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Abstract

Background: RNA-binding proteins (RBPs) play crucial and multifaceted roles in post-transcriptional regulation.
While RBPs dysregulation is involved in tumorigenesis and progression, little is known about the role of RBPs in
bladder cancer (BLCA) prognosis. This study aimed to establish a prognostic model based on the prognosis-related
RBPs to predict the survival of BLCA patients.

Methods: We downloaded BLCA RNA sequence data from The Cancer Genome Atlas (TCGA) database and
identified RBPs differentially expressed between tumour and normal tissues. Then, functional enrichment analysis of
these differentially expressed RBPs was conducted. Independent prognosis-associated RBPs were identified by
univariable and multivariable Cox regression analyses to construct a risk score model. Subsequently, Kaplan–Meier
and receiver operating characteristic curves were plotted to assess the performance of this prognostic model.
Finally, a nomogram was established followed by the validation of its prognostic value and expression of the hub
RBPs.

Results: The 385 differentially expressed RBPs were identified included 218 and 167 upregulated and
downregulated RBPs, respectively. The eight independent prognosis-associated RBPs (EFTUD2, GEMIN7, OAS1,
APOBEC3H, TRIM71, DARS2, YTHDC1, and RBMS3) were then used to construct a prognostic prediction model. An in-
depth analysis showed lower overall survival (OS) in patients in the high-risk subgroup compared to that in patients
in the low-risk subgroup according to the prognostic model. The area under the curve of the time-dependent
receiver operator characteristic (ROC) curve were 0.795 and 0.669 for the TCGA training and test datasets,
respectively, showing a moderate predictive discrimination of the prognostic model. A nomogram was established,
which showed a favourable predictive value for the prognosis of BLCA.

Conclusions: We developed and validated the performance of a prognostic model for BLCA that might facilitate
the development of new biomarkers for the prognostic assessment of BLCA patients.
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Background
Bladder cancer (BLCA) is the most common malignancy
in the urinary system, ranking 4th among men and 18th
among women [1]. The 5-year survival rates have
remained generally flat since the 1990s due to late diag-
nosis and limited therapeutics. Patients with ‘non-
muscle-invasive’ tumours are easier to treat and have
lower mortality rate compared to those in patients with
tumours that have grown into the muscle wall or beyond
[2]. Currently, BLCA screening heavily relies on cystos-
copy, upper urography, urine cytology, and computed
tomography (CT) [3]. Cystoscopy is an invasive examin-
ation method that is also expensive and uncomfortable
for patients. However, urine cytology is less sensitive.
The measurement of circulating biomarkers is a promis-
ing diagnostic method owing to their relative availability
in serum and plasma [2]. Thus, there is an urgent need
to identify early diagnostic biomarkers and prognostic
indexes to improve the treatment effects and survival
rate of BLCA.
RNA-binding proteins (RBPs) interact with RNA to

form ribonucleoprotein complexes that regulate RNA
expression and function [4]. As important participants
in post-transcriptional regulation, RBPs are involved in
almost all post-transcriptional regulation processes,
including RNA splicing, translation, transport, localisa-
tion, degradation, and stabilisation [5]. RBP dysregula-
tion has been reported in multiple cancers, which affects
tumorigenesis and development [5]. However, the know-
ledge of RBP-related mechanisms in the development of
cancer remains rudimentary and inconclusive. There-
fore, clarification of the roles of RBPs in BLCA will help
us to better understand tumour pathogenesis and
develop prognostic and response biomarkers.
Recently, various RBP-related mechanisms in cancer

onset and progression have been clarified, including gen-
omic alterations, transcriptional and post-transcriptional
control, and posttranslational modifications [5]. In
addition, RBPs directly or indirectly affected oncogenic
and tumour-suppressive signalling pathways [6]. How-
ever, only a few RBPs have been completely studied and
identified as vital players in human cancers. For
example, PNO1, a novel RBP isolated from the human
kidney, functions as an oncogene in urinary bladder can-
cer by promoting proliferation and inhibiting apoptosis
of urinary bladder cancer cells [7]. ZFP36L1, a tandem
zinc-finger RBP that mediates mRNA decay, acts as a
tumour suppressor to regulate mRNAs involved in
hypoxia and the cell cycle [8]. A recent study demon-
strated that IMP3, a member of the insulin-like growth
factor II messenger RNA binding protein (IMP) family,
was significantly upregulated in muscle-invasive BLCA
compared to non-muscular invasive tissues and could
serve as an independent prognosis predictor for BLCA

patients [9]. Previously, most research mainly focused on
the correlation between a single or a limited number of
RBPs and BLCA. A comprehensive study of RBPs func-
tions will help us to fully understand their roles in
BLCA. Therefore, this study downloaded RNA sequence
data and corresponding clinical information concerning
BLCA from The Cancer Genome Atlas (TCGA) data-
base to screen for RBPs differentially expressed between
tumour and normal samples. Subsequently, a series of
bioinformatics analysis methods were performed based
on these differential RBPs to finally identify eight inde-
pendent prognosis-associated RBPs, which were then
used to construct prognostic and nomogram survival
models. The results of this study might facilitate the
development of prognostic assessment models based on
RBPs in patients with BLCA.

Methods
Data processing
We downloaded RNA sequence and corresponding
clinical data from the TCGA database (TCGA,
https://portal.gdc.cancer.gov/), including 19 normal
samples and 414 BLCA samples. The negative bino-
mial distribution method was used to identify differ-
entially expressed RBPs between normal and BLCA
samples [10]. The l imma package (http://www.
bioconductor.org/packages/release/bioc/html/limma.
html) was used for analysis. Differentially expressed
RBPs were screened using the criteria of false discov-
ery rate (FDR) < 0.05 and |log2 fold-change (FC)| > 1.
The R package pheatmap (https://cran.r-project.org/
web/packages/pheatmap/index.html) was used to per-
form bidirectional hierarchical clustering of the
expression values of the differentially expressed RBPs.

Gene ontology (GO) enrichment and Kyoto Encyclopaedia
of genes and genomes (KEGG) pathway analyses
The biological functions of the differentially expressed
RBPs were systematically examined by GO enrichment
and KEGG pathway analyses using the R packages
DOSE, clusterProfiler, enrichplot, ggplot2, etc. Both P and
FDR values < 0.05 were considered statistically
significant.

Protein-protein interaction (PPI) network construction and
module screening
Differently expressed RBPs were submitted to the STRI
NG database (http://www.string-db.org/) to detect PPIs
[11]. The PPI network was then constructed and visual-
ized using Cytoscape 3.7.0. The Molecular Complex
Detection (MCODE) plug-in was used to screen the key
modules from the PPI network with both MCODE
scores and node counts > 5 [12]. P < 0.05 was considered
statistically significant.
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Prognostic model construction
Eight independent prognosis-associated RBPs were iden-
tified by univariate and multivariate Cox regression.
Afterward, the risk score model was constructed based
on the expression levels and coefficients of the eight hub
RBPs. The risk score of each BLCA patient was calcu-
lated using the following formula: Risk score = β1*Exp1 +
β2*Exp2 + βi*Expi, where β represents the coefficient
value of the independent prognosis-associated RBP, Exp
represents the expression level of the independent
prognosis-associated RBP, and i represents ith hub RBP.

Validating the performance of the prognostic model
The BLCA patients were divided into low- and high-risk
groups according to the median risk score. Survival dif-
ferences between the two groups were evaluated by the
Kaplan–Meier method using log-rank tests. In addition,
receiver operating characteristic (ROC) curves were used
to determine the accuracy of the prognostic model [13].
Subsequently, calibration curves and the concordance
index (C-index) were calculated using the rms (https://
cran.r-project.org/web/packages/rms/index.html) and
the survcomp (http://www.bioconductor.org/packages/

release/bioc/html/survcomp.html) packages in R, re-
spectively. A nomogram survival model was performed
using the R package rms based on the eight independent
prognosis-associated RBPs to predict the survival rate of
BLCA patients at 1, 2, and 3 years. Univariable and mul-
tivariable Cox regression analyses were performed to as-
sess the independent clinical prognostic factors in BLCA
patients from TCGA.

Verification of the prognostic value and expression levels
of the hub RBPs
The prognostic value of the eight RBPs in BLCA was
assessed by plotting the Kaplan–Meier survival curves
using log-rank tests. The Human Protein Atlas (HPA)
online database (http://www.proteinatlas.org/) was used
to investigate the differential expression of the eight hub
RBPs at the protein level between tumour and normal
tissues.

Results
Screening of differentially expressed RBPs
This study performed a series of bioinformatics tech-
niques to comprehensively analyse the roles and

Fig. 1 Flowchart for analysing RBPs in BLCA
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prognostic value of RBPs in BLCA. The flowchart of this
study is shown in Fig. 1. We obtained RNA sequencing
data and clinical information from the TCGA database
containing 414 BLCA tissues and 19 normal tissues. The
expression values of 1542 RBPs [4] were analysed in this
study. A total of 385 differentially expressed RBPs were
identified using the DEseq package that met the criteria
of P < 0.05 and |log2 FC)| > 1.0, including 218 up-
regulated and 167 down-regulated RBPs. The clustering
heatmap and volcano plot of these differentially
expressed RBPs are shown in Fig. 2.

GO and KEGG pathway enrichment analysis of the
differentially expressed RBPs
To investigate the potential function and mechanisms of
the identified RBPs, we divided these differentially
expressed RBPs into upregulated and downregulated
groups and performed GO and KEGG pathway enrich-
ment analyses. The GO enrichment analysis showed that
the biological processes of the upregulated RBPs were
mainly enriched in ncRNA processing, tRNA metabolic
processes, and RNA splicing, while the downregulated
RBPs were mainly enriched for RNA splicing, regulation
of cellular amide metabolic processes, and regulation of
translation. The cellular component analysis indicated
that the upregulated and downregulated RBPs were all
primarily enriched in cytoplasmic ribonucleoprotein and
ribonucleoprotein granules. The molecular function ana-
lysis showed that the upregulated RBPs largely enriched
in catalytic activity, acting on RNA and ribonuclease
activity; meanwhile, the downregulated RBPs were
mainly enriched for translation factor activity, RNA
binding, and mRNA 3′-UTR binding (Fig. 3a and b).

The KEGG pathway enrichment analysis showed that
the upregulated RBPs were significantly enriched in
aminoacyl-tRNA biosynthesis and cysteine and methio-
nine metabolism, while the downregulated RBPs were
enriched in lysine degradation and 2-oxocarboxylic acid
metabolism (Fig. 3c and d).

PPI network construction and key module screening
To further explore the roles of differential RBPs in
BLCA, Cytoscape was used to establish a PPI network
comprising 373 nodes and 4063 edges based on the
STRING database (Fig. 4a). Furthermore, the lines
between the top 10 interacting proteins bolded accord-
ing to the interaction scores. Subsequently, we used the
MODE tool to analyse the co-expression network to
identify the potential key modules. The most important
modules comprised 104 nodes and 1151 edges (Fig. 4b).
KEGG pathway analysis showed that the RBPs in these
key modules were enriched for ribosome biogenesis in
eukaryotes, spliceosomes, mRNA surveillance pathways,
RNA polymerases, Huntington disease, cytosolic DNA-
sensing pathways, RNA transport, RNA degradation, ri-
bosomes, and legionellosis.

Identification of prognosis-related RBPs
A total of 373 key differential RBPs were screened from
the PPI network. To determine the association between
RBPs and BLCA patients’ outcomes, univariable Cox
regression analysis was conducted to evaluate the prog-
nostic value of these key differential RBPs which identi-
fied 19 hub RBPs (Fig. 5a). Subsequently, multivariable
Cox regression analysis was performed to further analyse
these 19 RPBs which showed eight hub RBPs to be

Fig. 2 Differentially expressed RBPs between BLCA and normal tissues. a Heatmap of differentially expressed RBPs. b Volcano map of the 1542
RBPs. The red, green, and black dots indicate high, low, and no difference in expression between bladder cancer and normal tissues
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independent prognostic predictors in BLCA patients
(Fig. 5b).

Validation of the prognostic value and expression of hub
RBPs
To further investigate the prognostic value of these
eight hub RBPs in BLCA, we plotted their Kaplan–

Meier survival curves to assess their relationships with
overall survival (OS). Six hub RBPs (gem nuclear or-
ganelle associated protein 7 [GEMIN7], 2′-5′-oligoa-
denylate synthetase 1 [OAS1], apolipoprotein B
mRNA editing enzyme catalytic subunit 3H [APO-
BEC3H], aspartyl-tRNA synthetase 2, mitochondrial
[DARS2], YTH domain containing 1 [YTHDC1], and

Fig. 3 GO and KEGG pathway enrichment analysis of the differentially expressed RBPs. a GO enrichment analysis of upregulated expressed RBPs.
b GO enrichment analysis of downregulated expressed RBPs. c KEGG pathway analysis of upregulated expressed RBPs. d KEGG pathway analysis
of downregulated expressed RBPs

Fig. 4 PPI network and key modules analysis. a PPI network of differentially expressed RBPs. b Key modules from the PPI network. Green circles:
down-regulated RBPs. Red circles: up-regulated RBPs. The bold lines represent the top 10 interacting proteins among these expressed RBPS
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RNA-binding motif, single-stranded-interacting pro-
tein 3 [RBMS3]) were correlated with OS in BLCA
patients (Fig. 6). Furthermore, we used immunohisto-
chemistry results from the HPA database to further
explore the protein expression levels of these hub
RBPs in BLCA. The results showed higher tripartite
motif containing 71 [TRIM71] expression in BLCA
tissues compared to that in non-tumour tissues,

while DARS2 and RBMS3 expression levels were
downregulated in tumour tissues. Meanwhile, there
was no significant difference in the expression levels
of OAS1, APOBEC3H, and YTHDC1 between
tumour and normal tissues (Fig. 7). No data were
available for elongation factor Tu GTP binding do-
main containing 2 [EFTUD2] and GEMIN7 in the
HPA database.

Fig. 5 Prognosis-related RBP selection by univariable and multivariable Cox regression analyses. a Univariable Cox regression analysis for the
identification of prognosis-associated RBPs. b Multivariable Cox regression analysis for the identification of independent prognosis-related RBPs

Fig. 6 Survival analysis to verify the prognostic value of the hub RBPs in BLCA. Kaplan–Meier survival curves of a GEMIN7, b OAS1, c APOBEC3H,
d DARS2, e YTHDC1, and f RBMS3. P < 0.05 indicated statistical significance
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Construction and analysis of a prognosis-related risk
score model
We established a prognosis-related risk score model
based on the eight independent prognosis-associated
RBPs. The risk score of each BLCA patient was cal-
culated according to the following formula: Risk
score = (0.6449 * ExpEFTUD2) + (− 0.5050 * ExpGE-
MIN7) + (− 0.2456 * ExpOAS1) + (− 0.3768 * ExpA-
POBEC3H) + (0.5310 * ExpTRIM71) + (0.3403 *
ExpDARS2) + (− 0.6204 * ExpYTHDC1) + (0.4484 *
ExpRBMS3).
We then applied survival analysis to assess the predict-

ive performance of this model. A total of 407 BLCA
patients from TCGA were divided into the training and
test datasets containing 204 cases and 203 cases, respect-
ively. We then divided the 204 BLCA patients in the
training dataset into low- and high-risk groups according

to the median risk score. The result showed that patients
in the high-risk group had a poor OS compared with
those in the low-risk group (Fig. 8a). In addition, we
constructed calibration plots and calculated the C-index,
which was respectively 0.6368, 0.6967 and 0.6995 for OS
prediction at the 1-, 2-and 3-year, suggesting a good
conformity between the predicted and observed
outcomes (Fig. 8b). Furthermore, a time-dependent ROC
analysis [13], performed to further assess the prognostic
power of the risk score model, showed an area under the
ROC curve (AUC) of 0.795 (95% confidence interval,
0.707–0.876) (Fig. 8c), indicating the favourable predict-
ive discrimination of the prognostic model.
Subsequently, BLCA patients in the training dataset were
ranked by risk score to analyse their survival distribution.
The heatmap showed the expression profile of the hub
RBPs with increasing numbers of dead patients (Fig. 8d).

Fig. 7 Validation of hub RBP expression in BLCA and normal bladder tissue from the HPA database. Immunohistochemistry results of a TRIM71, b
DARS2, c RBMS3, d OAS1, e APOBEC3H, and f YTHDC1
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The scatter plot showed that the mortality rate of the
patients increased with increasing risk score (Fig. 8e). We
also validated the prognostic ability of this model in the
test dataset, observing consistent results between the test
and training datasets (Fig. 9a-e). These results showed
acceptable sensitivity and specificity of the prognostic
model.

Construction of a nomogram
To establish a quantitative prediction method for
evaluating BLCA prognosis, we constructed a nomo-
gram based on the eight independent prognosis-
associated RBPs (Fig. 10). The point scale in the
nomogram was used to assign points to each variable.
We drew a vertical line to determine the points for
each variable and summed the points of all variables
to calculate the total points for each patient, which
was then normalized to a distribution of 0 to 100.

Hence, we could estimate the survival rates of BLCA
patients at 1, 2, and 3 years by calculating the total
points for each patient by drawing a vertical line be-
tween the total point axis and each prognosis axis.
This approach may help clinicians to make clinical
decisions for BLCA patients.

Assessment of the prognostic value of clinical parameters
To further assess the prognostic value of different clin-
ical characteristics in BLCA patients from the TCGA
database, we performed Cox regression analysis. The
result of univariable analysis showed that age, tumour
stage, and risk score were related to OS in BLCA
patients (Fig. 11a). In the multivariable Cox regression
analysis, only tumour stage and risk score remained
independent prognostic indicators for BLCA patients
(Fig. 11b).

Fig. 8 Risk score analysis based on the eight hub RBPs in the TCGA training dataset. a Survival analysis of the low- and high-risk subgroups. b
Calibration curve of the nomogram to predict the probability of overall survival at 1, 2, and 3 years for BLCA patients in the TCGA training dataset.
The x- and y-axes represent the predicted and actual overall survival, respectively. c ROC curve assessment of the prognostic ability of the risk
score model. d Heatmap of the expression profiles of the eight hub RBPSs. e Survival statuses of BLCA patients with different risk scores
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Discussion
Increasing evidence has confirmed the role of RBPs in
carcinogenesis and some studies have consistently
emphasized the association of RBPs as candidate bio-
markers for patient prognosis and response to therapy in
different cancer types [14–17]. However, how to apply
these findings to clinical practice warrants further study.
In the present study, we first screened 385 RBPs differ-
entially expressed between BLCA and normal tissues
from the TCGA database. Then, we systematically ana-
lysed the biological pathways and constructed PPI net-
works for these differential RBPs. Subsequently, we
performed univariable and multivariable Cox regression
analyses to further identify eight independent prognosis-
associated RBPs. To further understand their biological
functions and clinical significance, we also conducted
survival and ROC analyses of the eight hub RBPs. Fi-
nally, we constructed a risk model based on these eight

prognostic hub RBPs to predict the prognosis of BLCA
patients. The results of our study provide new bio-
markers for prognostic assessment of BLCA patients.
GO enrichment analysis showed that the biological

processes (BPs) of the differently expressed RBPs were
mainly enriched for ncRNA processing, tRNA meta-
bolic processes, RNA splicing, regulation of mRNA
metabolic processes, ribosome biogenesis, and transla-
tional regulation. Calo et al. reported that DExD-box
helicase 21 (DDX21), a member of the DEAD-box
RNA helicase family, was required for pre-rRNA pro-
cessing; occupied the transcribed rDNA locus; directly
contacted both rRNA and snoRNAs; and promoted
rRNA transcription, processing, and modification in
the nucleolus [18]. Protein quaking (QKI), a splicing
factor frequently downregulated in lung cancer and
correlated with poor prognosis, selectively suppressed
the inclusion of NUMB mRNA exon 12 to promote

Fig. 9 Risk score analysis based on the eight hub RBPs in the TCGA test dataset. a Survival analysis of the low- and high-risk subgroups. b The
calibration curve of the nomogram to predict the probability of overall survival at 1, 2, and 3 years for BLCA patients in the TCGA test dataset. The
x- and y-axes represent the predicted and actual overall survival, respectively. c ROC curve assessment of the prognostic ability of the risk score
model. d Heatmap of the expression profiles of the eight hub RBPSs. e Survival statuses of BLCA patients with different risk scores
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the expression of a NUMB isoform, thereby inhibiting
proliferation and the Notch signalling pathway [19].
Another study reported that DEAH-box helicase 37
(DHX37), an ATP-dependent RNA helicase, was
essential for ribosome biogenesis by facilitating small
ribosomal subunit maturation. The cellular compo-
nent analysis in the present study showed that the
differential RBPs were primarily enriched for cytoplas-
mic ribonucleoprotein granule, ribonucleoprotein
granule, mitochondrial ribosome, and P-body.
Recently, Rozanska et al. demonstrated that ribosome
binding factor A (RBFA) was a mitochondrial RBP

that played important roles in mitoribosome biogen-
esis. RBFA combined with helices 44 and 45 of the
12S rRNA in the mitoribosomal small subunit
promoted the dimethylation of two highly conserved
consecutive adenines, necessary for completing mito-
chondrial rRNA maturation and promoting the for-
mation of a functional mitoribosome [20]. P-body, a
cytoplasmic ribonucleoprotein granule, reportedly
played a crucial role in translational repression and
mRNA decay [21]. NBDY (NoBody), a recently identi-
fied P-body protein, inhibited mRNA turnover, as the
silencing of NBDY expression destabilized a reporter

Fig. 10 Nomogram predicting 1 -, 2 -, and 3-year OS of BLCA patients in the TCGA

Fig. 11 Prognostic value of different clinical parameters. a Forest plots of univariable Cox regression analysis. b Forest plots of multivariable Cox
regression analysis. P < 0.05 indicated statistical significance
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of nonsense-mediated decay [22]. YTH N6-
methyladenosine RNA binding protein 2 (YTHDF2),
another recently discovered P-body protein, is specif-
ically bound to N-methyladenosine and promoted the
destabilization of mRNAs with this modification [23].
Regarding molecular function, the differential RBPs in
the present study were largely enriched for catalytic
activity, acting on RNA, ribonuclease activity, transla-
tion factor activity, and RNA and ribonucleoprotein
complex binding. For example, mex-3 RNA binding
family member C (MEX-3C) is a MEX-3-homologous
protein with E3 ubiquitin ligase activity mediated by a
RING domain and critical for RNA degradation [24].
Cano et al. demonstrated that MEX-3C regulated
HLA-A2 expression by binding to its 3′-UTR, thereby
inducing the ubiquitin-dependent degradation of this
mRNA [25, 26].
The KEGG pathway analysis revealed that the differen-

tially expressed RBPs were significantly enriched for
aminoacyl-tRNA biosynthesis, methionine metabolism,
lysine degradation, and 2-oxocarboxylic acid metabol-
ism. A previous study reported that the faithful transla-
tion of genetic information from mRNA to protein is
determined by two factors: the availability of aminoacyl-
tRNAs composed of cognate amino acid-tRNAs pairs
and the accurate selection of aminoacyl-tRNAs on the
ribosome. Therefore, aminoacyl-tRNA biosynthesis,
which is mediated by aminoacyl-tRNA synthetases, is
crucial for translational quality control [27]. However,
the role of RBP-mediated aminoacyl-tRNA biosynthesis
in BLCA is unclear and warrants further study. AtGRP7,
a known circadian clock regulated glycine-rich RBP, is
an alternative splicing regulator [28]. Steffen et al. dem-
onstrated that AtGRP7 loss-of-function mutants in-
creased dimethylated lysine 4 levels in histone H3, which
are markers of active transcription [29].
Subsequently, we established a PPI network of these

differentially expressed RBPs and constructed a module
containing 104 key RBPs. Most of these key RBPs have
been reported to play important roles in cancer initi-
ation, development, and metastasis. Cancer susceptibility
candidate 3 (CASC3), also known as metastatic lymph
node 51 (MLN51), is a splicing factor that regulates long
intron-containing genes splicing. CASC3 overexpression
significantly promoted hepatocellular carcinoma cell
proliferation [30]. EFTUD2, an alternative splicing fac-
tor, may regulate the innate immune response in macro-
phages. Silencing of EFTUD2 expression significantly
inhibited chronic intestinal inflammation and tumori-
genesis, which was related to the reduced production of
inflammatory cytokines and tumorigenic factors [31].
DDX39, a DEAD-box RNA helicase, was upregulated in
hepatocellular carcinoma tissues and cells and negatively
correlated with patient OS. Furthermore, DDX39

overexpression promoted hepatocellular carcinoma cell
proliferation and invasion through the Wnt/β-catenin
pathway [32]. Block of proliferation 1 (BOP1), which
reportedly participates in 28S and 5.8S ribosomal RNA
processing and 60S ribosome biogenesis, was down-
regulated in patient-derived melanoma samples [33, 34].
A loss of BOP1 also resulted in acquired resistance to
BRAF kinase inhibitors in melanoma by increasing
MAPK signalling [34]. Importin 4 (IPO4) belongs to the
importin β family, which is responsible for transporting
histones H3 and H4 into the nucleus for chromatin
assembly [35]. Xu et al. reported IPO4 overexpression in
gastric cancer tissues and cell lines and demonstrated
that IPO4 knockdown suppressed gastric cancer cell
proliferation and migration [36]. This brief overview
highlights the role of RBPs in tumorigenesis and devel-
opment. Thus, the regulation of RBPs may represent an
important breakthrough in tumour diagnosis, therapy,
and prognostic prediction.
In this study, we finally identified eight independent

prognosis-associated RBPs and used them to construct a
prognostic prediction model. Moreover, the prognostic
ability of this model was validated in the test dataset,
which also showed a good predictive performance.
Although five of the eight hub RBPs did not have statis-
tically significant differences in the multivariate Cox
regression analysis, these hub genes were found to be
associated with OS in BLCA patients through survival
analyses, which means these genes can be used to pre-
dict the prognosis of BLCA patients. Therefore, these
five hub genes were also included when we constructed
prognostic model. Among these hub RBPs, high expres-
sion levels of GEMIN7, OAS1, APOBEC3H, and YTHD
C1 were associated with favourable prognosis in BLCA
patients, while high expression levels of DARS2 and
RBMS3 predicted poor prognosis. A previous study
reported that GEMIN7, a component of the survival
motor neuron complex, is involved in the biogenesis of
the small nuclear ribonucleoprotein complex [37]; how-
ever, its role in cancers is rarely reported. OAS1, initially
identified as an interferon-induced antiviral enzyme, was
recently associated with 5-azacytidine (AZA) sensitivity,
the deficiency of which resulted in the NCI-60 set of
cancer cell lines resistant to AZA [38]. APOBEC3H is a
single-stranded DNA cytosine deaminase that can
induce mutations in tumour cells, resulting in immune
recognition or cancer cell death [39]. YTHDC1, a N6-
methyladenosine binding protein localized in YT-bodies
adjacent to nuclear speckles, regulates mRNA splicing
by recruiting splicing factors to the targeted mRNA [40].
DARS2 promoted cell cycle progression and inhibited
hepatocellular carcinoma cell apoptosis via the miR-30e-
5p/MAPK/NFAT5 pathway [41]. Wu et al. demonstrated
that the loss of RBMS3 in epithelial ovarian cancer not
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only induced chemoresistance to platinum but also pro-
moted recurrence via miR-126-5p/β-catenin/CBP signal-
ling. Moreover, the loss of RBMS3 was associated with
poor overall and relapse-free survival in epithelial ovar-
ian cancer patients [42]. Another study found that
RBMS3 inhibited breast cancer cell proliferation, migra-
tion, and invasion through the Wnt/β-catenin signalling
pathway [43]. The loss of EFTUD2 repressed colonic in-
flammation and tumorigenesis via inactivation of NF-κB
signalling [31]. TRIM71, an E3-ubiquitin ligase, induced
ubiquitination and degradation of mutant p53 by bind-
ing to its transactivation domain in ovarian cancer, lead-
ing to decreased ovarian cancer cell growth [44].
However, the functions and molecular mechanisms of
these hub RBPs in BLCA remain poorly understood;
thus, functional experiments are needed to further
explore their potential roles and mechanisms. Moreover,
large sample and multi-centre clinical studies are
expected to verify the results.
In summary, our study systematically analysed the

expression and prognostic value of differentially
expressed RBPs in BLCA using a series of bioinformatics
techniques. We finally identified eight independent
prognosis-associated RSPs and successfully constructed
a prognostic risk score model to effectively assess the
prognosis of BLCA patients. To our knowledge, this is
the first study to develop an RBP-related prognostic
model for BLCA. This study provides a basis for the
development of new therapeutic targets and prognostic
biomarkers.

Conclusion
We developed a prognostic model for BLCA patients
and validated the performance of the model, which
might facilitate the development of new biomarkers for
the prognostic assessment of BLCA patients.
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