ forming,5–9

biodegradable microsphere systems (eg, made of Poly
Lactic-co-Glycolic Acid copolymer),10 and so forth.
The common objective of an LAI product is to achieve
optimal safety, efficacy, and patient compliance by
controlling the drug delivery into the human body from

2 weeks to several months.11 The design of effective
release characteristics is usually driven by the optimal
drug pharmacokinetic (PK) profile identified by the
exposure-response relationship and by the minimum
effective and maximal tolerated concentrations. To fa-
cilitate the development process of LAI products, it is
fundamental to develop a pharmacometric framework
aimed to (1) establish an in vitro/in vivo correlation
(IVIVC) for supporting the optimization of the formu-
lations, (2) estimate the expected exposure in a chronic
treatment, (3) determine if a lead-in oral treatment is
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required to reach the effective concentrations as quickly
as possible, (4) determine the best switching strategy
from a current to a new LAI treatment, (5) estimate the
time necessary to clear the drug when the steady state
has been reached, and (6) evaluate the risk of a drug
holiday.

The availability of a model describing the time
course of drug concentration profile is instrumental for
implementing such a pharmacometric framework. The
critical issue in this development is the high variable
and irregular PK profile of the LAI products. Usually,
this profile consists of an initial release phase (a burst
release phase) when a small fraction of the drug rapidly
moves from the injection site to systemic circulation, a
lag phase with minimal drug release, and a main release
phase when the large majority of the active ingredi-
ents is released from the injection site into systemic
circulation.7

The complexity and the multiphase in vivo drug
release process represent a serious issue for an ef-
fective modeling of the PK properties of LAI prod-
ucts. Several pharmacokinetic strategies have been
developed and applied to analyze such atypical ab-
sorption profiles, including the use of physiologically
based pharmacokinetic approaches,12 double or triple
Weibull in vivo release models,13,14 parallel zero-order
immediate release and, after a lag time, first-order
release,15–17 transit compartments for delayed drug
release,18 combination of immediate first-order release
and transit compartments,19 and inverse Gaussian den-
sity absorption.20 Recently, a convolution-based mod-
eling approach was shown to represent a powerful and
flexible tool formodeling complex pharmacokinetics of
extended-release and LAI products, and for maximiz-
ing the benefit-risk ratio of a treatment by optimizing
the drug release properties using IVIVC and integrated
PK/pharmacodynamic models.21

Using this approach, the time course of the drug
concentration can be described by convolving an input
function with a disposition and elimination function
when input and disposition functions are described by
parametric models. A generalization of this method is
now proposed for increasing the flexibility of the model
and for providing an extended ability to characterize an
irregular drug release process. The new implementation
of a convolution-based model includes a nonparamet-
ric description of the input function and a parametric
description of the drug disposition and elimination
processes. A piecewise linear approximation of the
nonlinear input function is used to describe the drug
release rate (ie, the first derivative of the cumulative
drug release). By definition, the cumulative drug release
is a monotonic increasing concave nonlinear function
bounded to zero (no drug release at time zero) and
to an upper asymptotic value (the total amount of

drug released). The first derivatives of this function at
different times can be approximated by a sequence of
linear functions using a piecewise linear approximation.
Piecewise linear models are widely used in diverse fields,
such as circuit theory, image processing, curve fitting,
system identification, economic and financial analyses,
and so forth. The factors that presently motivate the
use of these types of models are the simplicity of
their structure, the extreme flexibility for characterizing
highly variable and complex profiles, and the possibil-
ity to be efficiently implemented in nonlinear fitting
programs.22,23

The objective of this article was to show how
convolution-based models with a nonparametric input
function can be implemented in standard software such
as NONMEM and to evaluate the performance of this
modeling strategy by showing that (1) the performance
of this model was as good as (if not better than) the
performance of a conventional PK model in the pop-
ulation analysis of a reference data set, (2) this model
was suitable to provide accurate fit of the PK data
of different LAI products with completely different
drug release properties, (3) this model was suitable to
simulate the PK time course resulting from different
dosing strategies, and (4) this model was suitable to
address key questions for the optimal development of
LAI products.

Methods
Convolution-Based Model
The time course of the drug concentration resulting
from an arbitrary dose can be described as a function of
the in vivo drug release and the disposition/elimination
processes defined by the unit impulse response accord-
ing to the convolution integral:

Cp(t) =
∫ t

0
f(τ ) · UIR(t − τ ) · dτ (1)

where τ is a dummy variable used for integration, Cp is
the plasma concentration as a function of time t, f is the
drug input rate, and UIR is the unit impulse response
function.

The function characterizing the drug delivery f can
be estimated as the first-derivative of the cumulative
drug release function r:

f (t) = dr (t)
dt

(2)

The convolution integral model (equation 1) can
be represented in a more manageable form using a
system of differential equations.24 In case of a simple
disposition process (say, 1 compartment with first-
order process), the UIR function is characterized by
the volume of distribution (V) and by the first-order
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elimination rate constant (kel). The equation describing
Cp(t) is:

dAp (t)
dt

= F · Dose · dr (t)
dt

− kel · Ap (3)

Cp (t) = Ap (t) /V (4)

where Ap(t) is the amount of drug and F is the relative
bioavailability of the current formulation with respect
to the reference formulation (the one that provided an
estimate of the UIR function). In this scenario, Cp

can be estimated by numerically integrating equation 3.
This model can easily be generalized to account for
complex disposition processes including nonlinearity
in the PK distribution and elimination processes. For
example, in case of a drug presenting disposition and
elimination characterized by a biexponential shape,
the model defined in equation 3 can be replaced by
equations 5 and 6 as:

dAp (t)
dt

= F · Dose · dr (t)
dt

− kel · Ap (5)

−k12 · Ap + k21 · Ap1

dAp1 (t)
dt

= k12 · Ap − k21 · Ap1 (6)

where k12 and k21 are the first-order transfer rate con-
stants from the central to the peripheral compartment
and Ap and Ap1 are the amount of drug in the central
and peripheral compartments, respectively.

The implementation of the convolution-based
model requires that one specify the submodel charact-
erizing the r(t) function. This can be defined using a
parametric or a nonparametric approach.

Parametric Input Function
In a parametric scenario, the structural form of r(t) is
assumed to be described by a parametric function, such
as exponential or single and dual Weibull functions
with unknown parameters. In case of a double Weibull
function, the r(t) function can be written as:

r (t) = 1 −
(
FF · e−

(
( t
TD )ss

)
+ (1 − FF) · e−

(
( t
TD1 )

ss1
))

(7)

where t is time, FF is fraction of the dose released in the
first process, TD and TD1 are times to release 63.2% of
the dose in the first and in the second processes, and
SS and SS1 are sigmoidicity factors for the first and
the second processes, respectively. The dr/dt function
can be analytically estimated using the first derivative

of equation 7 or can be approximated using a finite
difference approach:

dr
dt

∼= r (t − �) − r (t + �)
2 · �

(8)

where � is a sufficiently small number.

Nonparametric Input Function
In the case of a nonparametric scenario, the shape of
dr(t)/dt can be directly approximated by a piecewise
linear function using a sequence of parameters (pi, i =
1, n − 1) estimated on the n − 1 PK sampling times (ti)
during the absorption process as

dr (ti)
dt

(in the interval ti − ti+1) = pi (9)

The pi values are constrained to be ≥0 as, by defi-
nition, r(t) is a cumulative function with positive first
derivatives. The piecewise approximated input function
can be theoretically defined by n − 1 parameters. In
reality, not all parameters are relevant for an accurate
description of dr/dt: some parameters may take the
same value in 2 adjacent time intervals (ie, pi = pi + 1),
indicating that the drug is released with the same rate in
this time frame or some parameters (pi) may be equal to
zero, indicating that no drug is released in the interval
ti to ti+1. The modeling strategy is conducted using a
top-down approach: the full piecewise model with the
n − 1 pi parameters will be initially implemented, and
this model will be subsequently simplified according
to the results of the nonlinear fitting. Therefore, some
pi values may be fixed to 0, or the total number of
the pi parameters may be reduced. The comparison of
alternative models will be performed by inspecting the
overall goodness-of-fit criteria.

The PK samples were assumed to be collected at the
postdose times: 0, 0.25, 0.5, 0.75, 1.25, 1.5, 2, 3, 4, 5,
6, 8, 10, 12, 16, 20, and 24 hours. The nonparametric
approximation of dr(t)/dt can be defined as:

if (time < 0.25) der = p1
if (time ≥ 0.25& time < 0.5) der = p2
if (time ≥ 0.5& time < 0.75) der = p3
. . . ..

if (time ≥ 10& time < 12) der = p13
if (time ≥ 12) der = p14
dadt (1) = Dose · der − kel · A (1)
dadt (2) = der

(10)

where p1 to p14 are the parameter values providing a
piecewise local approximation of dr/dt (ie, the der val-
ues), dadt(.) is the symbol for derivative, and A(.) is the
concentration of drug. The r(t) function is estimated as
the integrated value of the second differential equation
(ie, A (2)).
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The values of A(2) normalized by the A(2) value at
the end of the PK time course provided an estimate of
the percent of the dose absorbed at the different times.
The ‘der’ values provided an estimate of the rate of drug
release and, in mean time, converted the amount of
drug into predicted concentration (ie, the A(1) values).
This is the reason why the volume of distribution
(V/F), used as a scaling parameter to convert amount
in drug concentrations in the parametric model, does
not explicitly appear in this model.

The model can be equally applied to a single data
set (ie, the individual or the mean observed PK) or to a
population of subjects using a nonlinear mixed-effects
modeling approach. In this scenario, the full model will
include the submodel characterizing the interindividual
variability.

Modeling Repeated-Dose Administration With a
Convolution-Based Model
The implementation of a convolution-based model
represented by equation 10 is only valid for single-
dose administration because the value of the dose
appears explicitly in the code defining the model. In this
scenario, NONMEM is unable to account for multiple
doses using the defaultmodeling options. Therefore, the
cumulative concentrations resulting from administra-
tion of repeated doses need to be explicitly estimated by
defining a superposition rule. This can be implemented
using the DOWHILE functionality in NONMEM. An
example of the implementation of a superposition rule
using the DOWHILE instruction is presented below.
This code assumes that the dosing history (the time
of the dose intake and the dose at each intake time)
is described in the input datafile using the “time” and
”amt” variables, respectively.

$input id time dv mdv amt
…
; Definition of the variables used in the DOWHILE code

; for implementing the superposition rule:
; dosetime (.) = time of dose intake
; dose (.) = dose value
$abbr declare dosetime(100), dose(100)
$abbr declare dowhile i
$abbr declare dowhile ndose
$abbr declare inpt
; End of the definition of the variables used in the
DOWHILE code
$PK
; Evaluate the dosetime(.) and dose(.) variables
; by setting the time of the dose intake and the dose value
; from the value of the variable “time” and “amt” in the
input data file
; when the value of the variable “amt” is >0

; The “ndose” variable represents the total number of
doses administered
callfl = -2
if (newind < 2) ndose = 0
if (amt > 0) then
ndose = ndose+1
dosetime(ndose) = time
dose(ndose) = amt
endif
; End of the definition of the ndose, dosetime(.) and
dose(.) variables
…
$DES
; Dowhile loop for estimating the cumulative input func-
tion (the “inpt” variable)
; resulting from the administration of each dose at a
; time tt (the relative time of dose intake)
; estimated as the difference between the cumulative time
from
; the first dose intake (t) and the time from the i-th dose
(dosetime)
inpt = 0
i = 1
dowhile (i< = ndose)
tt = t-dosetime(i)
if(tt> = 0) then
if (tt < 0.25) der = p1
if (tt ≥ 0.25 & time < 0.5) der = p2
if (tt ≥ 0.5 & time < 0.75) der = p3
…..
if (tt ≥ 10 & time < 12) der = p13
if (tt ≥ 12) der = p14
inpt = inpt+dose(i)*pp
endif
i = i+1
enddo
; End of the calculation of the cumulative input function

kkk = inpt
dadt(1) = kkk − kel · A(1)
dadt(2) = kkk

Comparison of the Model Performance With Parametric
and Nonparametric Input Functions
The performance of the convolution-based model with
a nonparametric input function was compared with the
performance of a conventional parametric model. A
population modeling approach was used to analyze the
theophylline data set25 using the 2 modeling scenarios.
The data, accessible in R as “theoph” data frame, con-
sists of 11 measurements of theophylline concentration
in venous blood plasma collected in 12 subjects between
0- and 24 hours postdose.26

The parametric model was a 1-compartment model
with first-order absorption and elimination rate
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constants and with an absorption lag time. The model
was defined by a set of 2 differential equations:

dadt (1) = −ka · A (1)

dadt (2) = ka · A (1) − kel · A (2)

where ka and kel are the first-order absorption and elim-
ination rate constants, respectively. The theophylline
concentration (Cp) was estimated as Cp = A(2)/V.

The convolution-base model with a nonparametric
input function was implemented assuming that the
drug disposition was described by a 1-compartment
model with a first-order elimination rate constant. The
nonparametric input function der= dr(t)/dt was locally
approximated by 4 parameters:

der = 0
if (time < 0.25) der = p1
if (time ≥ 0.25& time < 0.5) der = p2
if (time ≥ 0.5& time < 1) der = p3
if (time ≥ 1& time < 4) der = p4

The interindividual variability was assumed log-
normally distributed. The final model was defined by
a single equation:

dadt (1) = Dose · der − kel · A (1)

The theophylline concentration (Cp) was estimated
as Cp = A1.

A global measure of goodness of fit is provided
by the objective function value (OFV) based on the
final parameter estimates. The OFV is estimated as
minus twice the log likelihood of the data (−2LL) in
NONMEM. Generally, models with more parameters
are expected to better describe a given data set than
models with a restricted number of parameters. There-
fore, when comparing the performance of alternative
models, it is necessary to adjust the comparison for
the number of parameters used. The Akaike infor-
mation criterion (AIC) and the Bayesian information
criterion (BIC) were proposed for comparing model
performance when the number of parameters and the
structure of the models are different. These criteria are
defined as follows:

AIC = −2LL + 2 · np
BIC = −2LL + np · log (N)

where np is the total number of parameters in themodel
and N is the number of the observations. Among 2
models, the most informative will be the one with the
lowest AIC and BIC values.27

In addition to these criteria, the performance of the 2
modeling approaches was evaluated by computing the

percent prediction error (%PE) between the observed
and individual predicted Cmax and AUC0-t (area under
the curve from time zero to the time of the last measure-
ment estimated using a noncompartmental approach).
The %PE was estimated using the following equation:

%PE = 1
n

n∑
1

|Observed value − Predicted value|
Observed value

·100 (11)

where n is the number of subjects.
In the 2 modeling approaches, the interindividual

variability was initially assumed to be lognormally
distributed and the residual error proportional to the
individual predicted values. Models were fitted to data
using the first-order conditional estimation with inter-
action method in NONMEM.

Case Studies: LAI Products for the
Treatment of Schizophrenia
Several LAI formulations of the second-generation an-
tipsychotic drug risperidone are now broadly available
for the treatment of schizophrenia. Risperidone is an
atypical antipsychotic that possesses a high affinity for
serotonergic 5HT2A and dopaminergic D2 receptors,
and its pharmacodynamic profile allows for clinical
efficacy in both positive and negative symptoms with
a lower risk of extrapyramidal symptoms and tar-
dive dyskinesia. Risperidone is mainly metabolized via
CYP2D6 to 9-hydroxy-risperidone, which has pharma-
cologic activity similar to that of the parent compound.
Therefore, the combined exposure of risperidone and 9-
hydroxy-risperidone (the activemoiety) has to be jointly
evaluated for determining the effective/safe exposure
resulting from the administration of an LAI product.

The time course profile of the active moiety resulting
from the administration of 3 products (ie, Risperdal
Consta, Invega Sustenna, and Perseris) was analyzed
to illustrate the performance of the proposed modeling
approach (Figure 1).

Simulations were conducted for each LAI formu-
lation to identify the best-performing dosing regimen
and to assess the need for either a lead-in oral dosing
period or for estimating loading LAI dose(s) to reach
therapeutic exposure as quickly as possible. The target
exposure for the active moiety was set to a range of
20 to 52 ng/mL, as estimated in a retrospective analysis
conducted in 217 patients.28

Risperdal Consta
Microsphere technology was used for this LAI formu-
lation of risperidone. Risperidone was encapsulated in
polymermicrospheres of polylactide coglycolide (PLG)
containing metabolic precursors of lactic acid and
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Figure 1. Typical pharmacokinetic profiles of the active moiety concen-
tration resulting from the administration of 3 different LAI products for
the treatment of schizophrenia.

glycolic acid. PLG is a biodegradable medical-grade
polymer commonly used in sutures and medical de-
vices. After intramuscular injection of themicrospheres
suspended in an aqueous diluent, the copolymer is
gradually hydrolyzed and the microspheres progres-
sively degraded, ensuring the slow but steady release of
risperidone over several weeks. The mean PK samples
generated after a single gluteal intramuscular injection
of 50 mg of LAI risperidone to schizophrenic patients
were used in the analysis. The PK samples were col-
lected immediately before injection and at 1, 2, 4, and
8 hours on day 1, on day 2 (24 hours postdose), on day
3 (48 hours postdose), on day 5 (96 hours postdose),
and on days 8, 11, 15, 18, 22, 25, 29, 32, 36, 39, 43,
50, 57, 64, 72, 78, and 85. The release profile of the
active moiety showed a small initial release within the
first 24 hours (<1% of the administered dose), followed
by a lag time of about 3 weeks, during which very little
drug was released from the microspheres. Therapeutic
plasma concentrations were reached 3 to 4 weeks after
injection, were maintained for an additional 2 weeks
(throughout 6 weeks after injection), and subsided by
7 weeks after injection.29 The prescribing information
for Risperdal Consta reported in the FDA labeling
indicated that the recommended intramuscular dose is
25 mg every 2 weeks. Patients not responding to 25 mg
may benefit from a higher dose of 37.5 or 50 mg.
The maximum dose should not exceed 50 mg every
2 weeks. Oral risperidone (or another antipsychotic
medication) should be given with the first injection
of Risperdal Consta and continued for 3 weeks (and
then discontinued) to ensure that adequate therapeutic
plasma concentrations aremaintained prior to themain
release phase of risperidone from the injection site.30

Invega Sustenna
Invega Sustenna (paliperidone palmitate [PP]) is
the palmitate ester of paliperidone (9-hydroxy-

risperidone). Paliperidone is a selective monoaminergic
antagonist that exhibits the characteristic dopamine
type 2 and serotonin (5-hydroxytryptamine) type 2A
antagonism of the second-generation antipsychotic
drugs. The LAI of PP for 4 weekly intramuscular
injections has been approved in the United States as
Invega Sustenna. The PP delivery system is based on
an aqueous nanosuspension that slowly dissolves at the
intramuscular injection site and releases paliperidone
into systemic circulation over an extended period. The
approved dosing is 234mg on day 1, then 156mg 1week
later (day 8), with a recommendedmaintenance dose of
117 mg intramuscularly once monthly, although some
patients may require lower or higher dosages (monthly
dose range, 39-234 mg).31 The mean PK samples
generated in a single-dose, open label, randomized,
parallel-group study designed to evaluate the dose
proportionality of 4 fixed doses of PP (25, 50, 100, 150
mg) following an intramuscular injection in the gluteal
or deltoid muscle of schizophrenic patients were used
in the analysis.32

Perseris
Perseris is a once-a-month LAI formulation of risperi-
done subcutaneously administered using the Atrigel
Delivery System. This biodegradable polymer drug de-
livery system uses an in situ poly-dl-lactide-co-glycolide
implant formed by subcutaneous injection of a viscous
liquid formulation that forms an implant on contact
with tissue fluids. Risperidone is both dissolved and
suspended in the Atrigel Delivery System and then
slowly released from the injection site. Clinically rele-
vant active moiety concentrations were reached after
the first injection of Perseris without use of a loading
dose or any supplemental oral risperidone. The mean
PK samples generated after single subcutaneous doses
of 60, 90, or 120 mg to schizophrenic patients were
used in the analysis.33 Following injection, risperidone
plasma concentrations increased rapidly with peak
concentrations 4 hours postdose in all dose groups.
After the first peak on day 1, mean plasma risperidone
concentrations decreased through approximately day
3 and then increased again to reach a second peak
between approximately day 11 and day 18. Following
the second peak, risperidone plasma concentrations de-
creased gradually over time. The prescribing informa-
tion for Perseris reported in the FDA labeling indicated
that Perseris has to be administered as an abdominal
subcutaneous injection at a dose of 90 or 120 mg once
monthly. Neither a loading dose nor any supplemental
oral risperidone is required.34

Software
The data of Risperdal Consta, Invega Sustenna, and
Perseris used in the analyses were extracted from the
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Table 1. Parameter Values Estimated Using the Final Models With the Parametric and Nonparametric Input Functions

Parametric Input Function Nonparametric Input Function

OFV = −287.321 OFV = −306.025

Parametera Parametera

Fixed effect
kel (1/h) 0.0846 ± 0.0045 (5.30%) kel (1/h) 0.0838 ± 0.0043 (5.1%)
Vd (L) 471 ± 19.3 (4.10%) p1 2.4 ± 0.65 (27.1%)
ka (1/h) 2.3 ± 0.517 (22.50%) p2 2.37 ± 0.457 (19.3%)
lag (h) 0.114 ± 0.0394 (34.60%) p3 1.27 ± 0.304 (23.9%)

p4 0.15 ± 0.0448 (29.9%)
Random effect
kel (1/h) 0.0292 ± 0.0231 (79.1%) kel (1/h) 0.0339 ± 0.0235 (69.3%)
Vd (L) 0.0201 ± 0.0055( 27.3%) p1 5 ± 3.36 (67.2%)
ka (1/h) 0.573 ± 0.246 (42.9%) p2 2.13 ± 1.17 (54.9%)
lag (h) 0.441 ± 0.412 (93.4%) p3 0.965 ± 0.496 (51.4%)

p4 0.0287 ± 0.01 (34.8%)
Residual error
Proportional 0.0831 ± 0.0119 (14.30%) 0.0514 ± 0.0045 (8.8%)

a
Model estimates are reported as mean ± standard error (percent relative standard error).

referred publications using ScanIt software, version
2.0.35 All simulations and parameter estimations were
conducted using NONMEM software, version 7.4
(ICON Development Solutions, Hanover, Maryland).
The data management and graphical presentation
of the results were conducted using R language,
version 4.0.0.27 The noncompartmental analysis was
conducted using the validated open-source R library
“NonCompart.”36

Results
Comparison of Model Performance With Parametric and
Nonparametric Input Functions: Theophylline Case Study
The best-performing model with a parametric input
function was a 1-compartment model with a log-
normally distributed interindividual variability for all
the parameters. The same 1-compartment structural
model was used for the convolution-based model with
a nonparametric input function. However, this model
performed better when the interindividual variability
of the pi parameters was assumed normally distributed
(OFV, −304.963 with lognormal vs −306.025 with
normal distribution). The residual error was best de-
scribed by a proportional model in both scenarios.
The parameter values estimated using the final models
with parametric and nonparametric input functions are
presented in Table 1.

The goodness-of-fit diagnostic plots for the 2 mod-
eling approaches are shown in Figure 2. Overall, there
was no apparent bias in these diagnostic plots, sug-
gesting that either the model with a parametric or the
model with a nonparametric input function provided
an acceptable description of the data. The individual

observations with the 2 model-predicted curves are pre-
sented in Figure 3 in 4 selected subjects to illustrate the
different PK time course resulting from the 2 modeling
approaches.

The overall performance of the 2 modeling ap-
proaches was assessed using the AIC and the BIC crite-
ria. The AIC and BIC values for the parametric model
and for the convolution-based model with nonpara-
metric input function were −269.321 and −284.025,
respectively, for the AIC and −243.376 and −252.314,
respectively, for the BIC. These values indicate that
the convolution-basedmodel with nonparametric input
function performed better than the parametric model.
The estimated mean ± standard error %PE for AUC
was 0.90 ± 0.18 and 0.60 ± 0.11 for the compartmen-
tal and convolution-based model with nonparametric
input function, respectively. The estimated mean ±
standard error %PE for Cmax was 5.05 ± 1.18 and
2.51 ± 0.44 for the compartmental and convolution-
based model with nonparametric input function, re-
spectively (Figure 4). The comparison of the %PE
estimated in the 2 modeling approaches was conducted
using a paired t test. The result of this analysis indicated
a statically significant reduction of the %PE (P = .023)
forCmax and a borderline reduction (P= .052) forAUC,
estimated using the nonparametric input function.

Risperdal Consta
The disposition and elimination processes of the active
moiety resulting from the administration of Risperdal
Consta at the dose of 50 mg were characterized by a
1-compartment model using the kel parameter defining
the elimination rate constant. The shape of the input
function (dr(t)/dt) was approximated by a piecewise
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Figure 2. Goodness-of-fit plots for the convolution-based model with a parametric (a) and nonparametric (b) input function. The blue dotted lines
represent the reference identity line (in the observed vs individual and population model-predicted concentration value plots) and the reference zero
intercepts horizontal lines (in the IWRES and conditional weighted residual plots). The red lines represent the smoothing function lines. The gray lines
join the individual observations (circles).

linear function described by 14 parameters estimated
between 0 and 40 days postdose (Table 2). The residual
error was best described by a proportional model. The
model provided an accurate description of the observed
data (Figure 5A), and the estimated fraction of the
available dose was characterized by a sigmoidal shape
requiring ∼28 days to release half the administered
dose (Figure 5B). The active moiety exposure simu-
lated after the administration of 50 mg every 2 weeks
indicated that the expected concentrations during the
initial 30 days from the start of the treatment remained
well below the therapeutic concentration range of 20
to 52 ng/mL (Figure 5C). Therefore, as recommended
in the labeling of this product, a new simulation was
conducted to supplement the 50-mg LAI dose adminis-
tered every 2 weeks with a daily oral dose of 5 mg ad-
ministered during the initial 21 days. The results of the
new simulation (Figures 5C, 5D) indicated that this new
dosage regimen was suitable to provide a clinical benefit
just on the first day of treatment. The time required for
clearing the active moiety concentration (ie, the time
for reaching an exposure below the quantification limit)
was estimated at 70 days after the last drug intake on

day 60, with the assumption of a quantification limit
of 0.1 ng/mL.

Invega Sustenna
The disposition and elimination processes of the active
moiety resulting from the administration of Invega
Sustenna at doses of 25, 50, 100, and 150 mg were
characterized by a 1-compartment model. The shape
of the input function (dr(t)/dt) was approximated by
a piecewise linear function described by 12 parame-
ters estimated between 0 and 28 days postdose. For
brevity, only the parameters estimated at the dose of
100 mg are presented in Table 2. The residual error
was best described by a proportional model. The model
provided an accurate description of the observed data
(Figure 6A), and the estimated fraction of the available
dose was characterized by a sigmoidal shape requiring
∼7 days to release half the administered dose (Fig-
ure 6B). The active moiety exposure simulated after the
administration of a monthly dose of 100 mg remained
below the therapeutic concentration range of 20 to
52 ng/mL (Figure 6C). Therefore, as recommended in
the labeling of this product, a new simulation was
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Figure 3. Individual observations (dots) and model-predicted curves in 4 selected subjects (red solid lines, parametric input function; blue solid lines,
convolution model with nonparametric input function).

Figure 4. Estimated %PE on Cmax and AUC0-t for the compartmental
parametric model (Param) and for the convolution-based model with
nonparametric input functions (Non-Param).

conducted at the dose of 234 mg on day 1, then 156 mg
1 week later (day 8) and with a maintenance dose of
117mgoncemonthly. The results of this new simulation
(Figure 6D) indicated that the new dosage regimen was
suitable for providing a clinical benefit just on the first
day of treatment and to maintain the clinical benefit
during the treatment period. The time required for
clearing the active moiety concentration (ie, the time
for reaching an exposure below the quantification limit)
is estimated at more than 360 days from the intake
of the last dose on day 60, with the assumption of a
quantification limit of 0.1 ng/mL.

Perseris
The disposition and elimination processes of the active
moiety resulting from the administration of Perseris at
doses of 60, 90, and 120 mg were characterized by a 2-
compartment model with the following parameters: kel,
elimination rate;, k12 and k21, transfer rate constants
from the central to the peripheral compartments, re-
spectively. The shape of the input function (dr(t)/dt)
was approximated by a piecewise linear function de-
scribed by 16 parameters estimated between 0 and
10 days postdose. For brevity, only the parameters
estimated at the dose of 120mg are presented in Table 2.
The residual error was best described by a combined ad-
ditive and proportional model. The model provided an
accurate description of the observed data (Figure 7A),
and the estimated fraction of the available dose was
characterized by a sigmoidal shape requiring ∼4 days
to release half the administered dose (Figure 7B). The
active moiety exposure simulated after the administra-
tion of 120 mg every month indicated that the expected
concentrations after the first dose reached values within
the therapeutic concentration range of 20 to 52 ng/mL
(Figure 7C). Therefore, as recommended in the labeling
of this product, no loading dose was recommended
in the current clinical practice. The time required for
clearing the active moiety concentration (ie, the time
for reaching an exposure below the quantification limit)
was estimated at∼100 days from the last dose intake on
day 60, with the assumption of a quantification limit of
0.1 ng/mL.
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Table 2. Parameter Values Estimated Using the Convolution-Based Model With a Nonparametric Input Function for Risperdal Consta (50 mg), Invega
Sustenna (100 mg), and Perseris (90 mg)

Risperdal Consta (50 mg) Invega Sustenna (100 mg) Perseris (120 mg)

Time Interval
(Days) Param Value

Time Interval
(Days) Param Value

Time Interval
(Days) Param Value

< 0.042 p1 0.005 <2 p1 0.011 < 0.0.021 p1 0.731
0.042-0.085 p2 2.300 2-3 p2 0.042 0.021-0.042 p2 0.881
0.085-0.2 p3 0a 3-5 p3 0.009 0.042-0.083 p3 0.497
0.2-2 p4 0a 5-7 p4 0.005 0.083-0.125 p4 0.306
2-10 p5 0.006 7-9 p5 0a 0.125-0.167 p5 0.409
10-12 p6 0a 9-11 p6 0.002 0.167-0.25 p6 0.061
12-18.1 p7 0.009 11-13.5 p7 0a 0.25-0.333 p7 0.298
18.1-22 p8 0.014 13.5-15 p8 0.007 0.333-0.5 p8 0a

22-25 p9 0.034 15-19 p9 0a 0.5-1 p9 0a

25-29 p10 0.115 19-21 p10 0.008 1-1.5 p10 0a

29-32 p11 0.161 21-28 p11 0a 1.5-2 p11 0a

32-36 p12 0.052 >28 p12 0.0003 2-3 p12 0.035
36-40 p13 0.026 kel (1/h) 0.022 3-4 p13 0.019
>40 p14 0a Error(Pr) 0.050 4-7 p14 0.031

kel (1/h) 0.165 7-10 p15 0.046
Error(Pr) 0.098 >10 p16 0a

kel (1/h) 0.053
k12 (1/h) 0.02
k21 (1/h) 0.133
Error(Pr) 0.048
Error(Ad) 0.355

Error(Pr), proportional residual error; Error(Ad), additive residual error.
The pi parameters describe the piecewise linear approximation of the input function.All parameters were estimated with a precision (standard error) < 0.0001.
Ranges are ≥ to <.
a
Fixed.

Discussion
Many factors are known to affect the ability to achieve
the target clinical response of a therapeutic agent such
as the identification of the safe and effective exposure,
the characterization of the pharmacokinetic properties
of the active ingredient, and the design of a dosage form
suitable for delivering the active ingredient at the rate
appropriate for quickly reaching and maintaining the
targeted clinical response. Among these factors, the de-
velopment of formulations using LAI technologies has
been recognized as a strategic tool for the treatments
of chronic and long-term diseases. The main objectives
of an LAI product are to achieve optimal safety and
efficacy response to enhance adherence to treatment
and to better control the clinical response with overall
improvement of the quality of life. A critical step in
the development of these products is the assessment of
the relationship between exposure and clinical benefit
and the evaluation of the therapeutic window: mini-
mum effective and maximum tolerated concentrations.
The most common routes of administration of LAI
formulations are intramuscular, subcutaneous, and,
less commonly, intravenous, intraocular, implant, and
intra-articular routes. The limitation of a subcutaneous
injection is the limited dosing volume (ie, no more than

1 to 2 mL), whereas a larger injection volume can be
administered for intramuscular (up to 2 to 5 mL) and
intravenous (up to 100 mL) injections. The PK char-
acteristics of a drug released by an LAI formulation
is strongly affected by the physicochemical (solubility
and stability) properties, the dose, the local absorption
characteristics at the injection site, the injection volume,
and the physiological properties associated with the
diffusion of the drug from the administration site to
systemic circulation.

All these factors significantly affect the development
of models appropriate for characterizing the PK prop-
erties of LAI products. Recently, a convolution-based
modeling approach has been proposed as a powerful
and flexible tool for modeling complex pharmacokinet-
ics of LAI products.21 A generalization of this method
is now proposed for increasing the flexibility of the
model to characterize irregular drug release process
resulting from the administration of LAI products
via different routes. This new implementation is based
on a piecewise linear approximation of the nonlinear
input function used to model the drug release rate.
In this article, 3 case studies are presented to assess
the performance of this new modeling approach us-
ing PK data of LAI products developed using dif-
ferent technologies and administered using different
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Figure 5. (A) Mean observed active moiety concentrations (dots) with the predicted values by the convolution model (solid lines). The shaded areas
represent the 95% prediction interval. (B) Model-predicted percent of the available dose absorbed at the different times. (C) Simulated active moiety
concentrations resulting from the administration of 50 mg every 2 weeks. (D) Two simulation scenarios: (1) simulated active moiety concentrations
resulting from the administration of 50 mg every 2 weeks with the addition of a daily dose (4 mg) of oral risperidone during the initial 3 weeks of
treatment (blue line); (2) simulated active moiety with discontinuation of the treatment after 5 administrations (green line); the vertical dotted line
represents the time of the last administered dose on day 60. The horizontal dotted lines identify the range of effective active moiety concentrations
(20-52 ng/mL).

routes: Risperdal Consta developed using microsphere
technology and intramuscularly administered, Invega
Sustenna developed using aqueous nanosuspension
and intramuscularly administered, and Perseris devel-
oped using biodegradable polymer and subcutaneously
administered.

To assess the overall benefit of this new modeling
approach, the performance of the convolution-based
model with nonparametric input function was com-
pared with the performance of a conventional paramet-
ric model using a reference data set on theophylline and
a simple PKmodel. The results of the comparison indi-
cated that the nonparametric input function provided a

more accurate description of the data in terms of global
measure of goodness of fit (ie, AIC and BIC criteria) or
in terms of performance of the fittedmodel (ie, the%PE
values on the Cmax and AUC0-t).

These findings suggest that the approach based
on the convolution-based model with nonparametric
input functions could represent a novel alternative
methodology for fitting not only complex multiphase
PK profiles but also more conventional PK profiles
usually described by first-order processes.

The availability of a general, flexible, and powerful
modeling approach for characterizing the PK of LAI
products is instrumental for supporting an informed
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Figure 6. (A) Mean observed active moiety concentrations (dots) with the predicted values by the convolution model (solid lines) by dose. The
shaded areas represent the 95% prediction interval. (B) Model-predicted percent of the available doses absorbed at the different times. (C) Simulated
active moiety concentrations resulting from the administration of 100 mg every month. (D) Two simulation scenarios: (1) simulated active moiety
concentrations at the approved dosing of 234 mg on day 1,then 156 mg 1 week later (day 8) followed by the maintenance dose of 117 mg intramuscularly
once monthly (red line); (2) simulation as defined in point 1 but with discontinuation of the treatment on day 90 (blue line); the vertical dotted line
represents the time of the last administered dose on day 60. The horizontal dotted lines identify the range of effective active moiety concentrations
(20-52 ng/mL).

development process. In particular, the model can be
used for determining the best dosing strategy and to
evaluate if and in which conditions an oral lead-in
treatment period should be supplemented to reach
as quickly as possible efficacious effective concentra-
tions, as illustrated by the simulations conducted for
Risperdal Consta and Invega Sustenna. Furthermore,
a PK model is instrumental for evaluating the timeline
for loss of protective effect associated with drug holiday
or discontinuation of LAI treatments. Clinical response
in the presence of nonadherence to a treatment is
difficult to evaluate in clinical trials for ethical reasons,
but the resulting plasma levels can be simulated using
model-based tools. This analysis provides insight on

the predicted plasma levels in clinical settings with the
objective of aiding caregivers and patients to make
informed decisions on treatment nonadherence. This
is particularly critical for LAI products because of
their mode of delivery and pharmacokinetics espe-
cially designed for providing a sustained and prolonged
drug release. Complete discontinuation or interruption
of treatment can have severe ramifications, including
relapse and need for hospitalization. Therefore, it is
important to estimate for how long the drug exposure
remains above aminimal effective value after discontin-
uation.

A critical step in the development and in the opti-
mization of LAI dosage forms is the assessment of an
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Figure 7. (A) Mean observed active moiety concentrations (dots) with the predicted values by the convolution model (solid lines). The shaded areas
represent the 95% prediction interval. (B) Model-predicted percent of the available dose absorbed at the different times. (C) Two simulation scenarios:
(1) simulated active moiety concentrations resulting from the administration of 120 mg every month (green line); (2) simulation as defined in point 1
but with discontinuation of the treatment on day 90 (red line); the vertical dotted line represents the time of the last administered dose on day 60.
The horizontal dotted lines identify the range of effective active moiety concentrations (20-52 ng/mL).

IVIVC as a toll for predicting, accurately and precisely,
the PK time course of an LAI product from the
dissolution data and for optimizing the development
of formulations with optimal drug release properties.
However, the assessment of IVIVC for LAI products is
challenging because of the multiphase release charac-
teristics and the lack of adequate in vitro release test-
ing methods. Recently, the convolution-based model
implemented using parametric or nonparametric input
function has been shown to represent a powerful and
easy-to-use tool for assessing a time-scaled level A
IVIVC: a point-to-point correlation between in vitro
dissolution and in vivo absorption.37 On these bases,
the proposed convolution-based model with nonpara-
metric input function represents an effective tool first
for estimating the fraction of the dose released in vivo
and then for establishing an IVIVC conditional to the
availability of the UIR function estimated using IV or
immediate-release data.

Evidence from clinical studies demonstrates poten-
tial clinical and economic benefits from early initiation
of LAIs with respect to lower relapse rates, fewer
hospitalizations, reduced illness-related complications

and comorbidities, and decreased medical resource use
compared with oral products.38

LAI products offer unique features and benefits, but
also potential risks have to be considered within the
context of each patient when selecting a specific LAI
medication. Unmet needs remain for improved LAI
formulations with optimal efficacy to support early
use, less frequent injection for better patient comfort
and convenience, and improved safety and tolerability
profile by selecting the most effective doses and dosing
strategy. In this context, the convolution-based model-
ing approach has been shown to represent an integrated
modeling framework for optimizing the clinical benefit
of treatments by estimating the dosage regimen and the
in vitro and in vivo drug release rates that maximize the
expected benefit/risk ratio of treatments.13 An essential
component of this approach is the availability of an ac-
curatemodel describing the PKproperties of LAI prod-
ucts. The nonparametric approach for describing the
input function provides an easy-to-implement, flexible,
and general tool for addressing these modeling issues
that otherwise would require a trial-and-error approach
to identify a parametric definition of the input function
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model. Finally, the traditional method for estimating
clinical benefit is based on a sequence of trial simulation
scenarios, each one aimed at exploring different features
of the LAI formulations. The major limitation of this
approach is that only a limited number of scenarios
can be explored in simulations, which may be very
time-consuming. Furthermore, this empirical approach
does not guarantee that the best-performing scenario
identified among the limited number of simulations will
deliver the maximal possible clinical benefit.

In conclusion, the proposed modeling and simu-
lation approaches have been shown to represent an
effective framework for describing complex and multi-
phase PK of LAI products, for identifying the optimal
dosing strategy, and for facilitating the development of
LAI formulations. The limitations of the methodology
remain associated with the model-refining strategy that
have to be implemented to properly characterize the
piecewise linear approximation of the input function.
In any case, the complex PK of LAI products requires
consistent efforts for identifying the appropriate model
suitable for describing the data whatever will be the
modeling strategy selected.
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