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ABSTRACT

Cellular retinoic acid binding protein 1 (Crabp1)
gene is biphasically (proliferation versus differentia-
tion) regulated by thyroid hormone (T3) in 3T3-L1
cells. This study examines T3-repression of Crabp1
gene during adipocyte differentiation. T3 repression
of Crabp1 requires receptor interacting protein
140 (RIP140). During differentiation, the juxtaposed
chromatin configuration of Crabp1 promoter
with its upstream region is maintained, but the
6-nucleosomes spanning thyroid hormone
response element to transcription initiation site
slide bi-directionally, with the third nucleosome
remaining at the same position throughout differen-
tiation. On the basal promoter, RIP140 replaces
coactivators GRIP1 and PCAF and forms a repres-
sive complex with CtBP1, HDAC3 and G9a. Initially
active chromatin marks on this promoter, histone
modifications H3-Ac and H3K4-me3, are weakened
whereas repressive chromatin marks, H3K9-me3
and H3K27-me3 modification and recruitment of
G9a, HP1a, HP1c and H1, are intensified. This is
the first study to examine chromatin remodeling,
during the phase of hormone repression, of a
bi-directionally regulated hormone target gene,
and provides evidence for a functional role of
RIP140 in chromatin remodeling to repress
hormone target gene expression.

INTRODUCTION

To understand hormone-regulated gene expression, a
dogma has centered on the principle of gene activation
by hormones that induce recruitment of coactivators to
holo-nuclear receptors, and gene repression/silencing
under conditions when hormones are absent and
corepressors such as N-CoR (1), SMRT (2) and Alien

(3) are recruited to apo-nuclear receptors (4,5). Since
several hormone-dependent corepressors such as receptor
interacting protein 140 (RIP140) (6), LCoR (7), PRAME
(8) and REA (9) were reported, the notion of direct repres-
sion of genes by hormones and holo-receptors has begun
to attract attention. This possibility was supported by
studies of genes directly repressed by hormones, such as
thyrotropin beta gene by thyroid hormones (T3/T4)
(10,11), Oct4 gene by retinoic acid (RA) (12,13) and
gonadotropin releasing hormone gene by estrogen
(14,15), etc. However, it was less clear whether and how
the same gene could be subjected to opposing (activating
and repressing) regulations by the same hormone, and in
what context this might occur.
The mouse cellular retinoic acid binding protein I

(Crabp1) gene encodes a cytoplasmic protein that spe-
cifically binds RA to modulate intracellular free RA
concentrations (16). Transcriptional regulation of
Crabp1 involves numerous players such as RA, T3/T4,
sphinganine and DNA methylation, etc. (17–26) as
demonstrated in various cellular backgrounds. Of most
relevance to the topic of hormonal regulation is the inter-
esting response of this gene to T3/T4. In proliferative
mouse embryonic fibroblast (MEF) and certain
commonly used preadipocyte cell line models such as
3T3-L1 in the pre-differentiation stage, Crabp1 gene is
activated by T3/T4 through holo-thyroid hormone
receptors/retinoid receptors binding to a thyroid
response element (TRE) located �1 kb upstream of its
basal promoter that contains five GC boxes to which
Sp1 can bind. Using this model system, we previously
reported chromatin remodeling underlying T3 activation
of Crabp1 gene in the pre-differentiation stage of these
cells. This occurred through chromatin juxtaposition
between TRE and GC boxes, an event requiring MED1/
TRAP220-containing Mediator complex, downward
sliding of the nucleosome array and disassembly of the
nucleosome covering the transcription initiation site
(TIS) (24). The current study was designed to demon-
strate, using the T3-biphasically regulated Crabp1 as an
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example, chromatin remodeling in the hormone-repressive
phase.
Studies of the action of transcription factors, their

coregulators, Mediators, and specific chromatin
remodelers, as well as chromatin remodeling of endo-
genous genes have been extensively conducted, mostly in
model organisms such as fly and yeast (27–29). Trans-
acting regulatory factors for mammalian genes have also
been examined (30,31). More recently, gene activation
or inhibition has been shown to involve epigenetic
alterations (32,33). With respect to chromatin remodeling
of mammalian hormone target genes, studies have
examined hormonal activation and repression (24,34),
but mechanism by which chromatin remodeling occurred
on the same gene that could be activated and repressed by
the same hormone is not clearly established. This current
study provides evidence for potential opposing effects of
certain hormones in both activating and repressing the
same target genes in different physiological contexts, and
establishes the physiological role for RIP140 in T3 repres-
sion of Crabp1 gene during adipocyte differentiation.

MATERIALS AND METHODS

Cell culture, silencing of RIP140 and luciferase reporter
assay are described in Supplementary Data.

Reverse transcriptase polymerase chain reaction,
immunoprecipitation and western blot analyses

Reverse transcriptase polymerase chain reaction (RT–
PCR), immunoprecipitation (IP) and western blot (WB)
assays were performed as described (24). Gene-specific
primer sequences are in Supplementary Table S1. Two
hundred micrograms of whole cell extracts were subjected
to IP with the indicated antibodies, and the precipitated
protein complex was analyzed by WB.

ChIP and repeated ChIP assays

Antibody sources are described in Supplementary data.
Chromatin immunoprecipitation (ChIP) assays were per-
formed as described (24). For repeated ChIP assays
(ReChIP), immunoprecipitated complex was eluted with
10mM dithiothreitol, diluted in 20 volumes of ReChIP
dilution buffer (1% Triton X-100, 2mM EDTA,
150mM NaCl and 20mM Tris–HCl, pH 8.1), and sub-
jected to ChIP procedures. For PCR amplification, DNA
precipitated by glucocorticoid receptor binding protein 1
(GRIP1) and p300/CBP-associated factor (PCAF)
antibodies was amplified for 32 cycles, and others for 30
cycles. The captured DNA fragments were amplified by
using primer sets for the TRE and GC box regions
(Supplementary Table S2).

MNase nucleosome mapping and restriction enzyme
accessibility assays

Micrococcal nuclease (MNase) digestion and ligation-
mediated PCR (LM-PCR) were performed as described
(24). Nuclei isolated from differentiating 3T3-L1 cells
were digested with MNase (Worthington) for 5min at
37�C followed by proteinase K treatment at 37�C

overnight. The purified DNA was subjected to Southern
blot analysis.

Restriction enzyme accessibility assay was carried out as
described (24). Isolated nuclei from differentiating 3T3-L1
cells were digested with 100U of PstI, XhoI, SmaI, SpeI
and ApaLI (New England Biolabs) for 30min. The
purified genomic DNA was re-digested with 100U of
ApaI completely (for first digestion with XhoI, PstI and
SmaI) or 100U of PstI (for first digestion with SpeI and
ApaLI). The digested fragments were analyzed by
Southern blot using 32P-labeled probe 1 (for SmaI diges-
tion) or 2 (for XhoI, PstI, SpeI and ApaLI digestion).

LM-PCR

Nuclei were digested with 45U of MNase (Worthington)
for 30min at 37�C followed by proteinase K treatment
overnight (24). Mononucleosomal DNAs (�150 bp) were
recovered from agarose gels and the purified fragments
(1 mg) were phosphorylated at 50-termini and ligated to
the universal linker adaptor with T4 polynucleotide
kinase and T4 DNA ligase (24). Purified DNA was
amplified by PCR using the universal linker
oligonucleotide (25 bp) and 32P-labeled Crabp1-specific
primers: for N5, 50-CCG AGG AAA GTA ATC TGC
TTA GGA CCT AAA C-30; N3, 50-AAT TAG AGT
GGC GGG AAA GGC CCA GCC C-30; N-1, 50-AAT
TCT CGC TGC TGC GCA TCT TCC AGG TAC-30.

RESULTS

RIP140 is required for T3-repression of Crabp1 in
differentiating/differentiated adipocyte cultures

The behavior of the endogenous Crabp1 gene and
the expression of endogenous RIP140 during the course
of 3T3-L1-adipocyte differentiation (with insulin,
dexamethasone, isobutylmethylxanthine and T3) assessed
by oil red O staining (Supplementary Figure S1) were
monitored (Figure 1). Crabp1 gene expression, initially
very weak in subconfluent cultures (panel B) (24), was
upregulated in pre-differentiation cultures but was gradu-
ally repressed at both mRNA and protein levels during
differentiation (panel A). As speculated, the expression
of the endogenous Nrip1 gene (encoding corepressor
RIP140) was gradually elevated and peaked on the final
day (7 days) of examination (panel A, middle) (35).

RIP140 was known to be associated with TR in a
ligand-dependent manner (23). Gain- and loss-of-
function experiments were conducted in MEF and 3T3-
L1 cells to determine the functional role of RIP140. As
shown in Figure 1B, forced expression [9–10-folds higher,
according to qPCR result (Supplementary Figure S2)] of
RIP140 in pre-differentiating MEF cells rendered
endogenous Crabp1 rapidly repressed by T3 without dif-
ferentiation (Figure 1B, right). But in wt/TR pre-
differentiating cells, Crabp1 was activated by T3 (Figure
1B, left). According to siRNA-mediated knockdown of
RIP140 in differentiated cells (Figure 1C), it was clear
that Crabp1 was no longer repressed by T3 when cells
were depleted of RIP140. In fact, Crabp1 expression
level was even higher than that detected in undifferentiated
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cells (UD). In RIP140-knockout MEF (Nrip1 ko/TR),
Crabp1 was effectively induced by T3; in knockout cells
rescued with a constitutive RIP140-expression vector
(Nrip1 ko/TR/Nrip1+/+) (Figure 1D, left), Crabp1 was
very effectively repressed by T3 even in the pre-
differentiating cells (Figure 1D, right). The expression
level of RIP140 in reconstituted MEFs was similar to
that in differentiated 3T3-L1 cells (Figure 1D, lower).

These results unambiguously show that RIP140 plays a
functional role in mediating T3 repression of Crabp1 gene
in differentiating cells, consistent with its gradual elevation
during differentiation.

Maintenance of juxtaposed chromatin on Crabp1 promoter

In proliferating cells (before the differentiation cocktail is
added), the chromatin segment spanning the TRE to TIS
region of Crabp1 promoter adopts a juxtaposed, or folded,
conformation in the presence of T3 (24). The question

was whether this chromatin segment remained folded
in differentiating cells when Crabp1 expression was grad-
ually repressed, by employing reciprocal chromatin
immunoprecipitation (ChIP) analyses of disconnected
chromatin fragments as described (24). The procedure
would monitor the simultaneous occupancy of TRE and
GC box regions by both TRa and Sp1 (Figure 2A), which
would indicate chromatin folding/juxtaposition. PstI
digestion would disconnect TRE region from the GC
box region and remove contiguous fragments. As shown
in Figure 2B, TRa, weakly detected on the TRE (amplified
by primers a and b) and GC box (amplified by primers
c and d) regions in UD, began to be highly detected on
both regions around day 2, and even more so in later
time points, whereas Sp1 constantly occupied both
regions. Negative controls showed no amplified products
(amplified by primers a and d), ruling out DNA contam-
ination (Figure 2B, right panels). Figure 2C showed
the expression levels of relevant endogenous components.
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Figure 1. Crabp1 is down regulated during adipocyte differentiation, which requires RIP140. (A) Expression patterns of Crabp1 and Nrip1 (RIP140)
during differentiation of 3T3-L1 cells were monitored by RT-PCR and Crabp1 by WB analyses. (B) Expression patterns of Crabp1, Nrip1 and TR�
in stable MEF cell lines transfected with hTRa alone (wt/TR) or RIP140 and hTRa (Nrip1+/+/TR) in the presence of T3, were monitored by RT-
PCR. Fold inductions of Crabp1 were plotted after normalizing its levels with the levels of actin (lower panels). Nrip1 expression was quantified by
qPCR (Supplementary Figure S2) (C) Protein expression of Crabp1 and RIP140 in 3T3-L1 cells transfected with scrambled RNA or siRNA of
RIP140 (Nrip1) and then differentiated for 8 days. UD,undifferentiated cells. Duplicated sets of data are shown. (D) Protein expression of Crabp1,
RIP140 and TRa in the RIP140-deficient MEF line (Nrip1 ko/TR) and the line that were reconstituted with constitutively expressed hTRa
and RIP140 (Nrip1 ko/TR/Nrip1+/+), without differentiation, was monitored on WB for up to 48 h in the presence of T3. Relative protein expression
level of RIP140 before and during 3T3-L1 differentiation and Nrip1 ko/TR/Nrip1+/+ MEFs is shown at the bottom.
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The expression of both TRa and RIP140 was gradually,
but quite obviously, increased as cells were differentiating.
All together, the results show that TRE still makes contact
with the GC box region during differentiation, i.e.
chromatin remains juxtaposed or folded. For this
promoter, TRa and Sp1, the primary transacting factors
binding to their cognitive elements on Crabp1 gene regu-
latory region (24), likely continue to provide the platform
to recruit RIP140 and other factors (see following) in
differentiating cells, thereby contributing to the mainte-
nance of the juxtaposed configuration of this chromatin
segment during differentiation.
Consistent with the Crabp1 expression pattern,

coactivators GRIP1 and PCAF were detected at both
regions on Day 0, but began to leave this chromatin
segment around Day 2 and almost completely disappeared
from both regions on Day 4. qPCR result (Supplementary
Figure S3) confirmed the occupancy of TRa on both
regions, presumably as a platform to recruit PCAF and
GRIP1 on Day 0, and RIP140 later in differentiation.
Thus, RIP140 recruitment to this chromatin was almost
entirely parallel to that of TRa. These results agree with
the notion of coactivators being replaced by corepressor
RIP140 during the process of gene repression.

Recruitment of RIP140 to form a repressive module on
Crabp1 promoter

We examined the endogenous protein complexes in
co-immunoprecipitation tests to determine the effects

of T3 on the endogenous TRa/coregulator complex
formation (Figure 3A). On Day 0, TRa was primarily
associated with coactivator PCAF; but on Day 8, it
was preferentially associated with RIP140. Throughout
differentiation, TRa remained associated with
Sp1. This was further supported in the reciprocal
co-immunoprecipitation test with anti-RIP140, which
co-precipitated more abundant Sp1 and TRa on day 8
(with a high RIP140 level).

We then carried out ReChIP assays to monitor molec-
ular complexes recruited to the GC box region (which
would contribute to the promoter activity), with PstI
digestion to disconnect the TRE from the GC box
region (Figure 3B). Three sets of ReChIP were conducted
to examine complexes containing RIP140 (corepressor),
PCAF (coactivator) and TRa (for T3 response).
Apparently, RIP140 was increasingly recruited to this
region in more differentiated cells (first ChIP). ReChIP
showed other repressive components such as CtBP1 and
HDAC3, but not the activating components such as
GRIP1 and PCAF, increasingly associated with RIP140
on this promoter (left panels). Consistently, first ChIP
with anti-PCAF showed its strong association with this
promoter and its forming complex with TRa and
GRIP1 only on Day 0 (right panels). The first ChIP
with TRa showed its increased association with this
promoter (because of its elevated expression later in dif-
ferentiation, Figure 2C), and ReChIP confirmed increased
association of repressive components such as RIP140 and
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Figure 2. Chromatin juxtaposition between TRE and GC box regions of Crabp1 promoter and associated protein complexes. (A) Schematic
depiction of Crabp1 promoter/regulatory region harboring the TRE and GC boxes, to which TRa and Sp1 bind, respectively (23,24). Primers for
PCR amplification were marked with arrows and the Pst1 site to disconnect TRE from GC boxes was shown. The previously developed procedure
for ChIP analysis of chromatin juxtaposition is shown under the figure. (B) ChIP data. Protein/chromatin fragments were precipitated with the
indicated antibodies and DNAs were digested with PstI (20U, 30min) and washed before the elution of captured chromatin fragments. DNA
fragments were amplified with primer set a/b for TRE, c/d for GC boxes, and a/d for the negative control. The occupancy of TRa, PCAF and
GRIP1 on both regions was quantitatively monitored by qPCR (Supplementary Figure S3) (C) The expression levels of the relevant endogenous
proteins during adipocyte differentiation were analyzed on WBs.

7088 Nucleic Acids Research, 2009, Vol. 37, No. 21



CtBP1 with, and decreased association of active
components such as PCAF and GRIP1 from, TRa on
this promoter (middle panels). These results support
that, on the GC box region, coactivating components
are replaced by corepressive components as cells
undergo differentiation. One important player
contributing to the switch of the coregulatory complexes
on this promoter appears to be RIP140 that is highly
elevated in more differentiated cells.

Bi-directional nucleosome sliding on Crabp1 promoter

The issue now was if and how this segment of chromatin
might be remodeled in differentiating cells where the
gene would be repressed. MNase digestion-coupled
Southern blot was conducted using the probe covering
TIS (Figure 4A). The experiment detected a regular
nucleosome array on the promoter/regulatory region of
Crabp1 gene (left, marked by arrowheads), both before
and after differentiation, suggesting that nucleosomes
were likely to be continuously present on this region
during differentiation. The juxtaposed chromatin
segment covers five nucleosomes and one additional
nucleosome adjacent to the TIS (Figures 4G and 5A).
We then observed if these nucleosomes changed their
positions during the course of differentiation, first by
using restriction enzyme accessibility assay to examine

nucleosomes that could be accessed by specific restriction
enzymes. The 50-terminal nucleosome (N5) in this segment
was monitored by XhoI following ApaI digestion, with
0.93 kb (ApaI/XhoI) fragment indicating accessible XhoI
site. Figure 4B showed the detection of this fragment only
after differentiation (Days 4 and 8), indicating gradual
opening of this region during differentiation. Since the
nucleosome array is retained before and after differentia-
tion, this result would suggest either upward or downward
sliding of N5, which was examined later (see later
Figure 5B and Supplementary Figures S4 and S5).
With the same principle, N4 opening or sliding away

would be predicted by the appearance of 0.67 kb ApaI/
PstI fragment. Figure 4C showed increasing accessibility
of this site in more differentiated cells, suggesting sliding of
N4. N3 covers a SmaI site, and the lack of 0.85 kb ApaI/
SmaI fragment throughout differentiation (Figure 4D)
would rule out movement, or opening, of N3 during
differentiation. No restriction site is located in N2; there-
fore, we monitored an initially accessible SpeI site in the
immediate 30-flanking region of N2 (indicated by the
appearance of 0.55 kb PstI/SpeI fragment, Figure 4E),
which became less accessible in differentiating cells. This
suggested that this site was protected by either downward
sliding of N2 or upward sliding of N1 during differentia-
tion. As the site is located immediately outside the 30-end
of N2, we suspected its protection by downward sliding of
N2, which was supported by data of a nucleosome
scanning experiment (Supplementary Figure S5). N1
spans one ApaLI site which remained closed (lacking
0.63 kb ApaLI/PstI fragment, Figure 4F). This series of
restriction enzyme accessibility assays support the
MNase data (Figure 4A) and suggest nucleosome
moving during the course of differentiation. To provide
more support, we evaluated the accessibility of enzyme
sites by monitoring fragment spanning these sites using
PCR amplification of digested chromatin DNA collected
at different time points of differentiation (Supplementary
Figure S4), which are in agreement with the notion of
nucleosome sliding.
To determine the precise positioning of nucleosomes and

the direction of their moving, we then employed LM-PCR
to map several key nucleosomes. The nucleosome-specific
primers are shown in Figure 5A, marked by arrows
depicted on the nucleosomes. We first determined the
positions of two terminal nucleosomes, N5 and N-1.
Figure 5B showed that the 30-border of N5 moved from
�930 to �1002 positions (relative to TIS), indicating its
upward sliding for 72 nucleotides. Interestingly, N-1
moved from the positions of +6 to +57, indicating its
downward sliding for 51 bp (Figure 5C). More
interestingly, the center nucleosome (N3) did not move,
because its 50-border remained at �630 both before and
after differentiation (Figure 5D). Importantly, LM-PCR
data of RIP140-deficient MEF showed no shift of
nucleosomes N5 (Figure 5E), N-1 (Figure 5F) and N3
(Figure 5G) during differentiation. Taken together, these
results confirm that, before and after differentiation, the
nucleosomes are maintained on this gene promoter and its
regulatory region, and that two terminal nucleosomes
move away from the central nucleosome that stays at
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the same position before and after differentiation. This
requires RIP140. Further evidence for the bi-directional
nucleosome sliding during the course of differentiation
was obtained from a less laborious PCR-based
nucleosome scanning (Supplementary Figure S5).

Changes of several potential epigenetic marks on
Crabp1 promoter

RIP140 is known to recruit repressive cofactors such as
HDACs (36) and CtBP (37). According to our data, we
predicted progressive formation of repressive chromatin

on the Crabp1 gene promoter in differentiating/
differentiated cells. We conducted ChIP analyses of TRE
and GC box regions along the course of 8-days differen-
tiation (Figure 6). Figure 6A showed decrease in
acetylation of histone H3 (AcH3) and lysine methylation
on histone H3K4 on these regions, with corresponding
increase in several repressive chromatin marks such as
methylation at Lys9 and Lys27 of histone H3 (38).
H3K9-me3 was known to recruit heterochromatin
proteins and H3K27-me3 was found enriched in faculta-
tive heterochromatin regions. We then examined possible
recruitment of several known heterochromatin markers
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on these regions (Figure 6B). Indeed, heterochromatin
proteins 1a (HP1a) and 1g (HP1g) and histone H1 (H1)
were increasingly recruited to this promoter, and so was
G9a, the H3K9 methyltransferase. The promoter of this
gene is rich in clustered CpG islands and its repression is
known to be related to the level of cytosine-methylation
(39). Consistently, MeCP2 was increasingly detected on
both TRE and GC box regions and RNA polymerase II
(RPB1) gradually disappeared from this promoter in more
differentiated cultures.

DISCUSSION

The initial studies of hormonal regulation of gene expres-
sion have focused on target gene activation by hormones.
In the past decade, gene repression by hormones has been
increasingly reported (10,11,19,40). But it was less clear if
the same gene could be subjected to the opposing effects of
the same hormone, and in what context this might occur.
We have observed that RA could activate and then repress
TR2 gene through coregulators’ competition in the 3T3-
L1 model (41). The current study reports mechanistic
details of biphasic regulation of Crabp1 gene, primarily

at the level of transcription through hormone-induced
chromatin remodeling, and reveals a physiological role
for RIP140 in the repressive phase of T3 regulation of
this gene. However, we do not rule out potential effects
of differentiation on other regulatory events such as con-
trolling the stability of Crabp1 mRNA or its protein. Since
RIP140, unlike N-CoR and SMRT (1,2), is a known
ligand-dependent coregulator that renders gene repression
in the presence of hormones (6,23,41,42), we propose
RIP140 as a counteracting molecule, with respect to
hormone-dependent coactivators, to modulate hormonal
signals for proper control of certain hormone-sensitive
genes. To this end, it is important that RIP140 is highly
elevated only in differentiating/differentiated cells. In these
cells, it could stoichiometrically compete with coactivators
such as PCAF and GRIP1 for interaction with TRa
(Figures 1–3).
This study also provides some mechanistic insights into

chromatin remodeling during the hormone-repressed
phase, and possible players for, and specific changes
occurred on, the increasingly repressed chromatin of this
promoter during cell differentiation. However, it remains
to be tested if this can be generalized for many other
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hormonal target genes in different experimental systems.
As to the specific physiological needs for biphasic regula-
tion of Crabp1, more studies are needed to determine
whether and why shutting down Crabp1 would be impor-
tant for differentiating or differentiated adipocytes.
To this end, Crabp1 is known to titrate intracellular RA
concentrations, which might be crucial to the differentia-
tion process of adipocyte. It is also interesting that Crabp1
gene has been implicated as a tumor suppressor in esoph-
ageal squamous-cell carcinoma (43).
Chromatin juxtaposition/folding on the Crabp1

promoter and regulatory region and the nucleosome
array on this chromatin are maintained throughout the
differentiation process, despite the dramatically changed
expression of Crabp1 gene. MED1/Mediator complex
mediates chromatin juxtaposition by serving as a nexus
for TRa and Sp1 during the phase of T3-activation
of Crabp1 gene in undifferentiated MEFs (24).
As cells undergo differentiation, the increasingly recruited
RIP140 would maintain this chromatin feature. In
addition, nucleosomes slide bi-directionally in this

repressive phase, anchored by a central nucleosome
within the juxtaposed segment. It is tempting to speculate
that this bidirectional sliding might occur as a result of, or
contribute to, the formation of a more compacted
chromatin configuration on this region in differentiated
cells. Probably, longer linker regions, as a result of
nucleosome sliding away from the center, would, at least
partially, release tension introduced into the much tighter
chromatin and to maintain the folded/juxtaposed config-
uration. LM-PCR data (Figure 5) of wild type and
RIP140-deficient cells confirm RIP140-requiring
bidirectional nucleosome sliding during the process of dif-
ferentiation. Increase in putative heterochromatin marks
and recruitment of certain predicted heterochromatin
enzyme machineries on this region would suggest that
this region becomes heterochromatinized after differentia-
tion. It would be important to determine the driving force
for sliding of nucleosomes and compacting of chromatin.

It has been shown that euchromatin and compacted
heterochromatin are distinguished by several histone
signatures and the recruitment of HP1. Transcriptionally
active genes are generally associated with hyperacetylation
at Lys residues of N-terminal tails of histones H3 and H4.
In addition, genome-wide ChIP-on-Chip experiments in
yeast have shown that H3K4-me of euchromatin and
H3K9-me of heterochromatin are mutually exclusive
(44). H3K9-me could provide a recognition site for HP1
binding and propagate heterochromatin locally or
genome-wide. In this process, histone methyltranferases
such as Suv39h (45,46) and G9a (47) are key regulators
for H3K9-me. Furthermore, methylation of cytosine
residues of CpG islands, which is facilitated by DNA
methyltranserases following H3K27-me, is a common
feature of most heterochromatin (48). Changes in
histone modification on Crabp1 promoter would suggest
that RIP140 could probably contribute to the possible
heterochromatinization on the Crabp1 promoter, as
indicated by changes in the signatures of AcH3, H3K9-
me3, H3K27-me3, HP1a, HP1g and histone H1 on this
promoter during differentiation (Figure 6). RIP140 is
known to be present in certain complexes containing
histone-modifying enzymes such as arginine and lysine
methyltransferases (49,50), which could methylate
histone H4 on Arg3 (51). RIP140 is also extensively
modified post-translationally (52), and acetylation at
lysine residues by Erk2-mediated phosphorylation has
been shown to increase its repressive activity (53).
Further studies are required to decipher how might
other post-translational modifications of RIP140 affect
its gene-repressive activity, and whether and how
RIP140 indeed plays a specific role in the formation of
heterochromatin.
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