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Abstract

Background: Genome wide association (GWA) studies are now being widely undertaken aiming
to find the link between genetic variations and common diseases. Ideally, a well-powered GWA
study will involve the measurement of hundreds of thousands of single nucleotide polymorphisms
(SNPs) in thousands of individuals. The sheer volume of data generated by these experiments
creates very high analytical demands. There are a number of important steps during the analysis of
such data, many of which may present severe bottlenecks. The data need to be imported and
reviewed to perform initial quality control (QC) before proceeding to association testing.
Evaluation of results may involve further statistical analysis, such as permutation testing, or further
QC of associated markers, for example, reviewing raw genotyping intensities. Finally significant
associations need to be prioritised using functional and biological interpretation methods, browsing
available biological annotation, pathway information and patterns of linkage disequilibrium (LD).

Results: We have developed an interactive and user-friendly graphical application to be used in all
steps in GWA projects from initial data QC and analysis to biological evaluation and validation of
results. The program is implemented in Java and can be used on all platforms.

Conclusion: Very large data sets (e.g. 500 k markers and 5000 samples) can be quality assessed,
rapidly analysed and integrated with genomic sequence information. Candidate SNPs can be
selected and functionally evaluated.

Background

With recent advances in the efficiency of high-throughput
SNP genotyping technology, genome-wide association
studies are now routinely undertaken with hundreds of
thousands of SNPs genotyped on sample sizes necessary
to detect the modest genetic effects we expect for complex
diseases [1-4]. There is now a clear demand for efficient

tools that allow processing of the data generated by these
studies, including QC, statistical analysis and subsequent
evaluation, visualization and interpretation of results. To
meet these demands, we have developed Goldsurfer2
(Gs2), a new integrated software package for GWA analy-
sis, developed from the Goldsurfer tool [5]. The main fea-
ture of the original version of the Goldsurfer program was
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its 3D visualisation of LD patterns. While this functional-
ity is still available and has been further developed in Gs2,
the focus of program has been shifted towards performing
and evaluating genetic association testing. The main
improvements from the previous version of Goldsurfer
are the ability to work on a genomewide scale, perform-
ance and feature wise, and added methods for statistical
analysis and visualization of results.

The two single most important factors leading to the cur-
rent surge in GWA studies are the advances in chip-based
genotyping technologies [6,7] and the available data from
the HapMap project, in which a large number of common
genetic variations were characterized and genotyped for a
panel of four different human population samples [8].
The application of chip-based technology allows cheap,
quick and readily available measurement of a large subset
of the SNPs characterised by the HapMap. Standard anal-
ysis is now being routinely undertaken using up to
650000 markers and is even cheaper than customized
analysis of a smaller number of markers. A chip contain-
ing 1 million SNPs is now under development and likely
to be available soon. Although chip-based technology has
been used for quite some time for measuring gene expres-
sion, measurement of genotypes generates different ana-
lytical challenges. Studies of gene expression normally
measure a relatively low number of samples, however
GWA studies can easily involve many thousands of sam-
ples to provide sufficient statistical power of the analysis.
This leads to new analytical challenges, as the dimension-
ality of data sets increase.

Another distinguishing feature of SNP analysis compared
to gene expression analysis is that mRNA transcripts have
mostly been experimentally verified to be expressed in
various tissues and many will have a known biological
role. By contrast, most SNPs have no defined functional
role and can be located in coding as well as non-coding
regions of the genome. To make biological sense of the
findings from GWA studies it is crucial to link results to
available biological annotation, for example by compar-
ing the location of SNPs relative to genes and biological
features such as CpG islands and recombination hotspots.
It may be particularly important to dissect the functional
role of a SNP in the full context of the surrounding
genomic sequence, for example if it is found in or near a
gene, in an intron, exon or regulatory element. Further
analysis of candidate genes may involve looking at regula-
tory pathways, studying expression profiles, and the bio-
logical role, cellular location and molecular function
based on annotation using the controlled vocabulary of
gene ontology (GO) [9].

Before defining useful candidate markers and genes a
GWA project will involve many nontrivial steps. To opti-
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mise a study in terms of power and to avoid confounding
factors it is crucial to have a well-designed experiment
with a large enough sample size number and a well-char-
acterised phenotype. With the new large-scale high
throughput technologies the problem has moved from
generating the data itself to actually making sense of the
wealth of information hidden behind a background of
type I error caused by multiple testing. With the large data-
sets it is even difficult to store and to get an overview of the
data since it is impractical to use simple text editors and
that the dimensions of datasets exceed the maximum lim-
its of data manipulation tools like Microsoft Excel. Spe-
cialised software solutions and/or database systems needs
to be used to analyse the data, which demand specific data
analytical and computing skills from researchers.

The statistical methods currently applied in association
studies are highly sensitive to poorly conditioned data
and can easily give spurious associations so it is important
to perform initial quality control. Problems with the qual-
ity of the data can also be caused by the genotyping tech-
nology, including difficulties in the calling of genotypes
from the raw intensities. The detection of real genetic
effects can also be confounded when a marker does not
conform to expectations of Mendelian inheritance, for
example in the case of copy number variation. Most GWA
studies are typically enriched with common genotypes as
they are generally based on the markers identified by the
HapMap project, a survey of common variation [8].

The variables normally used in quality control include the
failure rate of genotyping for markers and samples, minor
allele frequencies, differential call rates for cases and con-
trols, skewed heterozygosity distributions and deviation
from Hardy Weinberg equilibrium [10]. SNP genotype
data can be said to be pseudo-binary involving a step
where the original intensities are analysed using clustering
algorithms. Unfortunately the calling of the genotypes
using different clustering algorithms are far from perfect
which means that, for example, obviously monomorphic
SNPs can be erroneously assessed to have multiple geno-
types, while potentially interesting candidates may be
wrongly excluded as missing values.

Various methods are used for obtaining a statistical meas-
urement of the association between a SNP represented by
alleles or genotypes and a phenotype of which most are
based on simple chi? statistics from genotype-by-disease
tables, using tests such as the Cochran Armitage trend test.
Examples of other popular methods include Fisher's exact
test and logistic regression [11]. Hits are often ranked by
their statistical significance in terms of Bayes factors or p-
values. Although association with SNPs with low p-values
are theoretically less likely to be observed by chance,
when 500 K markers are tested, we can expect a very large

Page 2 of 11

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:138

number of preliminary associations, the vast majority of
which are likely to be false. High density GWA analysis
accentuates the need for new approaches to follow up pre-
liminary results to find candidates that are more likely to
be true positives. One common way of raising the signifi-
cance threshold is to apply Bonferrroni correction but this
may be overly conservative and could lead to discarding
real hits. Another approach to obtain significance limits is
to perform permutation testing which is less conservative
but more computationally demanding.

Genetically associated markers often show a high degree
of correlation with each other. Neighbouring markers
often do not vary independently from each other, which
are referred to as linkage disequilibrium (LD). Analysing
LD patterns can be useful for disentangling the underlying
mechanism of an association. A suggested significant
marker is not necessarily the causative variant but can be
in LD with an ungenotyped functional variant. By com-
paring findings to the LD structure in the HapMap, studies
can easily be expanded to find SNPs outside the geno-
typed subset. Another interesting way of interpreting LD is
to compare patterns between different populations or dif-
ferent classes of samples such as cases and controls. Look-
ing at LD patterns and comparing with genomic
annotation features in candidate regions can be interest-
ing for unravelling the functional explanation of a poten-
tial finding.

As previously mentioned there is a great need for special-
ised software for GWA studies. Most available software for
performing statistical analysis of genotype-phenotype
datasets are mainly command line based and do not tend
to be very user friendly for inexperienced computer users
although the area is improving with some recent products,
Haploview [12] and Plink [13]. Also the scale of the data
makes its representation as plots and tables far from
straightforward or even impossible. Another problem
with currently available tools is that a large number of dif-
ferent tools are needed to perform genotype QGC, statistical
analysis and downstream interpretation. Genomizer [14]
is another tool that is similar to Gs2 in that it is imple-
mented in Java and that it can be used for data import, sta-
tistical analysis and evaluation of results. It focuses on
importing genotyping calls from Affymetrix GeneChip
arrays and employs a different approach to plotting the
results by opening generated image files in an external
browser.

One of the main workloads for analysis in statistical
genetics and bioinformatics is the frequent formatting of
data for export and import of very large data files. This
procedure involves writing and running new programs
and scripts that are often time consuming in both imple-
mentation and execution, creating numerous opportuni-
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ties for the introduction of errors due to the data
manipulation. In general there is a need for a single effi-
cient and user-friendly platform that can accommodate
multiple steps of the data analysis process from data man-
agement to evaluation of results using biologically rele-
vant information and interactive plotting facilities.

Implementation

Gs2 is implemented as a platform independent Java 1.5
application that can be used locally on the machine on
which it is installed. The program is run by downloading
the application or by using Java Start. No additional
libraries besides those that come with the installation
need to be downloaded. To link to and retrieve genome
annotation information from external sources such as the
UCSC database [15] users need to provide path and con-
nection information to a suitable mirror of it. The instal-
lation also comes with precompiled flatfiles containing
basic biological annotation and more updated and com-
plete versions of these will be available to download from
the project webpage.

The design of Gs2 is based around an interactive graphical
user interface (Figure 1). A central part of the design is the
arrangement of data in a project based tree structure. This
allows for organising data by splitting up it into different
categories such as the chromosomal origin, ethnic origin
or affection status while still obtaining an overview of the
dataset. The progress of the data analysis can easily be
saved by storing subsets of data based on performed selec-
tions and exclusions/inclusions of SNPs and samples after
different steps of quality control. In projects with complex
data analysis processes involving many collaborating
researchers it is a big risk that the analysis gets out of con-
trol due to problems with version control. We have built
in functionality to keep track of the data analysis flow by
automatically creating and saving timestamps when per-
forming actions such as saving projects and formatting
data. The implementation of Gs2 is optimised for analysis
of very large datasets with thousands of samples and more
than 500,000 markers. Following import of tab delimited
files in standard or custom formats, Gs2 internally creates
marker objects and sample objects in which imported and
calculated values such as properties and statistics are
stored in local data structures. Genotype data is written to
temporary swap files that are accessed when performing
subsequent calculations and are internally purged to free
memory after these have been performed. For speeding up
this procedure tasks are multithreaded which means that
on a multi core system all processors are used for calcula-
tions. Gs2 is able to compress gigabyte-sized text data sets
into megabyte-sized binary files by saving genotypes into
low-level binary data format and to save this together with
calculated and imported values into project files.
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The graphical user interface of Gs2 makes it easy to analyse whole projects by arranging data in a hierarchical structure and by
providing interactive plots and tables for summarising data. In this example data have been loaded by importing multiple geno-
type files, one for each chromosome. For the selected node, rare markers with minor allele frequency below 5% have been
selected and a new cleaned dataset has been created in the tree. The table and the plots show the information for the selected
dataset. The bars in the table show calculated values for cases and controls respectively. The plots on the right side of the win-
dow shows, in the order of vertical appearance with the first two showing marker information and the second two sample
information, distribution of minor allele frequency with average Hardy Weinberg exact test probabilities, minor allele fre-
quency plotted against failure rate, covariate distribution by regional origin and finally failure rate plotted against sample heter-

ozygosity.

A range of standard methods for quality control of data
and association testing have been implemented but new
features such as additional statistical methods can easily
be added to Gs2 through its dynamic design. There is a
steady stream of novel methods developed in both indus-
try and academia for statistical analysis of genetic data.
The most long-lived and useful software will be the ones
that are designed to easily accommodate new methods.
Of central importance for the GUI are the interactive plots
that can be used for showing all information about mark-
ers and samples and for performing selections for further
analysis.

Program Overview

In order to exemplify the features of Gs2 we will review
the typical steps that may be taken during the analysis of
a whole genome association project.

Importing data

Genotypes can for example be imported from flatfiles in
the standard ped format [16] and binary bed format [13].
HapMap genotype files can also be downloaded from the
official HapMap webpage [17] and imported into Gs2.
Compressed genotypes together with associated calcu-
lated and imported information can also be loaded from
a previously saved Gs2 project. As mentioned there are a
wealth of formats available and it will be impossible to
cover all specifications. For flexible import of data to Gs2
a preview function allows the user to specify how data is
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formatted and how it should be imported, for example to
set if samples or markers are represented in rows or col-
umns respectively and to identify columns with for exam-
ple affection status. Import and analysis of multi-allelic
markers and micro satellites is currently not supported.
Built in, there is functionality for importing genotyping
calls exported from the Affymetrix platform and import-
ing data from other main genotyping platforms can easily
be added due to flexible implementation of Gs2. Addi-
tional formats not currently supported have to be trans-
formed into one of the standard formats that are currently
supported by Gs2, ie traditional "ped" format and the
recent binary ped or "bed" format developed and popu-
larized by plink. Results from GWA studies in the form of
plink output files or in publicly available summary files
such as those of the Wellcome Trust Case Control Consor-
tium project (WTCCC) [18] can be imported into Gs2
without loading genotyping calls.

Loaded datasets are organized in a hierarchical tree struc-
ture with each dataset populating the tree as an individual
sub node with associated plots and tables visible in the
main window (Figure 1). After importing the genotypes
additional information for markers and samples can eas-
ily be added to the project. Examples of added sample
information are quantitative data, binary affection status
and covariates. For the markers, examples include import-
ing statistical data that has been calculated using external
server based programs or importing precompiled annota-
tion data. All imported and calculated data can be visual-
ised, used for interactive selections and used as arguments
for statistical methods.

Summary
e Store and arrange projects in hierarchical tree structure

¢ Import projects saved in compressed .gs2 format
e Import genotype data from different file formats
o Ped, Bed or HapMap

o Preview function lets user specify import-format by spec-
ifying datatypes in columns and rows

¢ Import statistical results from GWA studies

o Plink and flatfile formats for publicly available output
files

¢ By not storing data in memory, very large datasets can be
imported and analysed

e Import additional information for both markers and
samples

http://www.biomedcentral.com/1471-2105/9/138

Performing calculations

Gs2 has a flexible and customizable design facilitating the
expansion of functionality by adding new statistical meth-
ods to it. A number of methods for calculating statistics
for SNPs have already been implemented in Gs2. The
basic methods include calculating allele and genotype fre-
quencies, minor allele frequency (maf), heterozygozity
frequencies, failure rate and the Hardy-Weinberg exact test
(hwe) [19]. These calculations are automatically per-
formed for all samples and subsets of samples such as
cases and controls. Another category of methods uses the
affection status of samples for calculating tests for genetic
association. The currently implemented method in this
category is the Cochran Armitage trend test. For quantita-
tive trait analysis standard linear regression has been
implemented. A series of transformations have also been
implemented, in which p-values, inverse chi2 and
genomic control [20] can be compared. All calculations
can be done for multiple affection status categories. The
rationale behind splitting up the calculations into differ-
ent categories is to make it easy to combine different
methods to get specific solutions. As an example, a quan-
tile quantile plot (QQ-plot) is created by calculating chi?
statistics with the Cochran Armitage test, calculating the
p-value for the result and subsequently calculating the
inverse chi2 value for the p-value and plotting these values
against each other.

To give an overview of the LD profile in a dataset, an aver-
age value for each marker can be calculated using a sliding
value approach. It is also possible to find markers in a sec-
ond dataset, for example imported HapMap genotypes
that are in LD with a selection of markers. Data can be fil-
tered by removing redundant markers with a pairwise LD
exceeding a user specified threshold, e.g, 12= 1 to remove
identical markers.

To investigate the effects of population stratification, Prin-
cipal Component Analysis (PCA) [21] has been imple-
mented. PCA models are calculated on genotypes as
represented 0, 1 and 2. Plotting the clustering of samples
for the first components can reveal how the different pop-
ulations relate to each other, if there are outliers in the
data or if samples have been misclassified.

Summary

¢ A selection of methods for quality control, association
analysis and analysis of linkage disequilibrium has been
implemented

o Allele and genotype frequencies including minor allele
frequencies and marker heterozygosity.

o Hardy-Weinberg exact test
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o Cohran Armitage trend test

o Linear regression

o P-value calculations

o Average and pairwise calculation of LD

o Principal component analysis for studying stratification

¢ Perform calculations separately for sample classes such
as cases and controls

¢ A flexible design makes it easy to add new methods

e Calculations are multithreaded to make use of all proc-
essors in multi core systems

Figure 2

WEA,
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Using plots and tables

For each dataset all imported and calculated data are sum-
marised in a central interactive table and selection of plots
(Figure 1). Markers and samples can easily be selected
from any of these. The table can be used for showing val-
ues for cases and controls, respectively representing data
by coloured bars giving both an overview and making it
easy to spot differences between different samples catego-
ries. For example, it is easy to observe variations in allele
and genotype frequencies between cases and controls.
Plots include general 2D scatter plots, histograms with the
option to show mean values for another variable for each
of the bins.

Among the specialised plots is a 3D view of LD patterns
(Figure 2), sample relationship by identity by state and a
genome view (Figure 3) for showing marker values and
annotation information as tracks such as genes, recombi-
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trols only, with r2as colour and D' as height. The column plot in the diagonal is showing, failure rate, average LD and associa-

tion p-values.
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Figure 3

In the genome view, biological features, SNPs in dataset or in LD with selected SNPS, calculated or imported data and 2D vis-
ualisation of LD are plotted by physical position. The plot can easily be zoomed and panned both vertically and horizontally.
Features and SNPs can be interactively selected by using the mouse.

nation hotspots and CpG islands imported from the
UCSC database or local flatfile. The latter plot can be
extensively zoomed both vertically and horizontally. Fur-
ther information about genes and SNPs can be obtained
by automatically linking to information available on the
Internet. By plotting inverse against original chi2values
from the Cochran Armitage trend test a QQ plot can easily
be created to identify SNPs with unusually high associa-
tion values. The 3D LD plot has been further developed
from the original GOLDsurfer publication. With this plot
the contour and colouring of the plot can be used to rep-
resent different measurement of LD and different parts of
the plot can show calculated values for cases and controls
respectively. In the diagonal calculated variables such as
association p-values or maf and annotation categories can
be visualised as columns or ribbons. It is also possible to

plot the original intensities on which the genotyping calls
are based (Figure 4). Genotyping data is typically read in
traditional discrete representation and the intensities for
the raw genotype type calls have to be separately
imported. Plotting the intensities addresses the difficulty
that a significant number of markers could have been
wrongfully removed due to being called as missing values.
This plot can similarly to the other plots be used to show
values from for example cases and controls separately. A
good approach for final quality control is to manually go
through a list of the highest ranked candidates for associ-
ation.

All plots can be saved as images in most common format
such as tiff, jpg and png.
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Figure 4

Misclassification of genotypes by clustering methods. The black and red colour scales show the genotype calls for cases and
controls respectively. Black crosses represents genotypes that the clustering algorithm has called as missing values. a) Cor-

rectly called polymorphic marker b) Differential calling success between cases and control. c) A monophorphic marker with
successfully assigned genotypes. d) A monomorphic marker wrongly called as being polymorphic.

Summary = View biological features such as genes with introns and
e Interactive plots exons

o 2D scatter plots * 2D view of LD

o Histograms * Line plots for calculated variables

o Genome view o 3D view of LD

o Plot intensities for raw genotype calls
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= Use different color schemes for different sample classes
such as cases and control

o Interactive tables

o For easy overview of data, variables and genotype fre-
quencies can be represented as bars in the table.

o Multiple sorting of markers and samples

Removing data failing QC

Manipulating data is a two-step process involving first
selecting objects in any of the interactive plots or tables or
by using the filtering tool. With the filtering tool markers
and samples can be selected randomly, by entering a list
of regular expressions or by setting limits for values or
selecting specific classes. After the selection either inclu-
sion or exclusion of data is performed to obtain a cleaned
up version of the data.

Summary

e Select markers or samples using interactive plots, tables
or by setting selection intervals for imported or calculated
variables.

Selecting candidate markers

Markers can be selected based on any annotation infor-
mation, imported values or calculated values or by using
gene ontology terms (GO). Based on keywords genes can
be selected by attributes such as name, molecular func-
tion, cellular location or biological role with markers
close to these genes automatically selected.

Summary

e Automatically select markers close to genes selected by
different annotation terms such as keywords and gene
ontology.

Manipulating data structures

The hierarchical tree structure can be used for a structured
analysis process or by splitting up data into different cate-
gories by descriptions such as chromosomal origin for
markers or ethnic origin for samples. After excluding
markers failing QC a new dataset can be created contain-
ing only included markers or markers in biologically
interesting regions. There are many functions for manipu-
lating the structure such as cloning, splitting and merging
data. This is useful in many situations for example when
samples such as cases and controls or different popula-
tions are stored in different datasets and need to be com-
bined together. Similarly the same functionality is useful
when markers are stored in separate files for example by
chromosome. Using the different functions for manipu-
lating data is useful for updating datasets after additional
markers or samples have been analysed and need to be

http://www.biomedcentral.com/1471-2105/9/138

added to the previous analysis. The functions are accessed
from the menu bar and the actions are applied on datasets
selected in the tree structure.

Summary
e Use the hierarchical tree structure to keep track of the
progress of the data analysis process.

Saving project and exporting data

The progress of the current analysis process can be saved
in binary format taking considerably less space on disk
compared to the original text files and keeping the struc-
ture of the project intact. Another advantage is that it takes
much less time to load a saved Gs2 project compared to
the initial parsing of the text files. Data can also be
exported in a variety of different format such as .ped, .bed,
phase to be used for subsequent analysis or just for shar-
ing your cleaned up data.

Summary
e Save project in binary .gs2 file format keeping project
settings, imported information and genotypes.

¢ Export genotypes and additional data into various for-
mats

e Use version tracking system to keep control of actions
performed in the analysis process.

Results

To give a flavour on how Gs2 can be used in some of the
important steps of genome wide association studies a cou-
ple of brief examples are presented in the sections below.
For more comprehensive examples please refer to the
tutorials on the project webpage.

Investigating results from publicly available studies
Publicly available results such as those from the WTCCC
can be downloaded and directly imported into Gs2. Gs2
can also import results from statistical calculations per-
formed using Plink. It can plot interactively and query
imported results such as p-values. For in-depth functional
investigations, one can plot marker values together with
annotated gene structures and query their functional
annotation to generate summarised functional reports. To
extract association p-values, a list of favourite genes can be
pasted into the program to find all markers located within
these target genes.

Stratification analysis using PCA

Different genotyped populations can be batch imported
from separate files. Files can be merged into a new dataset
consisting of a subset of markers genotyped in all popula-
tions. This allows investigation of population stratifica-
tion via PCA, after which the clustering of samples on the
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first components can be plotted for visual inspection. If
this analysis suggests strong deleterious effects of stratifi-
cation, it is not recommended to perform association test-
ing further without accounting for the stratification.

Association testing for genotype data

A number of procedures can be conducted for basic geno-
typing data. Initially, the user will import genotype data
using from standard formats using built in functions and
then exclude markers and samples based on quality con-
trol thresholds. A new dataset can be created with all
remaining objects. Association using Cochran Armitage
trend test can be done internally on these data, or exter-
nally using plink with subsequent importing of results.
New sub nodes in the tree structure can then be con-
structed by separating markers according to chromosome.
It is useful at this stage to sort markers based on the lowest
association p values or largest test statistics. For QC checks
of the most significant results, one can then import the
raw genotyping intensities for each chromosome and plot
the calls for all significant markers. For those with no
obvious genotyping error the LD structure can be plotted
using interactive 2D and 3D plots. These patterns can be
annotated by importing HapMap data, using built-in
methods for finding new markers to genotype in the more
densely genotyped HapMap panel. At this stage one can
import gene information, query their annotation and plot
their structure and position. Finally, one can export a list
with the most interesting markers and save the analysis as
a Gs2 project file.

Conclusion

Gs2 can efficiently be used on a standard laptop or desk-
top computer to analyse the latest generated GWA data-
sets, containing 500000 markers or more and as many as
5000 samples.

Loading 500000 markers and 5000 samples and perform-
ing association testing calculating the p-values for the
Cochran Armitage trend test takes roughly 700 MB of
memory and can be done in 15-30 minutes on a standard
dual core laptop.

Awvailability and requirements
Project name: Goldsurfer2

Project homepage: http://www.well.ox.ac.uk/gs2

Operating system: Platform Independent
Programming language: Java

Manual: comes with download and can also be separately
downloaded from project homepage

http://www.biomedcentral.com/1471-2105/9/138
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