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THE BIGGER PICTURE Unplanned readmission currently costs the United States millions of dollars. Pre-
dicting whether an incoming patient is at a high risk of readmission can help target healthcare efforts better
to reduce this risk. In this age of big data, we can use machine learning to analyze a cohort of variables to
pinpoint the risk of readmission. Our work does exactly that. One of the hindrances for adoption of artificial
intelligence in healthcare is the lack of explainability. To combat that, we provide several mechanisms for
understanding reasons for the model’s predictions, starting at a global level across the entire dataset
and down to individual patient observations. These explanations enhance confidence in the model’s deci-
sion making.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Healthcare costs due to unplanned readmissions are high and negatively affect health and wellness of pa-
tients. Hospital readmission is an undesirable outcome for elderly patients. Here, we present readmission
risk prediction using five machine learning approaches for predicting 30-day unplanned readmission for
elderly patients (age R 50 years). We use a comprehensive and curated set of variables that include frailty,
comorbidities, high-risk medications, demographics, hospital, and insurance utilization to build these
models. We conduct a large-scale study with electronic health record (her) data with over 145,000 observa-
tions from 76,000 patients. Findings indicate that the category boost (CatBoost) model outperforms other
models with a mean area under the curve (AUC) of 0.79. We find that prior readmissions, discharge to a reha-
bilitation facility, length of stay, comorbidities, and frailty indicators were all strong predictors of 30-day re-
admission. We present in-depth insights using Shapley additive explanations (SHAP), the state of the art in
machine learning explainability.
INTRODUCTION

Hospital readmission can be defined as the unplanned re-hospi-

talization of a patient after a specific period of being discharged

from a medical unit. Unplanned patient readmissions lead

healthcare systems to incur substantial financial burdens and

result in a diminished level of patient care. Therefore, readmis-

sions have gained scrutiny as an important patient care quality

metric. Federal mechanisms such as the Affordable Care Act

(ACA) also place financial penalties on healthcare organizations
This is an open access article under the CC BY-N
with higher rates of readmissions. These factors, in conjunction

with each other, have led to numerous scientific studies

exploring factors for reducing unplanned hospital readmissions

(see section ‘‘related work’’).

The Healthcare Cost and Utilization Project (HCUP) estimates

that unplanned 30-day readmission costs the United States

$41.3 billion.1 Approximately 18% of patients on Medicare

were readmitted within 30 days of discharge, a number that re-

mained relatively unchanged between 2007 and 2010.2 These

unplanned hospital readmissions are both a burden on the US
Patterns 3, 100395, January 14, 2022 ª 2021 The Authors. 1
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healthcare system aswell as a strong indicator of sub-par quality

of care.2

In a bid to reduce healthcare costs, the ACA established the

Hospital Readmission Reduction Program (HRRP) in 2012. This

program aimed to financially penalize healthcare organizations

for higher-than-expected readmission rates for certain health

conditions. Specifically, the 30-day mark was identified as the

threshold for unplanned readmissions. The focus on 30-day re-

admission and its reduction was not an arbitrary choice. It

stemmed from a policy based on the fact that the 30-day time

period was observed most often and contributed to the largest

share of costs.3 Eventually, risk-adjusted 30-day readmission

measures were used tomeasure hospital performance and qual-

ity of patient care. The decision to focus on 30 days for

measuring readmissions has been criticized by some in themed-

ical community. It is understood that readmissions occurring a

few days after discharge might reflect poor care and a misjudg-

ment of the patient’s post-discharge needs.3 Readmissions at

4 weeks or later might be likely due to the underlying intensity

of the patient’s condition requiring further care, factors that the

hospital might not be able to control. However, readmissions

closer to the discharge date have the greatest likelihood of re-

flecting patient care.3 Taking these factors into consideration,

the 30-day mark was chosen as the defining window for

measuring readmission as an indication of patient care and qual-

ity. This decision by the HRRP to identify the 30-day window for

readmissions has propagated through the medical and scientific

community. The majority of scientific literature investigating re-

admissions does indeed focus on the 30-day mark (see section

‘‘related work’’), lending strong precedent to the decisions made

in this study.

One of the first steps in reducing readmissions is understand-

ing and determining the ever-evolving key causes that lead to in-

stances of readmission and developing predictive tools that

assess risk of readmission. Consistent factors that lead to un-

planned readmissions include premature discharge, length of

stay in the hospital, and lack of post-discharge treatments,

and might include other factors.2 These other factors include

advanced age; use of high-risk medications; specific disease di-

agnoses; presence of comorbidities; demographics, including

socioeconomic status and race; and insurance/healthcare

utilization.

While readmission within 30 days of discharge is an undesir-

able outcome for all patients, the outcomes can be particularly

critical for the medically frail. The American Medical Association

Council on Scientific Affairs wrote that ‘‘one of the most impor-

tant tasks that the medical community faces today is to prepare

for the problems in caring for the elderly in the 1990s and the

early 21st century.’’4 The report places particular emphasis on

the growing population of frail older adults and notes that this

group presents unforeseen challenges for healthcare systems.

Older adults can be identified by comorbidities, frailty, and

disability, and studies in geriatric medicine have concluded

that these entities are often causally related.5

Frailty, a syndrome that is marked by decreased physiological

reserve, poor resilience, and increased vulnerability to stressors,

is gaining recognition as an important risk factor and predictor of

poor patient outcomes. It is conceivable that the factors driving

readmission for non-frail patients are different compared with
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those that are frail. The majority of prior work studying readmis-

sion risk has squarely focused on cohorts that include non-frail

patients or focused on specific diseases such as heart failure

or chronic obstructive pulmonary disease (COPD) but not on frail

and elderly populations. For this study, frailty was conceptually

defined as a clinical syndrome resulting from age-associated de-

clines, physiologic impairments, and failed integrative responses

across multiple organ systems with diminished capacity to cope

with stressors.6,7 The Frailty Risk Score (FRS) is based on a bio-

psychosocial conceptual model and operationalized using evi-

dence-based risk factors and blood biomarker laboratory tests

extracted from the Electronic Health Records (EHRs) of hospital-

ized older adults.8,9

Our contributions in this study are 2-fold: (1) we present ma-

chine learning models for predicting readmission risk for the

medically frail by creating an integrated portfolio of important

variables, including frailty, comorbidities, high-risk medications,

demographics, disease diagnoses, and healthcare utilization;

and (2) we delve deep into interpreting the predictions using

model explainability tools. Interpretability and explainability are

crucial for machine learning models applied to healthcare, and

we address this need to provide confidence in the model’s

findings.
Background
Toward the development of machine learning models capable of

predicting readmission, we extract a wide range of feature vari-

ables from patient EHRs. In the following, we discuss and pro-

vide relevant background for the different categories of EHR fea-

tures utilized in our modeling:

Frailty

Frailty, a syndrome that is marked by decreased physiological

reserve, poor resilience, and increased vulnerability to stressors,

provides a new way to capture the combined impacts of acute

illness and other factors on health status and recovery. There

is growing consensus that frailty is a state of high vulnerability

leading to adverse health outcomes, including disability, read-

missions, need for long-term care, and mortality. The American

Medical Association estimates that 40% of adults aged 80 years

and older are frail.4 The majority of the 1.6 million nursing home

residents in the United States are considered to be frail.5 Esti-

mates of the prevalence of frailty in the acute care setting ranges

from 50% to 94%.10–12 Based on these numbers, it is safe to es-

timate that frailty is prevalent in a substantial proportion of older

adults. Research indicates that frailty is associated with a range

of adverse outcomes such as falls, functional and cognitive

decline, disability, increased healthcare utilization, and prema-

ture mortality; thus, frailty is increasingly viewed as a salient

aspect of patient health status, and inclusion of frailty in risk pre-

diction models is increasing. Note that frailty is an aggregate

estimation of risk as a product of advanced age or disease-asso-

ciated complications resulting in the weakening of multiple phys-

iological systems. Recent work has indicated that frailty as a syn-

drome can be detected by examining various clinical, functional,

behavioral, and biological markers.5 It is important to stress that

the clinical definition of frailty emphasizes that multiple physio-

logical systems and conditions must be present, further moti-

vating the need for building a comprehensive repertoire of



Table 1. List of variables utilized in predicting 30-day

readmission risk and their corresponding category

Frailty

FRS-26-ICD; malnutrition; abnormal weight; dysphagia; delirium;

dementia; depression; vision; weakness; fatigue; dyspnea; difficulty

walking; falls; chronic pain; urine incontinence; fecal incontinence;

decubitus ulcer; material resources; social support problems;

smoking; WBC; albumin; C-reactive protein; hemoglobin; glucose;

creatinine; sodium item 21

Comorbidity

ECI

High-risk medications

Anticholinergics, antispasmodics; benzodiazepines

nonbenzodiazepine hypnotics; cardiovascular; central nervous

system; endocrine; pain meds; H2 receptor blockers, proton pump

inhibitors; antipsychotics; anti-infective; genitourinary

Disease diagnosis (ICD-10)

Infectious and parasitic diseases; neoplasms; disease of the blood

and blood-forming organs and certain disorders involving the

endocrine, nutritional, and metabolic diseases; mental, behavioral,

and neurodevelopmental disorders; diseases of the nervous system;

diseases of the eye and adnexa; diseases of the ear and mastoid

process; diseases of the circulatory system; diseases of the

respiratory system; diseases of the digestive system; diseases of the

skin and subcutaneous tissue; diseases of the musculoskeletal

system and connective tissue; diseases of genitourinary system;

pregnancy, childbirth, and the puerperium; certain conditions

originating in the perinatal period; congenital malformations,

deformations, and chromosomal abnormalities; symptoms, signs,

and abnormal clinical and laboratory findings, not elsewhere

classified; injury, poisoning, and certain other consequences of

external causes; external causes of morbidity; factors influencing

health status and contact with health services; num diagnosis; num

unique diagnosis

Demographic

Age; sex; race/ethnicity; marital status

Healthcare and insurance utilization

Num prior readmits; quad length of stay; hospital service; admit

source; discharge disposition; primary payor; secondary payor;

hospital (de-identified, 1–5); hospital unit; hospital admit time
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patient features for understanding the risk of readmission in frail

patients.

Frailty can bemeasured in many ways and we discuss a few of

them below. The Fried phenotype framework classifies frailty on

the basis of the patient having at least three of five criteria (slow

walking speed, weak grip strength, low physical activity, unin-

tended weight loss, and exhaustion).13 This framework does

not include measures of cognition and mood, and there is con-

troversy that frailty consists of more than physical components.

The Rockwood deficit accumulation model identifies frailty

based on the number of deficits identified from the history and

physical examination to calculate a frailty index (FI) score.14

The FI consists of between 30 and 90 deficits (signs, symptoms,

diseases, activities of daily living and disabilities, and physical

and cognitive impairments). The FI is based on the premise

that the greater the number of deficits, the more likely that per-

son is to be frail. The third method is based on geriatric assess-

ment and subjective determination of frailty by the healthcare
provider and includes clinical tools such as the Clinical Frailty

Scale, Identification of Seniors at Risk, and the Tilburg Frailty In-

dicator (TFI). Widespread adoption of these tools has been

limited due to implementation issues such as patient and pro-

vider burden due to the need for training, time to administer,

and special equipment.

Recently, a Hospital FRS (HFRS) based on 109 International

Classification of Diseases, Tenth Revision (ICD-10) diagnosis co-

des from EHR data were validated in the UK National Health Ser-

vice.15 Increasing HFRS was associated with significantly

increased risk for longer length of stay, 30-day urgent readmis-

sion, and 30-day mortality (C-statistics for these outcomes

ranging from 0.56 to 0.68). Further examination of the HFRS in

a retrospective cohort Canadian study compared its perfor-

mance with another administrative data-based algorithm, the

Hospital-patient One-year Mortality Risk (HOMR) Score, which

was developed to predict the 1-year risk of death after admission

to hospital and was also considered a proxy for frailty.16 The

HFRS was calculated by assigning point values to any of 109

ICD-10 codes listed in each patient’s index admission or any ad-

missions in the prior 2 years. Using existing methods to detect

frailty in the acute care setting is challenging since frailty-related

diagnosis codes are subject to under-coding, whereas frail pa-

tients with other comorbidities, such as cardiac conditions or

cancer, might be grouped with non-frail patients.17

Our study utilized a proxy measure for frailty (FRS-26-ICD)18

drawn from ICD-10, Clinical Modification (ICD-10-CM) disease

diagnosis codes that encompass, common geriatric syndromes,

psycho-social factors, and blood biomarkers. The FRS-26-ICD

defines frailty as a clinical syndrome resulting from multi-system

physiologic impairments and failed integrative responses with

diminished capacity to resist and recover from stressors.8,19 In

addition to the FRS-26-ICD composite score, 32 additional vari-

ables were incorporated to capture the measure of frailty for

every patient. Variables used to compute the FRS-26-ICD

include but are not limited to malnutrition, abnormal weight, fa-

tigue, and difficulty walking (Table 1 shows a full list). Using

ICD-10 codes to detect frailty is challenging since frailty-related

diagnosis codes are subject to under-coding, whereas frail pa-

tients with other comorbidities, such as cardiac conditions or

cancer, might be grouped with non-frail patients; nursing flow-

sheet data reflect other aspects of patient health status, such

as the impact of medical diagnoses on symptom burden and

function.20 Shortcomings of the FRS include using clinical data

for research in which documentation may vary across providers

and medical diagnoses may be recorded preferentially over psy-

cho-social problems. ICD-10 codes and coding practices do not

reflect all of the patient’s needs during hospitalization. The binary

classification of biomarkers versus quantification as quartiles or

a continuous measure may under-estimate risk.

Comorbidity

In the early 1970s, comorbidity was beginning to be seen as a

critical factor for understanding the prognosis and outcome of

patient health.21 Comorbidity, defined as the coexistence of

two or more medical conditions in a patient, is commonly

included in risk prediction models to account for patient hetero-

geneity and chronic disease burden that is associated with

increased complexity in care and poor clinical outcomes.22 Co-

morbidity has been found to be associated with mortality, quality
Patterns 3, 100395, January 14, 2022 3



Table 2. Summary of eight comorbidity measures

Comorbidity index Description

Cornoni-Huntley24 used to investigate hypertension and

associated conditions

Duke Severity

of Illness25
evaluate ambulatory primary care patients

Hallstrom26 predicting outcomes of cardiac arrest

Hurwitz27 estimate the influence of comorbidity on

different types of patient care for back

problems

Incalzi28 uses 52 conditions weighted for strength of

association to mortality

Kaplan uses comorbidity and pathophysiologic of

the comorbid conditions

Liu18 combines 38 conditions and used for stroke

outcomes

Shwarz29 combines 21 conditions based on

association with mortality
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of life, and healthcare.5While the number of comorbid conditions

has been found to be a factor for poor health outcomes, the

impact of specific combinations has not been an object of wide-

spread inquiry. Since comorbidities can act as confounders,

and, given that the large number of comorbidities would not be

practical to control for individually, it is useful to control for the

overall burden of comorbidity using an index.23 Several mea-

sures have been developed to estimate comorbidity. Here we

describe two widely used metrics, the Charlson index and Elix-

hauser index, and provide a brief summary of other metrics

(Table 2).

The Charlson index is the most extensively studied index for

reporting and estimating comorbidities.21,30 The index includes

19 different diseases that were selected and weighted based

on how strongly they were associated with patient mortality.

The Charlson index includes, but is not limited to, diabetes and

congestive heart failure.

A more recent model of capturing comorbidities, the Elix-

hauser measure,31 contains 31 conditions, some of which are

not accounted for in the Charlson index.31 The Elixhauser Co-

morbidity Index (ECI)31 aggregates selected medical diagnoses

yielding a sum score, in which higher scores confer a higher

risk status that cannot be captured by individual medical diag-

nosis codes alone.23

The disadvantages of the indicesmentioned in Table 2 are that

they typically have been applied for specific disease states for

mortality outcomes, and less often for readmission. The majority

of those indices rely on clinical judgment and subjective assess-

ment, in contrast to our goal of using existing data in the EHR. In

addition, those metrics seem to be used substantially less

frequently than the Charlson or Elixhauser, which have almost

become de facto ways of measuring comorbidities. The ECI

and Charlson indices are advantageous since they can also be

applied in administrative data that include only demographics,

insurance/billing data, and ICD codes while not requiring addi-

tional data collection or clinical judgment.

More recently, studies have shown the efficacy of using aggre-

gatemeasures such as theCharlson and Elixhauser formeasuring

comorbidity. Austin et al.32 investigate why summary measures
4 Patterns 3, 100395, January 14, 2022
such as ECI and Charlson have been sowidely used in health ser-

vices research and provide a mathematical proof confirming the

utility of the Charlson and ECI scores. Interestingly, they point

out that the variables used to construct the score are of utmost

importance and, sometimes, strong predictors might be omitted,

leading to poor performance.32 This underlines the motivation of

this study to build a comprehensive portfolio of patient features

and variables to obtain the most accurate predictive power.

In a comparison of ECI and Charlson, prior work has shown

that the ECI provided a relative improvement of 60% on predic-

tion of mortality in the hospital.33 Based on this precedent and

taking into consideration that the ECI is a more recent model

that accounts for more conditions compared with Charlson, we

chose ECI as the comorbidity index in this study.

High-risk medications

Age-related changes in drug pharmacokinetics/pharmacody-

namics and the greater prevalence of multiple comorbidities

contribute to increased susceptibility to adverse drug events in

older adults. High-risk medications are drugs that have an

increased risk of causing substantial harm to patients. These

medications include drugs with low therapeutic indices and pre-

sent heightened risk when used in error. Medications classified

as high risk exert numerous adverse effects on patients’ health

status and are associated with new morbidity, mortality, and re-

admission. The use of high-risk medications is common in older

adults. A retrospective cross-sectional study of 456 patients 65

years of age and older found that slightly more than half of the

patients (53.5%, n = 244) had at least one potentially inappro-

priate medication identified by the Beers 2015 Criteria.34

The Beers Criteria are a list of potentially inappropriate med-

ications that are typically best avoided in older adults in most

circumstances or under specific situations, such as in certain

diseases or conditions.35 Fifty-three medications feature in

the Beers Criteria, divided into three categories: (1) potentially

inappropriate medications to avoid, (2) potentially inappropriate

medications and classes to avoid in older adults with certain

diseases, and (3) medications to be used with caution. The rec-

ommendations in the Beers Criteria are based on expert

consensus based on extensive literature review and surveys

by experts in geriatric care, clinical pharmacology, and psycho-

pharmacology.36 These criteria have found extensive use to

guide clinical medication use to decrease medication problems

in older adults. The Healthcare Effectiveness Data and Informa-

tion Set (HEDIS) also provides information about high-risk med-

ications for elderly patients by grouping medications into high-

level categories. A trademark of the National Quality Committee

for Quality Assurance (NCQA), HEDIS provides standardized

performance measures to compare the performance of health-

care plans.

Research on high-risk medications and hospital readmission

is equivocal. In a study examining high-risk medications in hos-

pitalized older adults, exposure to certain high-risk medication

classes, such as benzodiazepines and opioids, were associated

with increased odds of readmission.37 Wang et al.24 also found a

high prevalence of high-risk medications (66.7%) in Chinese

older adults, whereby proton pump inhibitors (42.6%) and

benzodiazepine (34.4%) weremost common, and having at least

one prescribed high-risk medication per the Beers Criteria was a

significant risk factor for all cause readmission.
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In the older adult population, age-related changes in drug ab-

sorption, metabolism, distribution, and excretion, as well as

drug-drug and drug-disease interactions, increase the risk for

adverse drug events and potential for harm. The high-risk med-

ications, such as those identified in the Beers Criteria (AGS,

2019), should be avoided or used with caution because they

are associated with numerous negative consequences, such

as falls and fractures, delirium, depression, mobility impairments

and functional decline, urinary and bowel abnormalities, and

nutritional issues (anorexia, nausea, dehydration).

In another study, Blachman et al. report that, other than old

age, high-risk medications are the most important risk factors

for falls among frail patients.38 The strength of the association

between falls and high-risk medications increases both with

the number of high-risk medications prescribed and the dosage

of those medications.38 Another study found that high-risk medi-

cation categories such as steroids and narcotics, anticholiner-

gics, and medications were associated with readmission.39

In this study, the medical experts on our team manually inte-

grated information from the Beers Criteria with high-level cate-

gories from HEDIS to determine medications considered high

risk for elderly patients.

Disease diagnoses

ICD-10 codes40 are recorded in the EHR data to describe the

principal problem attributed to the hospital admission as well

as any additional diagnoses for each patient not directly related

to the principal problem. According to the Centers for Disease

Control and Prevention (CDC), these codes are important for

classifying diseases, recording inpatient procedures, and esti-

mating healthcare utilization. The use of a consistent and

controlled set of codes for the description of patient conditions

enables tracking of health conditions, severity of illness, and co-

morbidities, andmeasuring patient care/outcomes, tomake clin-

ical decisions.

The ICD-10 code list contains approximately 69,000 diagnosis

codes and 71,000 codes for procedures. Each ICD-10 code con-

tains three to seven characters. The first character is a letter fol-

lowed by a numeric character. Characters three to seven can be

letters or numbers. The leading letter in an ICD-10 code indicates

the overall disease group. The thousands of ICD-10 codes are

arranged in the form of hierarchical classification or an ontology

that groups codes into higher-level codes that are further

grouped.

Several studies have used and found ICD-10 codes to be

important factors for predicting readmission for all causes and

for specific conditions.25,41,42 Lee et al.41 report that the category

of principal diagnosis was the most important predictor for pa-

tients with a hospital stay longer than 2 days, indicating that re-

admission can be more accurately predicted by analyzing the

type of disease. Similar results were seen in Chirapongsathorn

et al.,25 where the first listed ICD-10 code for hospitalization

was used to identify reasons for readmission. Another study re-

ported prediction of readmission solely by considering ICD co-

des and a small set of background variables.42

We incorporate ICD-10 codes in a number of ways: we map

each code into a higher-level category (see section ‘‘experi-

mental procedures’’), and use individual categories, the total

number of absolute diagnoses, as well as the total number of

unique diagnoses for prediction.
Demography and healthcare utilization

Patients admitted to hospital units have differences based not

just on their clinical characteristics but also on non-clinical as-

pects, such as age, race, marital status, socioeconomic status,

and insurance status, which might affect their risk of readmis-

sion. These factors can be broadly grouped into the umbrella

of demographics and healthcare utilization.

The vast majority of studies discussed in the section ‘‘related

work’’ incorporate self-reported demographic and healthcare

utilization data. The importance of including these factors has

also been well studied.26,27,43 While some studies43 found that

socioeconomic, health status, and psychosocial variables are

not dominant factors for predicting readmission, these features

have found utility in numerous other studies. In a study of 30-

day readmission for patients aged 65 years and older, Silverstein

et al.44 found that age, race, Medicare status, and other demo-

graphic factors predicted 30-day readmission.

In this study, we created two categories of variables: demo-

graphic, and healthcare and insurance utilization. Variables

such as age, sex, race/ethnicity, and marital status are consid-

ered in the demographic category. The healthcare and insurance

utilization category contains variables such as primary payor,

hospital unit, and hospital service (see full list in Table 1).

Related work
The background of related work for this study is vast. There are

investigators that studied readmission risks with and without

employing machine learning, those that explored readmission

risks for specific disease conditions, and those that investigate

readmission risk for the frail but not including other factors

such as comorbidities and high-risk medications. Common to

the majority of these studies, though, is the use of the 30-day

threshold for investigating readmission. As discussed in section

‘‘introduction,’’ the 30-day threshold has stemmed from the fed-

eral policies in the HRRP program and has subsequently been

adopted by the medical and research communities.

The use of machine learning for the prediction of readmission

risk is ubiquitous and well studied.1,2,28,45,46 A number of studies

(described below) employ different machine learning models for

understanding readmission risks in different patient cohorts and

disease conditions. Some of these studies generated complex

models that use thousands of features,2 while others limit them-

selves to patient information that can be easily collected within

the hours of initial admission.45

Acomparisonofcommonlyusedmodels forpredicting readmis-

sion risk studied a set of four models (LACE, Stepwise logistic,

least absolute shrinkage and selection operator (LASSO) logistic,

and AdaBoost).1 The study finds that LACE has moderate predic-

tive power, with area under the curve (AUC) scores around 0.65.

Variables include number of emergency room visits in the last

year, Braden pressure ulcer risk score, polypharmacy, employ-

ment status, and discharge disposition (patient’s anticipated loca-

tion or status following a hospital visit). LASSOwas found tobe the

best model for both small and large data sizes (0.73 AUC). In a

comparison of different models, a 2020 study in New Zealand

showed that XGBoost, random forests, and AdaBoost achieve

better predictive performance compared with LACE and PARR,

with F-1 score improvements of 12.7%and 23.2% respectively.47

Another study conducted on patients within the Maine Health
Patterns 3, 100395, January 14, 2022 5
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Information Exchange created a riskmodel for identifying patients

at risk for readmission within 30 days post discharge.2 The model

achieved a C-statistic (AUC) of 0.72 in predicting readmission.

While the above study uses a wide range of features and complex

models to predict readmission, other studies have focused on

identifying early hospital readmission factors in diverse patient

populations using simple models with limited features.45

The above studies predict readmission across all patient sam-

ples without discrimination for disease diagnoses leading to re-

admission. On the other hand, a number of studies have been

conducted to identify risk factors for readmission after specific

disease conditions. Goto et al.48 used machine learning to pre-

dict 30-day readmission after hospitalization for COPD. Patient

characteristics and inpatient care data were used with logistic

regression, LASSO regression, and deep neural network models

to predict readmission after COPD. Tube feeding duration, blood

transfusion, use of thoracentesis, and sex were found to be

important predictors for the machine learning models. Machine

learning has been used to study readmission among patients

hospitalized with ischemic heart disease.49 Results showed

that length of stay and the ECI were the top predictors, with an

AUC of 88%. In another case of predicting readmission for

specialized disease conditions, Mahajan et al.46 explored logistic

regression, random forest, gradient boost, and neural networks

for predicting 30-day readmission for heart failure.

More recently, a study now considered the state of the art from

scientists at Google, Stanford, and other institutions, conducted

an analysis of EHR to predict mortality, 30 day readmission, and

prolonged length of stay.29 The study reports that deep learning

models were found to outperform traditional machine learning

and clinical models at predicting the above events of interest.

The models were validated using EHR data from two US aca-

demic medical centers and reported a 0.75 AUC for 30-day

readmission.

Machine learning and other statistical methods have been

applied to predict the risk of 30-day readmission in older

adults.44,50–54 In 2020, Grana et al.50 conducted experiments in

a cohort of 645 frail patients for the study of readmission showing

positive results for the application of machine learning and mak-

ing the case for more studies in larger cohorts such as ours.

Another study reports that frail geriatric trauma and emergency

general surgery patients tend to have longer lengths of stay

and more readmissions. In a cohort of 239 patients, they found

that screening for frailty and establishing a frailty pathway re-

sulted in decreased length of stay.53 A retrospective cohort

study of 230 frail older adults assessed whether self-reported

symptoms predicted unplanned hospital readmission or emer-

gency department care within 30 days of discharge.54 Here,

four indicators similar to the FRS were predictive (drowsiness,

depression, shortness of breath, and anxiety).

In another 2020 study of 720 older patients (majority >75 years

old), higher Charlson comorbidity and excessive polypharmacy

were among the features that were associated with increased

odds of readmission. Silverstein et al.44 developed predictors

of 30-day readmission using administrative data for 29,000

adults aged 65 years or older. Results indicated that age, male

sex, African American race, Medicare, and major comorbid con-

ditions were important predictors (C-statistic 0.65). Another

study52 with one of the largest cohorts (479,854 patients aged
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65 years and older) from Danish public hospitals reported that

acute admission, number of days since previous hospital

discharge, comorbidity, increased drug use, and greater utiliza-

tion of hospital services were strongly associated with readmis-

sion (C-statistic 0.70).

Several prior studies have defined frailty using geriatric syn-

dromes comparable with the FRS used in this study. Geriatric

risk factors were defined as health status characteristics com-

mon in older adults who have potential to be intervened upon

and ameliorated if identified in a timely manner. These risk fac-

tors are analogous to 10 of the 26 indicators in the FRS (malnu-

trition, weight loss, falls, urinary issues, bowel issues, difficulty

walking, dementia, vision, decubitus ulcer, and social support)

and are represented in the Fried frailty phenotype13 and Johns

Hopkins University ACG frailty indicator.

Many readmission risk prediction models exist,55,56 but these

models are limited in being able to predict readmission within a

high-risk population, such as acutely ill frail older adults withmul-

tiple comorbidities and medications. Another factor that is criti-

cally important to consider when using machine learning models

to explore readmission risk is the information used for the predic-

tion. Most studies incorporate the standard patient data such as

demographics, drugs, and medical diagnosis information. The

importance of building a comprehensive cohort of variables for

the specific cohort of patients cannot be overstated. Indeed, a

new study from 2020 that developed predictive models for

30-day readmission andmortality on 3,000 patients underscores

and explicitly makes the case for compiling a comprehensive set

of variables to achieve the best predictive performance.57

RESULTS

The EHR dataset prior to pre-processing and manipulation

(Figure 1) contained 145,148 observations corresponding to

76,294 patients. A series of seven exclusion criteria (Figure 2)

were sequentially applied to result in 128,581 observations for

68,152 patients. These observations consisted of 18,840 read-

missions and 109,741 non-readmissions. The data contained

458 variables that were used for prediction of readmission.

Table 3 provides descriptive statistics of a set of salient vari-

ables. Pairwise collinearity tests were conducted for all pairs of

features in the data. Based on the correlations, the FRS-19

feature was eliminated from the data.

The data in the EHR were severely imbalanced, with a dispro-

portionate number of non-readmissions compared with read-

missions. We tested three sampling techniques to address this

imbalance: (1) under-sampling, (2) over-sampling, and (3) no

sampling. Table 4 shows the mean F-1 and AUC scores for the

three sampling strategies applied to fivemodels. The last column

of the table (mean AUROC) shows that under-sampling performs

the best or comparably with the other two strategies. However,

the real difference in the sampling strategies can be observed

in the differences between mean F-1 score for the two class la-

bels (0, no readmission; 1, readmission). Most models show a

stark difference in F-1 score for predictions between the two

classes when no sampling is applied, showing that the imbal-

anced data are affecting model performance. For example, the

F-1 for label 0 for a random forest model is 0.93, while that of la-

bel 1 is 0.37. The same trend is observed when over-sampling is



Figure 1. A breakdown of the components toward data pre-processing, model tuning/development, and explainability of the readmission

risk prediction model
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used across all the models tested. In contrast, under-sampling

the data results in consistent F-1 scores for both classes (except

for logistic regression). Based on these results, under-sampling

was selected to create a balanced dataset. All subsequent re-

sults reported are on the dataset created using under-sampling.

Model selection
The four machine learning models along with the stacked classi-

fier were modeled with the under-sampled balanced dataset. Of

the four models tested (Figure 3), CatBoost outperformed the

other models with an AUROC of 0.79. Random forest and

XGBoost trailed behind with AUCs of 0.77 and 0.77 respectively.

Logistic regression, which is widely used for prediction of read-

mission, performed substantially worse than the other three

models, with an AUC of 0.68. The XGBoost-based meta-learner

was selected for the stacking classifier because it showed the

highest AUROC score. While the stacking classifier performed

slightly better on the AUROC score (0.7964 versus 0.7948), the

gain is negligible. Additionally, as the stacking classifier is a com-

bination of multiple models (and dual stages), it is much harder to

explain or interpret its findings using the SHAP explainability

mechanisms described above. Considering that explainability

is of the utmost importance for AI models in healthcare, we

selected the CatBoost model for further analysis.

Feature importance
First, we further explored the best model from our tests (Cat-

Boost) to determine the most important features for predicting

30-day readmission. Figure 4 shows the top 10% features for

this model. The strongest feature associated with readmission

was discharge to a rehabilitation facility. Ninety-two percent

(844 of 925) of the patients who were discharged to a rehabilita-

tion hospital were readmitted within 30 days. This was followed

by the number of diagnoses and number of prior readmits.

Morbidity and comorbidity, represented by the ECI, was also

found to be an important factor. Next, we see that the length of

stay affects the risk of readmission. Specific disease categories

such as poison injury, parasitic infections, and connective and

musculoskeletal are seen to be important predictors. The pres-

ence of several individual FRS indicators in the top features

(e.g., white blood count, abnormal weight, sodium, malnutrition,
and decubitus ulcer, corresponding to the well-known frailty

phenotype defined by Fried et al.13), indicates the importance

of including indicators of frailty for prediction of readmission.
Model explainability
Explainability of AI models is important, especially in the context

of healthcare decision making. In this section, we delve deeper

into the CatBoost model to explain the model’s predictions,

the features that influenced the model, along with examining

how predictions were made at an individual observation level.

We provide model explanations along the following aspects:

1. Global interpretability: global interpretability allows the

reader to identify the most important features used to

make predictions for the model, glance at the distribution

of the data values for these features, and learn how these

data values affected predictions.

2. Impact of the top variables toward readmission: we show

how the top six features of the model affect the risk of re-

admission. We show the model’s tendency to predict re-

admission or non-readmission for each observation in a

feature and compare the model’s prediction with the

actual ground truth. This section helps verify if the model’s

predictions are in congruencewith the ground truth, a veri-

fication mechanism to boost confidence in the model’s

findings.

3. Local interpretability: we show how the model’s predic-

tions were made at an individual observation level. These

visuals show the synergistic effect of a subset of features

that led to a prediction for this particular observation.

These visuals can be used by healthcare experts to under-

stand the model’s findings at a patient level.

4. Identification of at-risk patient groups: we employed clus-

tering methods to group the dataset into clusters of pa-

tients with different levels of readmission risk. These clus-

ters make it easy to identify which group a group would be

most similar to, thereby estimating their risk of readmis-

sion. We also provide a comparison of the clusters for

the model’s predictions versus the ground truth to verify

if the predictions are in line with the actual data.
Patterns 3, 100395, January 14, 2022 7



Figure 2. Exclusion criteria employed to compile the appropriate cohort of frail patients for prediction of readmission
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Global interpretability of the model

We provide global interpretability of the CatBoost model using

SHAP explanations. Figure 5 displays several key pieces of infor-

mation that each provide insight into themodel’s predictions and

what factors affected them. First, we explain the key facets of the

SHAP feature importance plot and then describe the findings.

The SHAP feature importance plot displays the following

information:

1. Feature importance (left y axis): similar to Figure 4, this plot

shows the top 10% important features in descending or-

der of importance.

2. SHAP value: impact on model’s output (x axis). The x axis

shows SHAP values, a quantitative measure of an obser-

vation’s impact on model prediction. The SHAP value

quantifies how much impact a particular observation

makes toward the prediction of the target class. Higher

SHAP values indicate an increased risk of readmission,

while lower SHAP values indicate low readmission risk.

The plot shows a vertical line running through the middle

that acts as a baseline SHAP value. The baseline indicates

observations that have no impact on the model’s pre-

diction.

3. Original values of variables (right y axis): the scale on the

right (blue to red) indicates whether the values of a variable

were low (blue) or high (red) in the data. Continuous vari-

ables are shown on a color gradient, while binary variables

are indicated in blue or red. For example, the discharge

disposition rehab facility variable is a binary variable where

observations with a 0 value are shown in blue and those

with a 1 value are shown in red. In comparison, the number

of unique diagnoses is a discrete variable where we
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observe colors according to the grading scale of the color

map; i.e., high observations have red, low observations

have blue, and mean observations have a light color

(mid-point on the color bar).

4. Variable impact: the horizontal location of a dot (blue or

red) shows whether the effect of that variable’s observa-

tions is associated with a higher or lower prediction of re-

admission risk based on the SHAP value. The plot shows a

vertical line running through the middle that acts as a

baseline. The farther away from the baseline an observa-

tion (blue or red) is, the more impact it has on the model’s

prediction of low or high readmission risk.

Synthesizing information about the original values (indicated

by color) and the horizontal location, we can interpret red dots

on the right of the baseline as the variable having high values

in the data and the effect of those high values resulting in a

high readmission risk. On the other hand, red dots on the left

of the baseline indicate that the variable had high values in the

observations but those high values resulted in low readmission

risk. When blue dots appear on the left of the baseline, it indi-

cates that the variable’s low values were associated with lower

readmission. When blue dots appear on the right of the baseline,

it indicates that the lower values for that variablewere associated

with higher readmission risk. For example, in the variable Elix-

hauser, we observe a large number of red dots to the right of

the baseline and large number of blue dots to the left of the base-

line. This indicates that the higher the Elixhauser score, the

greater the chances of readmission, while lower Elixhauser

scores lead to lower readmission risk.

We see that each of the features contributes differently to the

model’s prediction. As expected, the top feature (discharge to a



Table 3. Descriptive statistics of salient variables in the EHRdata

used for predicting readmission risk

Variable Statistic (standard error)

Mean readmissions 1.56 ± 0.011

Mean FRS-26-ICD 3.03 ± 0.08

Mean ECI 4.15 ± .09

Mean number of disease diagnoses 30.65 ± 0.07

Mean number of high-risk medication

categories

2.32 ± 0.05

Mean number of prior readmits 2.1 ± 0.02

Mean length of stay (days) 4.85 ± 0.01

ll
OPEN ACCESSArticle
rehab hospital) has several observations with high values (red

dots) that contribute to high readmission risk (indicated by their

position to the far right of the baseline). Since, this variable is bi-

nary (1 = high, 0 = low), the red dots indicate observations for

which the value is 1 and blue dots indicate that the value is 0.

Note the variance in the red dots; this indicates that there is vari-

ability among these observationswith high values in how impact-

ful these observations are toward the prediction. The blue dots

for this variable, on the other hand, do not exhibit similar vari-

ance, indicating that their contribution toward the prediction is

relatively uniform. Moving to the next important feature, we see

that the number of diagnoses had a large proportion of observa-

tions with low values compared with observations with higher

values (blue dots outnumber the red dots). The concentration

of the blue dots to the left of the baseline indicates that these

lower numbers of diagnoses led to lower readmission risk. The

small proportion of observations with higher diagnoses (shown

in red) appear to the right of the baseline, indicating that these

observations led to greater readmission risk. We observe a stark

separation in observations (blue versus red) for the observations

with prior readmissions. Observations with prior readmissions

(1 = high) lead to higher risk of readmission (red dots to the right

of the baseline), while observations with no prior readmissions

(0 = low) lead to reduced readmission risk (blue dots to the left

of the baseline). Elixhauser is the fourth most important variable,

and the plot clearly shows that observations with high Elixhauser

values (red dots on right) are associated with higher readmission

risk and lower Elixhauser values (blue dots on the right) are asso-

ciated with lower readmission risk. A very similar trend is

observed with quadratic length of stay (LOS).

There are some variables where high values were associated

with low readmission risk. The discharge disposition to hospice

or medical facility variable has a large subset of observations

with high numbers. This indicates that large numbers of patients

were discharged to hospice or medical facility and that event

was associated with low readmission (red dots to the left of the

baseline). The feature representing discharge to home or self-

care has an almost equal proportion of observations with high

and low values. High rates of discharge to self-care indicate

low readmission risk (red dots on left of baseline), while low rates

of discharge to self-care lead to high readmission risk (blue dots

on right of baseline).

The plot also shows that a large number of patients in the data

were discharged to hospice or a medical facility and this event

resulted in low readmission risk (red dots to the left of the base-
line). On the contrary, observations with high values of being

transferred to a short-term hospital saw an increased risk of

readmission.

Impact of select variables toward readmission

We take an in-depth look at how a few select variables from

Figure 5 affect the risk of readmission. In these figures, we

compare the model’s predictions with the ground truth to verify

if the predictions align with the ground truth. In Figure 6, we

show the eight variables of the model and how observations

for each of those variables lead to readmission or no readmis-

sion. In each of the figures, we plot the original values of obser-

vations for a specific variable against their SHAP values. Each

data point (corresponding to an observation) is marked red or

blue to indicate readmission ðClass Label = 1Þ or no readmis-

sion ðClass Label = 0Þ respectively in the actual data. The

dotted line shows the baseline for the SHAP value for the

particular variable. Higher SHAP values (right of baseline) indi-

cate that the model predicts readmission and lower SHAP

value (left of baseline) predicts no readmission. A point of

note here, while we are considering a single variable for anal-

ysis in this scenario, readmission can result from a combination

of variables.

In Figure 6A, we see that observations with higher SHAP

values (right top corner) are mostly colored red, indicating that

these observations indeed had readmissions. Observations

with lower SHAP values (bottom left) have a mix of observations

(red and blue), indicating that some of these observations were

readmissions, whereas some were not (new encounters or read-

mission after 30 days).

Looking at the number of diagnoses variable (Figure 6B), we

see two trends: (1) as the number of diagnoses increases, the

SHAP values increase, indicating that the model predicts higher

readmissions for observations with a higher number of diagno-

ses; and (2) observations with higher SHAP values correspond

to more readmissions compared with those with lower SHAP

values, showing that the model aligns with ground truth in these

cases. The behavior of the number of prior readmits variable

(Figure 6D) is similar to trends seen for the discharge to rehab

variable (Figure 6A).

In comparison, the behavior of the Elixhauser score is more

complex (Figure 6C). Taking a look at the distribution of observa-

tions to the left and right of the baseline, we see that the majority

of observations to the left of the baseline (with low SHAP values)

were not readmissions and the majority of observations to the

right of the baseline (with high SHAP values) did have readmis-

sions. However, there are observations that the model assigns

low SHAP values that were actually readmissions and vice versa.

We attribute these instances of confusion to conflicting impacts

from other variables.

In Figure 6D we observe records with prior readmissions,

which is a strong predictor for readmissions. The observations

marked in red indicate prior readmissions. The lower left of the

plot shows observations with no prior readmission and are

mostly marked by blue dots, indicating that the model predicts

low chances of readmissions for these observations.

Figure 6E shows the observations for the quadratic length of

stay variable. The figure also verifies that themajority of observa-

tions that were readmissions had high SHAP values that would

lead to a readmission prediction. We do see a higher
Patterns 3, 100395, January 14, 2022 9



Table 4. Performancemetrics for the fivemodels (random forest,

XGBoost, CatBoost, logistic regression, and a stacking classifier)

Mean F-1 score Mean AUROC

Random forest

Label 0 Label 1

No sampling 0.94 0.38 0.77

Over-sampling 0.92 0.26 0.74

Under-sampling 0.68 0.69 0.77

XGBoost

Label 0 Label 1

No sampling 0.93 0.39 0.77

Over-sampling 0.92 0.38 0.76

Under-sampling 0.69 0.68 0.77

CatBoost

Label 0 Label 1

No sampling 0.93 0.38 0.79

Over-sampling 0.93 0.37 0.78

Under-sampling 0.71 0.70 0.79

Logistic regression

Label 0 Label 1

No sampling 0.91 0.07 0.56

Over-sampling 0.67 0.29 0.67

Under-sampling 0.01 0.66 0.67

Stacking classifier

Label 0 Label 1

No sampling 0.93 0.38 0.79

Over-sampling 0.93 0.36 0.79

Under-sampling 0.70 0.71 0.79
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concentration of confusion instances where observations with

lower SHAP values had readmissions and vice versa.

Figure 6F shows the relationship between SHAP values and

the observations that had the ICD code category of poison.

Here we do observe the majority occurrence of red (readmitted)

with higher SHAP value and to the right of the SHAP baseline.

However, there are a few observations where the SHAP values

were higher and associated with no readmission and vice versa.

One of themost complex instances is the age variable outlined

in Figure 6G. We do observe a large number of red instances to

be at the right side of the plot, where the model is able to make

correct decisions at different age values, but it is not as clear as

other variables. All of the values of age >90were set to 90 (for pri-

vacy) which is why we have a large distribution of points at 90.

We also do not observe any relationship between the SHAP

values and age; i.e. no linear trend of SHAP with increase in age.

Figure 6H shows the relationship between FRS26 and the

SHAP values. We do observe there is a relationship between

FRS26 and SHAP, where we observe a majority of readmitted

patients to have higher FRS26 score, but there quite a few

confused instances where the lower SHAP and FRS26 scores

lead to readmission.

Higher-order interactions between top features

We briefly explored interactions between the top predictors

identified in Figure 5 to gain a deeper understanding of the

data and trends within. While a number of higher-order relation-
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ships can be modeled, we highlight two such interactions due to

restrictions on space.

First, we show the interactions between number of diagnoses

and FRS-26-ICD, both of which are among the top predictors for

readmission risk (Figure 7). It can be observed that observations

with low number of diagnoses (y axis) tend to have low FRS

scores (colormap). We also see higher SHAP values (x axis) cor-

responding to higher number of diagnoses, which grows expo-

nentially after the SHAP baseline of 0.0. This goes to show that

the SHAP values of observations with low numbers of diagnoses

and low FRS scores are also low, indicating that these observa-

tions are not at risk of readmission. Observations with high FRS

and number of diagnoses carry high SHAP values, indicating that

they are at risk of readmission.

Next, we highlight the interaction between ECI and the number

of unique diagnoses (Figure 8). There is a stark contrast between

observations with high versus low Elixhauser scores (y axis) and

the number of unique diagnoses (colormap). Low Elixhauser

scores are associated with lower SHAP values and also lower

number of uniquediagnoses. Aswemovehigher in theElixhauser

score, we have a higher number of unique diagnoses as well as

SHAP values above 0.0, indicating higher changes of readmis-

sion. Few observations on the lower left area of the figure show

ahigher number of diagnosesbut lowElixhauser scores. Interest-

ingly, these observations still have low SHAP values, indicating

no readmission. It is the combined interaction of high Elixhauser

and high number of unique diagnoses that truly affects the risk of

readmission (observations on the right top).

Local interpretability

SHAP can be used to explain themodel’s decisions at an individ-

ual observation level. These insights can allow healthcare ex-

perts to identify and analyze the decision-making process for

specific observations if need be. This level of detail allows to un-

derstand the particular features that played a role in the model’s

prediction and analyze whether those features align with human

experts. Figures 9A and 9B show the observations with the high-

est SHAP scores (the observations also had high predicted read-

mission probability at 0.99). Figures 9C and 9D show the obser-

vations with the lowest SHAP scores and had high predicted no-

readmission probability at 0.98.

The plots in Figure 9 show several insights about the prediction

and the factors that affected theprediction for this specific obser-

vation. The model output value (in bold) is the cumulative SHAP

score for an observation. The base value (0.1678, indicated

above thenumber labels) is thebaselineprediction that themodel

would make in the absence of any features. Features that push

the output value higher (toward readmission) are shown in red,

and those that lower the output value (toward non-readmission)

are shown in blue. The data values for each of these features

can also be seen in the plot. In Figure 9A, we see that the model

predicts readmission with an output SHAP score of 7.02. We

observe that the patient in this encounter has prior readmits,

was discharged to rehab facility, had high-risk endocrine medi-

cation, 43 diagnoses, andwas admitted to neurosurgery, leading

to high confidence that the patient will be readmitted. Features

shown in red contributed to the readmission prediction.

In comparison, Figure 9C, the observation had low number of

diagnoses (1), was not discharged to rehab facility, and was

admitted to orthopedics, leading to the low chance of



Figure 3. AUC comparison for the different

machine learning models and the stacking

classifier
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readmission. Elixhauser score was unavailable for this observa-

tion. Similarly, for Figure 9Dwe observe lower number of diagno-

ses, lower number of unique diagnoses, were not discharged to

a rehab facility, and were in low-risk hospital units such as ortho-

pedics, each of which pushes the observations toward not get-

ting readmitted. The blue indicates features that mitigated the ef-

fect of the red features. It is important to note that these

observations did not have high values for any of the high-risk fac-

tors. It is the synergistic effects of these variables that result in

the final prediction. This level of explainability is valuable to

investigate the model’s decisions at a patient-to-patient level

for complete transparency.

Identification of at-risk patient groups

TreeSHAP associates a SHAP value to each observation for

every variable in the dataset. These SHAP values are inferred

from the model’s decision process of making predictions about

the target variable ðClass Label = C0 =1DÞ: We utilized these

SHAP values to cluster observations for identifying latent group-

ings of patients with varying risk of readmission.

K-means clustering was used to generate clusters of observa-

tions. In order to identify the ideal cluster size for the underlying

data, we evaluated the inertia score for K-means clusters

ranging from K = 2;3;/14: As shown in Figure 10, the reduction

in inertia score is no longer substantial after eight clusters. Based

on this plot, we selected to cluster the data into eight clusters.

Observations in these eight clusters have different rates of re-

admission, ranging from 4.71% to 100% (Table 5).While all of the

clusters have different variables that are influential for the obser-

vations in that cluster, overall, we found that the eight variables

were important for all clusters: (1) discharge disposition rehab fa-

cility; (2) prior readmits; (3) number of diagnoses; (4) Elixhauser;

(5) quadratic length of stay; and (6) ICD injury/poison. To under-

stand what factors led to high readmissions in some of the clus-
ters, we provide a detailed look at the dis-

tribution of values for these important

variables for each cluster (Figure 11).

In Figure 11A, we see that cluster 2 and

cluster 5 have high values for the discharge

to rehab facility variable. Based on other

results discussed above, we know that

high values of this variable lead to readmis-

sion. Reaffirming this result, we see that

the percentage of readmission in clusters

2 and 5 is 98.67% and 100% respectively.

A similar trend can be seen in Figure 11B,

where cluster 3 and cluster 5 have high

numbers of prior readmissions, whereas

observations in the other clusters have no

readmissions. These two clusters also

have high percentage of readmissions.

Clusters with high numbers of diagnosis

(2, 3, 4, and 6) show higher percentages

of readmission (Figure 11C). The same
can be observed for the Elixhauser variable (Figure 11D), where

clusters 2, 3, 6, and 5 have observations with a high comorbid-

ity score, leading to high readmissions. Figure 11F shows the

clusters (3, 5, 6) that have high prevalence of observations an-

notated with ICD category of injury/poison. This cluster also

has a high degree of readmission percentage, with clusters 3

and 5 having 100% readmission along with cluster 6 at

60.55% readmission.

In Figure 11E, we see that observations in some clusters (2, 5,

7) have higher values comparedwith others (clusters 0, 1, 3, 4, 6).

However, among clusters that have high lengths of stay, only

clusters 2 and 5 have high rates of readmission. Cluster 7 is an

anomaly, with only 17% readmission rate. Taking a look at the

other features influencing cluster 7, we see that observations in

this cluster have no discharges to a rehab facility, no prior read-

missions, and relatively low number of diagnoses, leading to the

low overall readmission rate.

It is important to note that it is the synergistic effect of multiple

variables that causes observations to belong to clusters with

high or low readmission scores. Looking at cluster 0, the cluster

with the lowest readmission percentage (4.71%), we can see

that observations in this cluster have no discharges to a rehab fa-

cility, have no prior readmissions, very low diagnoses, very low

comorbidity scores, and similarly low values for length of stay

and number of unique diagnoses.

These clusters clearly show how the observations can be

segregated into meaningful groups that predict a patient’s risk

of readmission while identifying key variables for healthcare

workers to track.

Note that these clusters are based on the model’s prediction

of readmission risk. Next, we compare the clustering of pre-

dicted risk with the actual ground truth as a validation exercise

of the clustering method’s efficacy.
Patterns 3, 100395, January 14, 2022 11



Figure 4. Feature importance ranking of the

top 10% features
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First, we visually represent the validation data to show the

ground truth. We use UMAP to visually represent observations

in our dataset across all dimensions reduced to a 2D space and

denote whether that observation led to a readmission or no re-

admission (Figure 12A). We use the same technique to visually

represent observations based on the model’s predictions and

denote which cluster each observation belonged to (Fig-

ure 12B). A comparison of these two clusters shows that the

clusters based on the model’s predictions aligns closely to

the clusters based on the actual data. We can see clearly

that observations associated with cluster 0 (blue color) are

associated with non-readmitted observations (topmost group

and right corner of the largest grouping). Cluster number 2,

which has a high readmission percentage (98.67%), is high-

lighted in green (Figure 12B) and also has high ground truth re-

admissions (Figure 12A). Cluster 3, the rightmost group, has

100% readmission, as shown by the red dots in Figure 12A.

Clusters 5 and 7 (Figure 12B) also have a high degree of read-

mitted observations. Within the largest group, we observe the

presence of clusters 1, 6, 4, and 0, each segregating the higher

and lower risk groups. However, we do observe this group to

have a considerable overlap between the groups and the clus-

ters. These two plots show striking similarities between the pre-
12 Patterns 3, 100395, January 14, 2022
dictions made by our model in compari-

son with the ground truth in the data,

lending credibility to the findings reported

here.

DISCUSSION

This study examined a diverse array of

health-related variables in a large EHR da-

taset to identify predictors for unplanned

30-day hospital readmission. The data

used here capture various aspects of pa-

tient risk that are related to medical

complexity and heterogeneity using novel

indicators, including frailty (26-item FRS

representing syndromes and psycho-so-

cial risk factors), high-risk medications

(10 risk classification groups according to

Beers Criteria, 2019), and comorbidity

(ECI) in machine learning models. Using

an ensemble of machine learning models,

we found that the strongest features for

risk of readmission were related to health-

care utilization (prior readmissions, num-

ber of readmissions), length of stay, co-

morbidity (number of diagnoses, number

of unique diagnoses, individual ICD-10 dis-

ease codes, ECI). Our results correspond

with systematic reviews on risk prediction

models for 30-day unplanned readmission

that identify prior admissions, LOS, and
comorbidities as the most frequently cited predictors related to

their ability to classify high-risk patients for adverse outcomes.55

The most unexpected finding in this study was that almost all

patients who were discharged to a rehabilitation hospital were

readmitted within 30 days (844 of 925 patients, 92%); this was

the strongest feature associated with readmission. These find-

ings contrast with a study that tracked hospital readmissions

for post-acute-care rehabilitation settings by the Medicare Pay-

ment Advisory Commission (MedPAC), where the 30-day read-

mission rate was substantially lower at 12%.58 Our findings

also contrast with a study of 1,365 inpatient rehabilitation facil-

ities providing services to Medicare beneficiaries receiving

post-acute hospitalization in which the 30-day readmission

rate was 11.8%; however, patients with certain comorbidities

had readmission rates as high as 26.3%.58 This clinical setting,

termed inpatient rehabilitation facilities (IRFs), may be free-

standing facilities or specialized units within the acute care hos-

pital designed to accommodate patients requiring rehabilitation

services for problems such as lower extremity fracture and joint

replacement, burns, neurological disorders, and stroke recovery

(MedPAC, 2020). Additionally, higher readmission rates may

pertain to continued eligibility requirements for inpatient rehabil-

itation therapy services reimbursed by the Centers for Medicare



Figure 5. A depiction of model importance

(top 10% features), along with a summary of

individual impacts of observations for each

variable on the target
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and Medicaid Services (CMS) (CMS, 2017), which stipulate that

patients must continue to participate in intensive rehabilitation

and demonstrate measurable improvement. The high readmis-

sion rate in our study signals the need for further investigation

of organizational and population-related factors contributing to

readmission risk. Complex care transitions and greater risk for

clinical instability and illness exacerbation after hospitalization

may contribute to early hospital readmission. Effective transi-

tional care to reduce hospital readmission contains elements

of care coordination, communication between providers across

clinical settings, and intensive follow-up after hospital

discharge59; hence, attention to these elements to bolster transi-

tional care processes beginning in the hospital setting is

warranted.

Frailty
A novel aspect of this study is inclusion of a proxy measure for

frailty. The FRS-26-ICD includes geriatric syndromes and bio-

markers that are associated with frailty and manifest across

chronic disease conditions to reflect their combined impact on

overall health status. We found that 17 of the 26 FRS-26-ICD in-

dicators were strong features, ranking in the top 20%; notably,
indicators that correspond to four of the

five validated criteria for the physical frailty

phenotype are top features: weakness, fa-

tigue, malnutrition, and abnormal weight.13

These findings underscore the importance

of incorporating frailty when trying to pre-

dict readmission risk for older inpatients.

Interestingly, the FRS-26-ICD composite

score is not observed among the strongest

features, although it is ranked 50th (top

11%), which suggests a nontrivial influ-

ence. This is a promising finding since

research notes the uneven quality and

low predictive accuracy of frailty instru-

ments applied in prediction models in the

acute care setting. We posit that there

are differences in the impact of the 26 indi-

vidual indicator features used to create the

FRS-26-ICD score and it is of greater value

to incorporate the individual features

compared with the composite score. The

absence of the composite FRS score as a

strong predictor has been echoed by

several systematic reviews that highlight

the uneven quality and low predictive ac-

curacy of frailty instruments applied in pre-

diction models in the acute care setting.60

Several blood biomarkers from the FRS-

26-ICD (WBCs, sodium, hemoglobin,

glucose) and the ICD-10 codes for
abnormal laboratory tests were also strong features, ranking in

the top 20%. These results are in agreement with a study of

1,600 internal medicine inpatients in which an FI that assessed

up to 27 laboratory tests was independently associated with re-

admission in comparison with a Clinical Frailty Scale based on

the patient’s chronic health status.61 The use of laboratory

data in risk models has limitations that hinder widespread appli-

cation. Trends in healthcare reimbursement and provider prac-

tices have generally led to judicious ordering of laboratory tests

in contrast to standing orders for blood panels; thus, missing

data is a limitation and risks under-estimating frailty or biasing

frailty to certain phenotypes. On the other hand, laboratory tests

may become routine when these measures are demonstrated to

have predictive or clinical value or when technology advances,

clinical practice guidelines evolve, or policy changes facilitate

or mandate their implementation.62

A plethora of tools are available to measure frailty; however,

there is onlymodest overlap across the tools and little agreement

on the best tools to use in acute care hospitals.62 Many tools are

complicated to use and require some form of direct clinical

assessment, which can be time consuming, require special

equipment and training, and be subject to poor inter-rater
Patterns 3, 100395, January 14, 2022 13



Figure 6. Relationship between select top

features and the model’s prediction
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Figure 7. Higher-order interactions between

number of diagnoses and FRS-26-ICD
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reliability; others have limited clinical relevance to guide care

management. These limitations as well as computational ad-

vances have spawned initiatives to use existing and readily avail-

able EHR data to identify proxy variables for frailty, as demon-

strated here with the FRS-26-ICD. Clinicians and researchers

can use the FRS-26-ICD in several ways to support care man-

agement and identify vulnerable populations for research. As a

simple flag, patients who are frail or not frail can be identified.

Detailed breakdown of the frailty indicators at the individual,

population, and organizational level can identify frail patients

that can be directed to care management programs. For

example, targeting the FRS-26-ICD indicators weakness,

walking difficulty, and fatigue can identify individual or groups

of patients who may benefit from physical rehabilitation and/or

chronic disease-specific programs (e.g., diabetes, arthritis, dis-

ease), or post-hospitalization referrals for transitional care. Effec-

tive decisionmaking about clinical interventions can benefit from

frailty assessment and consideration of patient and family prior-

ities. At the population level, the FRS can be used to assess the

overall health service needs and projected health expenditures.

A large number of studies consider individuals aged at least

65 years for assessment of frailty, in contrast with our study

where the target population is aged 50 years and above. Inter-

national and US-based studies indicate that frailty is not limited

or unique to geriatric populations; although frailty prevalence

increases with age, population-based studies indicate that

frailty can also be detected in younger adults. Since many

frailty parameters are already altered in middle age and predic-

tive of adverse events, restricting frailty assessment to older

age groups overlooks the needs of this vulnerable population

and opportunities for prevention and risk mitigation.63–65 Prior

research using the FRS showed a weak effect size for age

and FRS scores.8,9
Comorbidity
Our findings confirm the importance of co-

morbidity in readmission risk models. This

finding also highlights the importance of

including both frailty and comorbidity for

prediction models. Indeed, recent studies

indicate that while frailty and multimorbid-

ity are related and overlapping, they are

distinctly different constructs; most frail

persons are also multimorbid, but fewer

persons with multimorbidity also present

with frailty.66 Clinically, this is an important

distinction since the aging process is asso-

ciated with higher prevalence of multiple

chronic conditions, geriatric syndromes,

and functional impairments. While comor-

bidity measures of some type are

commonly applied in risk prediction

models with wide-ranging accuracy (C-

statistic reported by 14 studies range

from 0.55 to 0.80),34 our results for the
optimal model (CatBoost classifier [AUC = 0.79]) are promising

and highlight the importance of comorbidity. A limitation of co-

morbidity counts and indices is they do not typically take into ac-

count individual disease severity or fully adjust for the adverse in-

fluence of co-occurring comorbidities on health status; thus,

their impact may be attenuated in risk models and may partly

explain their modest accuracy in risk prediction models and

lack of consistency across studies.23

Multimorbidity, defined as the co-occurrence of at least two

chronic conditions, increases with age and affects one-fourth of

adults in the US.67 Many chronic conditions also cluster together;

however, there can be considerable variability with individuals not

neatly fitting into groups that can be targeted for tailored interven-

tions. The presence or count of chronic conditions also does not

inform the level of care that may be needed since disease severity

and symptom burden are not effectively represented in disease

counts or inmost comorbidity indices. Symptoms and syndromes

included in the FRS provide a mechanism to capture disease

impact, although a limitation is the inability to capture symptom

severity. Numerous studies have incorporated comorbidity mea-

sures such as ECI in risk-adjusted methodologies and predictive

models versus individual comorbidities and provides a way to

condense comorbidity information into an easy-to-use metric.68

It is difficult to model interaction between specific comorbidities

at a general patient level, which is a motivating factor to develop

composite measures such as ECI or CCI.69 While the ECI and

CCImetrics do not capture interactions between categories of co-

morbidities, they have been used extensively and shown to be

strong predictors for readmission and mortality.

High-risk medications and polypharmacy
Prior research indicates that 3%–64% of hospital readmissions

are drug related70; thus, attention to medication-related issues
Patterns 3, 100395, January 14, 2022 15



Figure 8. Higher-order interactions between

ECI and number of unique diagnoses
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such as polypharmacy and high-risk medications could help to

improve readmission risk classification. In the present study,

only one category of high-risk medication was represented in

the top 40 features (endocrine medications; e.g., short-acting in-

sulin); however, six other high-risk medication categories were

identified in the top 100, suggesting their important role in read-

mission. Research on high-risk medications and hospital read-

mission is divided. In a study examining high-risk medications

in hospitalized older adults, exposure to certain high-risk medi-

cation classes such as benzodiazepines and opioids was asso-

ciated with increased odds of readmission.37 However, in a

similar study of hospitalized older adults, although an increased

number of medications was significantly associated with un-

planned 30-day hospital readmission, there was no significant

association between the number of high-risk medications and

30-day re-hospitalization after controlling for covariates.71 In

one retrospective case control study of patients aged >75 years,

five medication-related risk factors were associated with hospi-

tal readmissions, which included high-risk medications; howev-

er, the effects of these risk factors became insignificant in

adjusted multivariable models with comorbidity.72

In the present study, polypharmacy was a strong feature

ranking 51st (top 11%). Aging is associated with development

of a number of chronic health conditions, which often require

pharmacologic treatment with multiple medications, leading to

polypharmacy.73 The prevalence of polypharmacy is increasing

globally and affects more than half of the older adult population,

exposing them to adverse outcomes such as hospital

readmission.74

Polypharmacy is relevant to readmission because (1)

increasing medication use is likely related to disease severity,

which is a marker for readmission risk; and (2) increased number

of medications is associated with greater risk for medication
16 Patterns 3, 100395, January 14, 2022
non-adherence due to cost issues, side ef-

fects, and inability to keep track of medica-

tion use.75

Polypharmacy, especially regimens that

include high-risk medications, can poten-

tially cause more harm than benefit to

older adults due to factors such as

adverse drug reactions and drug-drug

and drug-disease interactions.35,74

Although polypharmacy was an important

feature in our study, it is possible that how

polypharmacy was defined (patient taking

seven or more prescribed medications re-

corded by the nurse at admission) may

have under-estimated its actual preva-

lence and influence. This definition is

based on admission medications and

may not have included over-the-counter

medications, herbals, and supplements,

which can interfere with drug metabolism

and contribute to adverse drug interac-
tions and reactions. Picker et al.75 found that having more

than six discharge medications was significantly associated

with 30-day hospital readmission in models adjusted for a

risk score among 5,507 internal medicine inpatients. In

contrast, in a study of adult admissions to a university-affiliated

hospital, for patients readmitted within 30 days of discharge the

number of discharge medications was not a significant predic-

tor for 30-day readmission.76

Research also suggests that the impact of the patient’s

medication regimen on readmission risk may not be fully

captured by polypharmacy and high-risk medication exposure.

A feature that should be considered for future research is medi-

cation regimen complexity, which can be quantified using a

metric that considers the number of medications and at least

one other parameter (e.g., dose form; dosing frequency; and

special directions for medication use, such as take with

food).77 Refinement of prediction models to include medication

regimen complexity in addition to high-risk medications and

polypharmacy may improve precision in the identification of

high-risk patients for discharge interventions to prevent hospi-

tal readmission.

It is plausible that certain disease conditions might have

higher risk of readmission, in which case disease-specific

models might be more appropriate. For example, surgery, heart

failure, and oncology patients have historically had higher read-

mission rates.78 However, it is difficult to build disease-specific

models for different patient conditions, and even more cost-

prohibitive to account for different combinations of comorbid

disease conditions. It is important to understand that models

developed from disease-specific cohorts will account for char-

acteristics of the underlying cohort but complicate the model

development process due to smaller cohort sizes, among other

issues. On the other hand, general risk prediction models might
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Figure 9. A spotlight on individual observa-

tions

Here, we show the top two observations with the

lowest number of readmissions and the highest

number of readmissions
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be built in a cost-effective manner while taking into account

different disease conditions that are encountered in the patient

population. A recent study focusing specifically on this question

found that accurate prediction of readmissions can be possible

through general disease-independent models such as the one

we employ in this study.78 These general models substantially

decrease the cost of development, deployment, and mainte-

nance of risk prediction models that can be used in daily clin-

ical routine.

Limitations
Like all clinical prediction efforts, this study has several limita-

tions. One important limitation is the composition of the data-

set, which included a diverse patient population of adult hospi-

tal admissions 50 years of age and older to a health system that

included a level 1 trauma center, community hospitals, and a

women’s health and behavioral health hospital. Precision of

our risk models may vary when applied in more homogeneous

datasets; i.e., based on medical or surgical service (e.g., cardi-

ology, orthopedics) or patient characteristics (e.g., medical

diagnosis such as heart failure, diabetes). Data used in this

study come from a single hospital system (although sourced

across five hospitals) in a relatively small geographic region.

This factor should be considered when interpreting the results

presented here with respect to the ability to generalize to other

regions.

Using existing methods to detect frailty is challenging since

frailty-related diagnosis codes are subject to under-coding, cod-

ing may over-represent frailty due to comorbidities such as de-

mentia, whereas frail patients with other comorbidities such as

cardiac conditions or cancer might be grouped with non-frail pa-

tients.17 The FRS-26-ICD used in the present study is at risk for
similar issues since coding for ambiguous

syndromes such as weakness, fatigue,

and dysphagia, which are indicators in

the FRS-26-ICD, may not be a priority for

the healthcare provider when considering

the primary reason for admission when

the number of codes possible for data en-

try is limited. However, in future research,

capture of these important patient condi-

tions that are salient in frailty and can be

used in modeling frailty will make it

possible to represent the patient’s health

status with higher accuracy. The present

study included a diverse set of bio-

psychosocial risk factors and blood bio-

markers associated with frailty that were

obtained proximal to admission. Predic-

tion models or early warning systems often

include repeated vital signs and laboratory
tests to signal clinical deterioration, but it is also important to pre-

dict the targeted risk group before a serious change in condition

to allow for initiation of treatment. Considering the multifactorial

nature of frailty and complex interrelationships among biological

processes underlying it that may be complicated by acute illness

or surgery in the acute care context, the FRS may provide a

broader framework from which to operationalize patient vulner-

ability in the acute care context.6 Additionally, the computation

of the FRS-26-ICD metric is dependent upon availability of elec-

tronically recorded patient data. While the adoption of EHR is

gaining momentum, it is not universal, and this lack of data avail-

ability is a hindrance to the identification of frailty using these

composite metrics.

Finally, reproducing the FRS in other EHR systems and

multicenter studies is necessary to evaluate prediction perfor-

mance and increase the ability to generalize from the study

findings.79,80 Analyzing doctor notes using approaches such

as natural language processing to identify additional frailty

risk factors may improve the FRS. Future investigations of

the FRS in acute care hospitals should also focus on its clin-

ical utility at the individual level for care planning and decision

making and at the population health level for program devel-

opment and transitional care interventions for vulnerable pa-

tient subgroups. The challenges associated with the reuse of

EHR data are well known and complicated by the massive vol-

ume and complexity of the data, unique measures for seman-

tically equivalent concepts with different names, and local

customization.80 Problems due to poor interoperability across

proprietary EHR systems have stymied replication of EHR-

based research.81

The stacking classifier used here to combine predictions from

individual models was successful in increasing prediction
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Figure 10. Determining the optimal number

of clusters using changes in inertia score
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accuracy; however, this increase comes at the cost of explain-

ability. Since the stacking classifier takes predictions from indi-

vidualmodels as input, it is agnostic to the features usedas inputs

for those models. Therefore, within the current study, it was not

possible to investigate the model’s predictions and trace back

the predictions to the impact of individual features. Explainability

as demonstrated in this study is infeasible when using a stacking

classifier, and we opted to choose explainability over increased

accuracy in this work. In future efforts, we plan to explore a

dual-stageSHAPscoringmechanism; i.e., theSHAPscoresof in-

dividual models’ features weighted by the meta-learner SHAP

score for each model. This can be done by recording the SHAP

scores for each base model individually using the test data and

then evaluating the stacked model with the same. As such, this

will aid in both global and local explainability by enabling under-

standing of model prediction importance for each observation

and the features that lead to the predicted outcome.

Another consideration is that although this paper focuses on

patient-related risk factors, organizational and healthcare pro-

vider-related factors can also be influential in readmission within

30 days of hospital discharge.34,82
EXPERIMENTAL PROCEDURES

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Somya D. Mohanty (sdmohant@uncg.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The EHR data used in this study are bound by data-use agreements between

the University of North Carolina at Greensboro (UNCG) and the hospital sys-
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tem it was gathered from, which preclude the au-

thors from sharing the data evenwhen de-identified.

The code used in this analysis contains sensitive

attribute names from the dataset, which prevents

sharing.

Figure 1 shows the overall workflow of our study.

The workflow consists of distinct stages where we

extract, model, and evaluate the EHR data and

develop machine learning models to predict read-

mission risk.

In the first stage, data mining/modeling, we

extract relevant variables from the raw EHR data

(from Epic dataset). We pre-process the data,

where we analyze missing values, construct encod-

ings, and calculate high-level scores for feature cat-

egories (such as Elixhauser and FRS). As the data

are recorded within different data tables, we merge

the variables based on their encounter identification

(unique identifier for each observation) and patient

identifier. Following this (in model development),

we separate the data into model development

(training) and validation datasets, where we also

employ different sampling strategies. In the model

performance comparison stage, we evaluate multi-
ple models on their performance metrics and also perform hyper-parameter

tuning with the available training dataset. A stacking model is also developed,

which utilizes predictions of different models to create a super classifier.

Following this, we conduct evaluations on model explanation where we

observe characteristics of features and their role in model prediction. We

conduct several studies to observe patient risk groups, feature to model rela-

tionship, feature importance, and observation risk assessment.

In the following we describe each of the components of these stages in

further details:

Dataset and exclusion criteria

Data used in this analysis are from a collaborating health system in the

southeastern United States. Data are sourced across five hospitals each

with a capacity of 85–535 beds and extracted from the hospitals’ Epic

EHR patient data systems. Data were collected for the time period of

2013–2017, and were filtered to only retain all admissions for adults 50 years

of age and older with an inpatient stay lasting longer than 24 h. The data

were de-identified in accordance with the data-use agreement between

UNCG and the health system.

We applied a set of exclusion criteria (Figure 2) to the data to arrive at the rele-

vant set of patients for this analysis. Starting with the raw dataset of 145,148 ob-

servations (76,294 patients), the first step is to remove any observations where

the patient’s age was less than 50 years. In order to create a dataset for 30-day

readmission, in the second step we created a buffer of 30 days at the start and

end of earliest and latest admission times in the data. Third, fourth, and fifth steps

removed observations that had less than 24 h for length of stay in the hospital,

died on initial admission, and had planned readmissions respectively. The sixth

step removed any subsequent observations where the patient expired. The final

dataset had 128,581 observations recorded from 68,152 patients.Within the da-

taset, 18,840 observations comprised new encounters, and 109,741 did not (not

readmitted or readmitted after 30 days).

Data cleaning and pre-processing

Demography

Demographic data contained information including sex, ethnic group, age, race,

marital status, and date of birth. These patient-level variables were recorded at

the time of admission andwere extracted from the EHR data. For multi-category

variables (such as sex, ethnic group, race, andmarital status), one-hot encoding

mailto:sdmohant@uncg.edu


Table 5. Readmission percentage of all observations in a cluster

Cluster number Readmission percentage # Of observations

0 4.71 382

1 43.71 2,786

2 98.67 453

3 100 307

4 25.02 1,059

5 100.00 31

6 60.55 2,434

7 17.85 84

Note the clustering is only run on validation data (20% of the original

dataset).
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was used to create individual variables for each category. Age was calculated

from the date of birth and the time of admission, and any values above 90

were set to be 90 in order to preserve privacy of the EHR records.

Apart from the standard demographic variables, the dataset also contained

patient living conditions at the time of admission. The variable was codified

based on the type of living condition, where the original dataset consisted of

42 categories. Some of these categories were synonymous with each other

(e.g. ‘‘children’’ and ‘‘child’’). Subsequently, we manually identified 13 unique

living conditions (‘‘Not Available’’ [NA]), ‘‘Friends,’’ ‘‘Other,’’ ‘‘Family,’’ ‘‘Nursing

Facility,’’ ‘‘Homeless,’’ ‘‘Parent,’’ ‘‘Children,’’ ‘‘Relatives,’’ ‘‘Spouse,’’ ‘‘Alone,’’

‘‘Group Home,’’ ‘‘Assisted Living’’) from the 42 categories and encoded into

one-hot categories.

Healthcare and insurance utilization

Data about hospital, hospital use, admit source, admission time, discharge

disposition, along with insurance payor information were extracted from the

administrative records. Admission time was discretized into four groups 6 h

apart: morning, afternoon, evening, and late night. Information about whether

a patient has a primary care provider and if they see their primary care provider

was also included.

Disease ICD

The data contained 12,592 unique ICD-10 codes. These codes were further

aggregated to reduce dimensionality based on the first character of the

code. For example, the code N40.0 is used to indicate benign prostatic hyper-

plasia without lower urinary tract symptoms. The N in the code indicates that

the disease can be categorized into the class of genitourinary diseases. Each

ICD-10 code was grouped into one of 19 high-level classes based on the first

character of the code (listed in Table 6) as described by the CDC guidelines.40

For each observation, the principal and additional diagnoses were mapped to

the high-level classification. Observations that did not contain disease diagno-

ses were marked . The mapping of ICD-10 codes to the corresponding higher-

level category was performed to reduce the dimensionality for machine

learning and variable analysis. The total number of diagnoses and total number

of unique diagnoses for each readmission instance were calculated based on

the unique ICD-10 codes before the above steps were applied.

Frailty

Our study utilized a proxymeasure for frailty (FRS-26-ICD) drawn from ICD-10-

CM disease diagnosis codes that encompass common geriatric syndromes,

psycho-social factors, and blood biomarkers. The FRS-26-ICD defines frailty

as a clinical syndrome resulting from multi-system physiologic impairments

and failed integrative responses with diminished capacity to resist and recover

from stressors.8,19 In addition to the FRS-26-ICD composite score, the 26 in-

dividual variables (see row 1, Table 1) that are used to calculate the composite

score were incorporated. These variables include, but are not limited to,

malnutrition, abnormal weight, fatigue, and difficulty walking. Laboratory

values were discretized based on a reference range that indicates risk. Original

indicators of frailty compiled from blood biomarkers were represented using

laboratory reference ranges for abnormal (high or low) for factors such as albu-

min, hemoglobin, sodium, and white blood cells (WBCs).

Comorbidity

ECI scores were extracted and calculated for each observation using the ICD

diagnosis codes present within the data. ECI consists of 30 comorbidities rep-
resenting secondary diagnoses that were present on admission and not

related to the principal diagnosis.31 The ECI was computed for 30 unweighted

comorbidities using the ICD-10-CM codes according to Quan et al.83

High-risk medications

High-risk medication mapping was conducted using two sources: (1) HEDIS,

and (2) AGS Beers Criteria. The HEDIS dataset groups high-risk medications

into a set of high-level drug classes such as anticholinergics and antipsy-

chotics. The Beers Criteria also offer a similar classification but also include

recommendations of use in older adults. First, the data from the HEDIS data

were used to create a grouping of high-risk medication into 10 categories.

Next, the Beers Criteria were consulted to include any medications/categories

that were missing from the HEDIS data. After reconciling both data sources, a

categorization that grouped all high-risk medications into 10 high-level cate-

gories (see row 3, Table 1) was created. This process was conductedmanually

by a gerontological nursing expert (D.L.) on our team. Each patient observation

was marked containing the high-risk medication category if the prescribed

drugs matched any of the criteria.

Specific drug names in the EHR were parsed to remove numerical dosage

values, delivery method, type of medication (e.g., capsules, substances),

and any other extra information. Next, the drug namewasmapped to a generic

name before matching to the drug categorizations described above. A string

matching algorithm called Sequence Matcher (https://docs.python.org/2.4/

lib/sequence-matcher.html) was used to link the drugs to the high-risk

medications.

Label calculation

For each observation, a time delta ðT dÞwas calculated by taking the difference

between the discharge time and the next admit time (or time to 12/1/17 if no

readmission) for the same patient. If the T d was within 30 days, the observa-

tion was marked as Class Label = 1 (readmission), or Class Label = 0 (non-

readmission).

Finally, pairwise collinearity tests were conducted for all pairs of features in

the data to eliminate highly correlated features. All variables were checked

for missing values and missing values were filled with not available (NA).

Subsequently, one-hot encoding was performed on all the categorical

features.

Model data

The final data used for this analysis contain 458 variables (Table 1) that can be

divided into six categories: (1) frailty, (2) comorbidity, (3) high-risk medications,

(4) disease diagnosis, (5) demographic, and (6) healthcare and insurance utiliza-

tion. These features across the above categories were used for the machine

learning models.

Machine learning models

After data cleaning and variable extraction, the resulting dataset consists of

128,581 observations with 458 variables. Of these, 18,840 were readmissions

ðClass Label = 1Þ and 109,741 non-readmissions ðClass Label = 0Þ: These

data were split into an 80:20 ratio (train-test), with 80% of the data being

used for development of models, while the other 20%were used for validation

of the models.

Three different strategies were used to address the imbalance between the

two target classes ðClass Label = <1; 0>Þ; (1) under-sampling, (2) over-sam-

pling, and (3) no sampling. Under-sampling selects a same-sized random

sub-sample from the majority class ðClass Label = 0Þ with respect to the

size of the minority class ðClass Label = 1Þ: Here, we obtained 18,840 obser-

vations each for Class Label = 1 and Class Label = 0 respectively. Over-sam-

pling was done with the synthetic minority over-sampling technique

(SMOTE),84 which oversamples on minority instances by synthesizing new

data points between real data instances. The strategy has been used success-

fully in augmenting low-instance classes for machine learning. We first split the

original data to the aforementioned train-test split and then oversampled using

only the training data, while keeping the test/validation data for model metrics.

Specifically, we split the data into 109,741 training observations and 18,840

testing observations. We then resampled the training observations using

SMOTE to have a balanced Class Label = C0 =1D class, which increases the

number of training samples to 175,796 to develop the models. In the no-sam-

pling strategy, we used the original sample size of the data for training and

testing.
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Figure 11. characteristics of different clusters based on data values of salient features
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The datasets were fit to five machine learning models and compared for

their metrics: (1) logistic regression, (2) random forest, (3) extreme gradient

boosting (XGBoost), (4) category boost (CatBoost), and (5) stacking classi-

fier. The choice of the machine learning models is based on baseline com-

parison with logistic regression, which has been evaluated by a large

number of research studies and used in practice in hospital systems.55

Random forest, XGBoost, and CatBoost are ensemble-based models

that reduce variance in the models’ learning while being able to provide ex-

plainability in their predictions. A stacking classifier was also developed as

a super learner that combines the four models (logistic regression, random

forest, XGBoost, and CatBoost) into a single model. Deep learning models

were avoided in the study due to their inability to succinctly explain model

predictions and the overall complexity versus performance benefits being

lower than ensemble models. Below we describe the models used in our

study in further detail:
20 Patterns 3, 100395, January 14, 2022
Logistic regression

Logistic regression is one of the most widely used models for analyzing EHRs.

An extension of linear regression, a basic logistic regression determines the

probability of classification problems with a binary outcome.85 The model

uses a logistic function (sigmoid) to fit a linear equation between 0 and 1 using

maximum likelihood estimator (MLE). A key reason for utilization of logistic

regression in practice is its explainability, where the log-odds of the model

can be used to explain the impact of individual features on the model’s predic-

tion. However, the model accuracy suffers in high-dimensional non-linear

data, where ensemble-based methods outperform it.86

Random forest

Random forest is an ensemble prediction method that consists of a set of

individual decision trees.87 The decision trees are designed to have low corre-

lation to each other to encourage diversity among the trees. The prediction of

individual trees is aggregated to determine the prediction of the random forest.



Figure 12. A comparison of clustering prediction and the

ground truth
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Random forests use the principles of bootstrapping and aggregating to build

trees based on different subsets of the training data using different subsets

of features. Since random forest is an ensemble of decision trees, individual

errors of the trees are reduced. Additionally, random forests result in good per-

formance on imbalanced datasets while handling missing values well. These

models are not substantially affected by outliers in data.

XGBoost

XGBoost is an implementation of gradient boosted decision trees whose

main advantages are execution speed and model performance.88 These

models use boosting, an ensemble technique where each tree or model cor-

rects errors made by previous trees. The technique adds more and more

trees/models until the overall accuracy cannot be improved anymore. The

predictions of the models are added together to make the final prediction.

This reduces bias and variance compared with bagging methods such as
random forest, as we train subsequent learners on the residuals. XGBoost re-

quires low feature engineering, allowing steps such as normalizations and

scaling to be omitted, and outliers have little impact. XGBoost models result

in better speed compared with random forests while being more robust to

overfitting.

CatBoost

CatBoost89 is a variation of the boosting techniques typically used for machine

learning. CatBoost improves on existing boosting techniques by using ordered

boosting and a novel algorithm for effectively processing categorical features.

Empirical studies have shown that CatBoost outperforms other publicly avail-

able boosting algorithms. CatBoost does not require any special pre-process-

ing for categorical features such as encodings. Instead, the algorithm converts

categorical values into numbers using statistics on combinations of categori-

cal features. The algorithm has been shown to be more robust and therefore

reduces the need for parameter tuning and optimization. It also reduces the

chance of overfitting.

Stacking classifier

We combined predictions from the four models to create a stacked classifier.

Model stacking was introduced in 1992 as a way of introducing generalizable

prediction models that incorporate other learning models.90 Model stacking is

quite simply the process of combining multiple machine learning models in a

sequence so the predictions from each model are formed into a new feature.

Eachmodel’s predictions get transformed into a new feature, thereby ensuring

that each model in the stack predicts a portion of the training data for this new

feature. The final dataset obtained from the stack is fed into a final model,

called a meta-learner, the purpose of which is to generalize all the features

to generate a final prediction. Model stacking has been used to achieve better

generalization compared with a single model. Wolpert90 posits that model

stacking deduces the bias in models so that the bias can be corrected in the

meta-learner. Here, we used model stacking with the first stage consisting

of logistic regression, XGBoost, CatBoost, and random forest classifiers and

XGBoost as the meta-learner for the stacking classifier. The choice of the

meta-learner was based on cross-evaluation of the stacked model perfor-

mance between logistic regression, random forest, and XGBoost. The base

(first-stage classifiers) and the meta-learner models are developed using the

training data only.

Model metrics and hyper-parameter tuning

We evaluated the performance of the four machine learning models as well

as the stacked classifier using the following criteria: (1) precision, (2) recall,

(3) F-1 score, (4) area under receiver operating characteristics (AUROC)

score. Defined as the ratio of true-positives (TPs) to the sum of TPs

and the false-positives (FPs) for readmission; i.e., Precision=TP=TP+FP;

and precision measures the positive predictive power. Similarly, recall

or sensitivity is defined as the ratio of TPs to the total of TPs and the

false-negatives (FNs); i.e., Recall =TP=TP+FN: F1-score combines

the precision and recall into a harmonic mean defined as

F1= 2ðPrecision � Recall =Precision +RecallÞ: A receiver operating charac-

teristics (ROC) curve describes the tradeoff between the TP rate (TPR)/

recall and FP rate (FPR, where FPR=FP=FP+TN; and TN are true-nega-

tives), across the different decision thresholds of a model. AUROC mea-

sures the AUROC curve to provide a score for the models. For each of

the models, we record the aforementioned metrics across a k-fold (k = 5)

validation and utilize mean metrics to compare between the models. Spe-

cifically, we perform five iterations of train-test split, sampling, and model

development to record and present the metrics.

Hyper-parameter tuning was conducted on each of the ensemble models

using a grid search approach. We evaluated the models on different number

of estimators (500, 1,000, 5,000), maximum tree depth (3 . 10), and learning

rate (0.02. 0.05, 0.1, 0.5). The evaluation was donewith the validation dataset

and the best-performing model results are presented.

Model explanation

Explainability of artificial intelligence (AI) models for decision making and pre-

dictions is one of the most heavily debated topics, especially when it is

applied to healthcare.91,92 Amann et al.91 argue that explainability of AI

models invokes legal, ethical, and societal questions and deserves thorough

investigation. The vast majority of prior studies in the area of health
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Table 6. Categorization of ICD-10 codes into higher-level

categories based on the first character of the code

First character

of ICD code Higher-level category

A, B infectious parasitic

C neoplasms (C–D50)

D blood immune (above D50)

E endocrine nutritional metabolic

F mental behavior neuro

G nervous system

H1 eye adnexa

H2 ear mastoid

I circulatory system

J respiratory system

K digestive system

L skin subcutaneous

M musculoskeletal connective

N genitourinary

N penitourinary

O pregnancy child puerperium

P Perinatal

Q congenital malformation deformations

R abnormal laboratory findings

S, T injury poison

V, W, X, Y external morbidity

Z health status

All codes containing the character in the left column are replaced with the

category in the right column.
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informatics present findings/predictions from machine learning but make no

attempt to provide explainability to the model. Treating these models as

black boxes greatly reduces confidence in their predictions no matter how

high the accuracy measures are.

In this study, we provide extensive explanations and interpretability for the

model’s behavior and predictions using Shapley additive explanation

(SHAP).93 SHAP aims to provide explanations for models by evaluating the

contribution of each feature to the predictions. It is able to do so by calcu-

lating the Shapley values94 based on a game theoretic approach of feature

coalitions. In the case of machine learning models, each feature (or a group

of features) acts as a player in a cooperative game, where we calculate the

marginal contributions that affect the overall prediction. In other words, we

evaluate the contribution of each feature by observing how different the pre-

diction of the model is from the expected prediction by observing the model

predictions with coalitions of feature variables that include the target feature

variable and ones that do not.

SHAP provides in-depth model explainability and can allow readers/health-

care experts to explore the impact of individual predictors within an ensemble-

based machine learning model. We use a variant of SHAP called TreeSHAP93

that was developed for specifically for tree-based machine learning models.

TreeSHAP presents numerical scores called SHAP values that explain the pre-

diction for an observation by quantifying the contribution of each feature to-

ward readmission prediction. While standard feature importance graphs

answer the ‘‘what’’ part of the prediction, SHAP answers the ‘‘why’’ by

providing explanations that give the user an insight into why the model makes

certain predictions, thereby increasing model transparency.

Below, we summarize the three benefits of SHAP:

1.Global interpretability: collectively, SHAP values show how much each

predictor contributes to the outcome variable. In addition to this, the values

indicate whether a predictor affects the outcome positively or negatively.
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2.Local interpretability: each observation in the dataset can be explored

using its own set of SHAP values. Therefore, it is easy to see the predictors

that affected the prediction for that specific observation. These SHAP

values can be easily visualized using individual plots for every observation.

3.Tree-based explainability: SHAP values can be computed for any tree-

based model, including ensemble models, unlike other explainability

methods that use regression models as a surrogate.

In this study, we utilize SHAP values for a wide range of analyses of the ma-

chine learning models employed here. First, we provide a global interpretation

of the model’s prediction by exploring important features that contributed to

the model’s prediction ranked by their SHAP values. We also explain the ab-

solute values of important features in the data and show whether those values

were associated with a higher or lower prediction value of the target variable.

All of these insights are efficiently displayed using a single visualization called a

SHAP plot.

Second, we explore global interpretability of the model, where we highlight

relationships between a set of manually selected features using a SHAP partial

dependence plot. These visualizations show the marginal effect of one or two

features have on the prediction while also showing the relationship between

features and a feature and the target variable. Third, we study local interpret-

ability of SHAP values, where we highlight how the prediction was made for a

few selected observations using an individual SHAP value plot. These plots

pinpoint the features that played a critical role in the final prediction for that

specific observation. The plots also display the effect (positive or negative)

of each of those features on the prediction. These visualizations allow health-

care experts to delve deep into the data and analyze the model’s decision-

making process for specific observations.

Clustering and risk group analysis

An important criterion for hospital systems to understand the factors associated

with readmission in their patient populations is to observe any latent patient

groups that emerge from the data. To address this, we conduct risk group anal-

ysis on the SHAP data generated from the developed machine learning models.

After training the models and evaluating the best-performing one, we calcu-

late the SHAP values for the validation observations. We then utilized an unsu-

pervised machine learning approach, K-means clustering,95 to group the

observations into different patient groups. K-means is a distance-based

clustering approach that has a goal to partition the given observations into K

clusters. Each observation is associated with a cluster based on its Euclidean

distance from the cluster centroid. The number of groups/clusters (K) was

evaluated using the elbow approach,96 where we observed themodel perplex-

ity across the patient groups of K = 2/10; and choose K = 6 to be the number

of groups to evaluate.

For each observation we then annotate the cluster number and study the

statistical properties of the cluster observations. First, we calculate the distin-

guishing features for each cluster. This is done by measuring the relative score

of each feature for its cluster by calculating relative feature score as

Cx = ðCi
x �

Pn
i = 1C

i
x � Ci

x=n� 1Þ2; where Cx is the cluster centroid value of

the feature variable i and n = 458 for the total number of available variables.

We then sort theCx value for each cluster to observe the features that uniquely

identify a particular cluster. These features are used to conduct comparisons

between different patient risk groups to study which feature variables

contribute toward an observation being placed in a particular group.

In order to visually validate the findings of the clustering, we also utilize the

Uniform Manifold Approximation and Projection (UMAP)97 dimensionality

reduction technique to map the 458 dimensional vectors to two-dimensional

(2D) space. UMAP is a non-linear manifold learning approach that is great at

preserving both the local and global structure of high-dimensional data

when transformed to lower-dimensional space. We utilize UMAP to transform

the training SHAP data to a 2D space and plot cluster results for a visual com-

parison of the ground truth of readmitted and non-readmitted observations

versus clusters of the model’s predictions.
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