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Large scale structure-function 
mappings of the human subcortex
Max C. Keuken   1,2, Leendert van Maanen1,3, Michiel Boswijk1, Birte U. Forstmann1 & 
Mark Steyvers4

Currently little is known about structure-function mappings in the human subcortex. Here we present 
a large-scale automated meta-analysis on the literature to understand the structure-function mapping 
in the human subcortex. The results provide converging evidence into unique large scale structure-
function mappings of the human subcortex based on their functional and anatomical similarity.

Approximately a quarter of the human brain consists of the subcortex1 but is to a large extent still uncharted 
territory2. An important reason for this knowledge gap is that the human subcortex is notoriously difficult to vis-
ualize and analyze with functional magnetic resonance imaging (fMRI) because subcortical nodes are relatively 
small and lie relatively far away from the receiver coils of the MRI scanner3,4. Moreover, only 7% of subcortical 
structures are depicted in standard MRI-atlases2,3,5, making the subcortex challenging to study using standard 
MRI pipelines.

To gain an understanding of the mapping of cognitive functions to subcortical structures, we hypothe-
sized that structure can inform function3,6–8. Testing this prediction with meta-analytical tools such as ALE or 
Neurosynth9,10 is, however, challenging for the subcortex and methods are based on smoothed activation maps 
in a standard brain.

To understand the structure-function mapping in the subcortex, we applied a novel approach based on an 
automated analysis of structure and function terms found in the literature. To this end, we harvested publications 
from the PubMed database that were associated with subcortical grey matter structures, with a functional neuro-
imaging technique (e.g., fMRI), and that studied humans. We conducted a large-scale automated meta-analysis 
on the literature to (1) find the subcortical structures that are studied the most, (2) find what - if any - are the 
cognitive functions most commonly associated with the human subcortex, (3) understand if there is a similarity 
between the cognitive functions implemented in subcortical regions, and (4) whether this functional similarity 
can be explained by the anatomical similarity between subcortical regions. These publications were classified 
according to their assigned Medical Subject Headers (MeSH topics). The MeSH ontology contains hierarchically 
ordered topics, that include cognitive and non-cognitive topics. We validated our results with a probabilistic topic 
model8,11,12, constructed from the keywords present in the title and abstracts of the publications, and therefore 
independent of the MeSH ontology.

Results
The PubMed search query resulted in approximately 37k unique publications for 145 of the 424 known sub-
cortical structures, of which 103 were associated with a Psychological phenomena and processes MeSH topic. 
Fig. 1A shows that a few structures (thalamus, striatum, putamen, pons, caudate nucleus) account for most of 
the publications (57% of the corpus). These structures, as well as many others, are predominantly associated with 
non-cognitive MeSH topics. There are, however, some structures (e.g., the ventral striatum, nucleus accumbens, 
and dorsal striatum) which are associated with more cognitive MeSH topics than with non-cognitive topics. The 
non-cognitive versus cognitive loading per structure did not heavily depend on the ontology that was used. This 
MeSH topic result was replicated using probabilistic topic modeling12 that resulted in a very similar square tree 
map (Fig. 1B). The Spearman rank-correlation between the proportion of cognitive topics as defined by the MeSH 
ontology and the proportion of cognitive topics based on the probabilistic topic modeling for all 145 subcortical 
structures that had more than one publications was ρ = 0.50 (S = 251920, p < 0.001).
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There seems to be substantial variability in the proportion of subcortical structures associated with a given 
MeSH topic. As is shown in the top panel of Fig. 2, only the top-level MeSH topic Eukaryota is associated with 
all 145 structures for which we have data. Top-level MeSH topics such as Nervous System, Nervous System 
Diseases, and Psychological phenomena and processes are associated with most of the 145 subcortical structures, 
whereas topics as Dentistry and plant structures generally seem to have lower associations. Similarly, within 
the Psychological phenomena and processes MeSH topics there are a number of topics such as Mental Processes, 
Psychomotor Performance, and Arousal that are associated with a substantial portion of the subcortical areas, 
whereas topics such as Volition and Appetite are more sparsely associated (Fig. 2, bottom panel).

For the 40 anatomical structures with the highest number of publications (98% of the corpus) we plotted the 
number of MeSH topics per top-level topic of the MeSH tree (Fig. 3, top panel) and separately for the Psychological 
phenomena and processes subtopic, which is used to define cognitive topics (Fig. 3, bottom panel). It is clear that 
the well-studied structures (e.g., the thalamus) are related to a large number of non-cognitive topics but also to 
a wide range of cognitive topics. Also, some level of specification can be observed: For example, relative to the 
other cognitive phenomena, the dorsal striatum seems to be mostly associated with learning, reinforcement, and 
reward, whereas the mesencephalon is dominated by sensation-related topics. Interestingly, the ventral striatum 
seems to have a similar functional profile as the dorsal striatum which is in line with the fact that sharp anatomical 
borders seem to be absent between the two regions13.

We then tested whether there is a relationship between the functional similarities of subcortical structures 
as defined by the co-occurrence of MeSH topics. As shown in Fig. 4A, there is a clear organization of the func-
tional MeSH similarity matrix, indicating that a number of subcortical areas are more similar in function to each 
other than to others. A similar functional similarity between subcortical structures was found when using the 
topic model (Fig. 4B), which correlated with the MeSH topic similarity (ρ = 0.47, S = 2.145e+10, p < 0.001). The 
functional similarity matrix was generated by first creating a vector indicating the load of a given functional label 
per anatomical structure. This was done both for the Psychological phenomena and processes MeSH topics and 
the psychological topic probability models. The functional similarity matrices were generated by correlating the 
associated functional vector for a given brain structure with any of the other brain structures. A possible explana-
tion why certain structures are functionally similar could be their common developmental origin, i.e., anatomical 
similarity14. Anatomical similarity is defined as the hierarchical edge distance in the anatomical terminology by 
the Federative Community on Anatomical Terminology (FCAT) (Fig. 4C). The hierarchical anatomical termi-
nology provided by FCAT is organized according to embryonic vertebrate brain development and topographical 
rules15. In the method section we provide a visualization of a small section of the FCAT hierarchical tree and 
the corresponding anatomical similarity (see the Anatomical similarity section of the methods). This hypothesis 
was tested by correlating the anatomical similarity as defined by edge-counting with the functional similarity. 
We found a positive correlation between the MeSH similarity matrix (Fig. 4A) and the anatomical edge dis-
tance similarity matrix (Fig. 4C; ρ = 0.19, S = 1.9533e+10, p < 0.001). This suggest that if the MeSH topics of two 

Figure 1.  A few structures account for most of the retrieved publications, but usage of cognitive versus non-
cognitive topics do not depend on the ontology. The area associated with each of those 145 structures is based 
on the number of unique publications found with this query. (A) The color coding reflects the proportion 
of publications that contained MesH topics associated with cognitive terms for each structure. (B) The color 
coding reflects the proportion of publications that contained data-driven topics associated with cognitive terms 
for each structure.
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structures are comparable, their anatomical hierarchical distance is also comparable. Using a functional similarity 
measure derived from the probabilistic topic model (Fig. 4B) again resulted in a similar positive correlation with 
the anatomical edge-counting distance (Fig. 4C; ρ = 0.26, S = 1.7974e+10, p < 0.001). Similarly, when determin-
ing the anatomical similarity by controlling for taxonomic hierarchical level (Fig. 4D) we find a positive, albeit 
lower, correlation with MeSH similarities (ρ = 0.11, S = 2.145e+10, p < 0.001) and topic model similarity (ρ = 0.11, 
S = 2.1607e+10, p < 0.001). See the method section Anatomical similarity for the difference between edge-counting 
and account for the taxonomic hierarchical levels.

The final analysis was done to test how spurious the similarity correlations were by creating a correlation 
null distribution. The results indicate that the correlation between the anatomical similarity as defined by 
edge-counting and the MeSH similarity and topic model similarity is 13.8 SD and 18.6 SD removed from the 
permuted null distribution (Fig. 5A,B). The correlation between the anatomical similarity as defined by the con-
cept hierarchy, and the MeSH and topic model similarity is 8.1 SD and 7.6 SD, respectively, removed from the 

Figure 2.  Proportion of subcortical structures associated with the MeSH topics. The proportion of the 145 
subcortical structures that are associated with a given MeSH topic (x-axis). Top panel: The ratio for the top-level 
MeSH topics are displayed. Bottom panel: The ratio for the most frequently associated cognitive subtopics of the 
“Psychological phenomena and processes” branch are displayed. For visualization purposes only, we selected the 
“Psychological phenomena and processes” topics that had at least 13 publications associated with them. Note that 
this number was arbitrarily chosen to ensure manageable figure dimensions. The data and code to generate the 
figure without this filter can be found on osf.io/nf482.
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permuted null distribution (Fig. 5C,D), making it unlikely that these results are due to chance. Therefore, while 
the correlation coefficients are low, the anatomical similarity between areas seems to be informative of the func-
tional similarity.

Discussion
We found that only a small proportion of subcortical structures is systematically studied using functional neu-
roimaging techniques, and that the majority of those studies do not relate to cognitive function terms, defined 
by either the MeSH ontology, or a data-driven topic model. The absence of the bulk of subcortical structures 
might be explained by the fact that only a small percentage of subcortical structures is accessible using standard 
MRI atlases2,16. A potential solution for this discrepancy is the use of individual anatomy to identify the subcor-
tical structures per individual3. Such an approach is increasingly more feasible with the recent advancement of 
ultra-high field MRI (7 Tesla and higher), as the subcortical structures can be more easily distinguished from their 

Figure 3.  Structure-function mapping of the human subcortex. MeSH topics (x-axis) are shown for the 
subcortical structures with the highest number of unique publications (y-axis). Color shading indicates the 
number of publications for each structure-function pair. Top panel: The top main MeSH topics are displayed 
including the main Psychological phenomena and processes topic. Bottom panel: The top cognitive subtopics of 
the Psychological phenomena and processes branch. For visualization purposes only, we selected the Psychological 
phenomena and processes topics that had at least 13 publications associated with them. Note that this number 
was arbitrarily chosen to ensure manageable figure dimensions. The data and code to generate the figure 
without this filter can be found on osf.io/nf482. Values are cumulative according to the hierarchical structure of 
the MeSH ontology (different levels of the ontology are indicated by wider vertical spacing). Note that a similar 
figure is not possible for the topic model as the hierarchical topic structure is lacking.
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direct surrounding4,17,18. A noteworthy observation is that it seems that subcortical brain structures that are easier 
to visualize with MRI are more often discussed in the literature. Although we cannot quantify this observation 
because of a lack of volume estimates of many of the structures, this could have potentially biased our results. 
Future work could focus on charting these smaller subcortical areas3 such that (1) volumetric estimates become 
available, and (2) probabilistic atlases are created. Together with increased spatial resolution in ultra high-field 
imaging17,18, this would allow for targeted functional imaging of small subcortical nuclei. It is our belief that 
such a combined approach will close the gap in our understanding of structure-function mapping of the human 
subcortex.

We also found that certain cognitive subcortical networks seem to exist, in that cognitive terms co-occur in 
subsets of the subcortical regions. As demonstrated in Fig. 3, there may, however, not be a simple one-to-one 
mapping of cognitive functions to subcortical structures. For instance, the dorsal striatum seems to be associated 
mostly, but not exclusively, with learning, reinforcement, and reward. This makes it challenging to infer cognitive 
functions from neuroimaging data, which is also known as the reverse inference problem8,19. One approach to 
address this problem is to account for the likelihood of activation during a task given the base rate activation 
across tasks19–21. Meta-analytic tools such as Neurosynth can provide reverse inference statistical maps9. Such 
maps can be used to estimate the relative selectivity with which a region activates, controlled for the base rate of 
activation across tasks. Our approach is complementary to such reverse inference maps as we can illustrate the 
functional-anatomical similarity across regions. Taking both the activation selectivity within and between regions 
into account, one can start to infer the structure-function relationship in the brain.

Figure 4.  The similarity matrices for the 103 structures that had at least one psychological phenomenon or 
process associated with it. (A) The MeSH functional similarity matrix. (B) The Topic modeling functional 
similarity matrix. (C) The anatomical similarity matrix as defined by the edge distance. (D) The anatomical 
similarity matrix as defined by the concept hierarchy distance. The MeSH similarity matrix (panel A) is 
organized using a hierarchical clustering algorithm to optimize the visualization of the internal block structure. 
The other three matrices in panel (B–D) have been reorganized to have the identical organization as the 
MeSH similarity matrix. The arrows and corresponding ρ values indicate the correlation between the different 
matrices.



www.nature.com/scientificreports/

6SCIeNTIFIC REPOrtS |         (2018) 8:15854  | DOI:10.1038/s41598-018-33796-y

Limitations.  There are a few limitations of our study that need to be addressed. Firstly, the anatomical 
nomenclature of the FCAT is not universally adopted by the scientific community22,23. To illustrate this, the search 
query for the ventral tegmental nucleus only resulted in a single hit. This was surprising as this nucleus contains a 
large number of dopaminergic neurons which are thought to be crucial for a wide range of cognitive functions24. 
The lack of hits can be explained by the fact that the scientific community uses a slightly different term, namely the 
ventral tegmental area, which is not incorporated in the FCAT. Secondly, another limitation relates to the hierar-
chical structure as a proxy for anatomical similarity as it does not take the actual spatial proximity into account. 
Especially with the use of relatively large smoothing kernels in fMRI the chance of misattributing the BOLD sig-
nal - and therefore function to adjacent structures - becomes problematic25. Such a mixture of structure-function 
associations might hinder the one-to-one mapping of function to structure. A control analysis for such a spatial 
mixture would entail an anatomical similarity index based on the relative spatial location. Another control anal-
ysis would be to incorporate diffusion weighted imaging (DWI) and resting-state fMRI data to determine the 
connectivity between anatomical structures that have a high functional similarity. These two control analyses are, 
however, currently not feasible as only a fraction of the subcortical structures are mapped in standard anatomical 
MRI atlases2,3. A final limitation concerns the structures that were not associated with any Psychological phenom-
ena and processes MeSH term. There is a certain (unknown) probability that these structures are in fact associated 
with psychological phenomena or processes, but are not in included in the analysis because there are no papers 
that study this association. Our similarity matrices do not account for this probability, and in particular do not 
account for the probability that this occurs in a specific non-random subset of structures. This may be due to the 
fact that the literature is biased towards larger structures. Whether the functional similarities that we identify 
and the structure-function mappings extend to these non-studied subcortical areas is a matter of future research.

Figure 5.  The correlation coefficient of anatomical and functional similarity relative to a null distribution. 
(A) The correlation between the anatomical similarity as defined by the edge-distance and MeSH similarity is 
13.8SD removed from the null distribution. (B) The correlation between the anatomical similarity as defined 
by the edge-distance and Topic model similarity is 18.6SD removed from the null distribution. (C) The 
correlation between the anatomical similarity as defined by the concept hierarchy and MeSH similarity is 8.1SD 
removed from the null distribution. (D) The correlation between the anatomical similarity as defined by the 
edge-distance and probability topic model similarity is 7.6SD removed from the null distribution. The red line 
indicates the true correlation coefficient between the anatomical and functional matrices.
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Conclusion
The results give insight into unique large scale structure-function mappings of the human subcortex and have 
the potential to generate functional predictions for lesser known structures based on their anatomical similarity.

Materials and Methods
Pubmed search query.  A comprehensive literature search was conducted using the Entrez search tools 
implemented in the Biopython’s Bio.Entrez module26. This is a python application programming interface (API) 
tool that queries the PubMed database (www.pubmed.org). The query date was the 28th of June 2017 and used 
the following search query: Subcortical structure name AND (MRI OR fMRI OR PET OR electrophysiology) 
AND (humans OR humans [MeSH Terms]). The search query was specified with a list of subcortical structure 
names from the Federative Community on Anatomical Terminology (FCAT)5. We queried English and Latin 
spelling of each structure and the corresponding officially acknowledged equivalent or synonyms. This list and 
the corresponding hierarchical order of these subcortical structures can be found online (www.unifr.ch/ifaa/
Public/EntryPage/ShowTA98EN.html). The different spellings and synonyms were included to ensure a com-
prehensive search but did result in a number of duplicate publications. To not bias the results, all duplicates were 
removed from further analysis. The search query resulted in 37,367 unique publications for 145 of the 424 FCAT 
structures, of which 103 were associated with a Psychological phenomena and processes MeSH topic. The list of 
structures for which we did not find any publication include structures such as periventricular nucleus, the sub 
nuclei of the red nucleus, and the tail of the caudate nucleus. The entire list of 279 missing structures can be found 
on www.OSF.io/nf482. It was surprising not to find any publications for the periventricular nucleus as it is an 
area which is frequently targeted with deep brain stimulation to alleviate intractable pain27. The resulting unique 
PubMed ID, title, abstract, and corresponding Medical Subject Header (MeSH, see below) terms were combined 
per structure and used for further analysis.

MeSH ontology.  The MeSH ontology is a set of terms in a hierarchical structure that is manually curated 
by the U.S. National Library of Medicine and describes a broad range of terms that occur in the scientific medi-
cal literature. Each entry on PubMed is (or is in the process of being) associated with a set of MeSH terms from 
this ontology. The MeSH hierarchical tree can be found online (https://www.nlm.nih.gov/mesh/2017/down-
load/2017MeshTree.txt) and was queried on 20th of July 2017.

Topic modelling.  Probabilistic topic models were applied to the ~37 k unique publications from the PubMed 
search query. Stopwords were removed from the text using a standard stopword list and documents with empty 
abstracts were removed, resulting in a set of ~26k documents and ~4.2 million word tokens, and a vocabulary of 
~44 k terms. The Latent Dirichlet allocation collocations model (LDA-COL28) was applied to the resulting data set 
using T = 50, 100, and 200 topics to achieve different levels of granularity in the topics. For each dimensionality, 
the model was run with standard hyperparameter settings28, for 5000 iterations. In contrast to the standard LDA 
model, the LDA-COL model groups together frequently co-occurring terms into single vocabulary items (e.g., 
“functional magnetic resonance imaging” is turned into a single term) which facilitates interpretation.

Labeling structures with cognitive topics.  Two different ontologies were used to determine whether 
a structure can be linked to a certain cognitive topic. The first ontology was based on the classification used in 
the MeSH hierarchical tree. According to the MeSH description, all terms nested in the node Psychological phe-
nomena and processes (MeSH ID: D011579; MeSH tree number: F02) encompass all subtopics that relate to the 
mechanisms and underlying psychological principles of the mental processes and their applications. All other 
nodes we classified as non-cognitive topics.

The second ontology that was used to determine whether a structure was related to a cognitive function 
derived from the probabilistic topic modelling approach. Two independent raters (MCK, MS) manually labelled 
all topics (across the model dimensionalities of 50, 100, and 200 topics) that related to a cognitive topic. The 
intraclass correlation coefficient (ICC) in labelling a cognitive topic was 0.71 for the topic model with 50 topics, 
0.70 for the topic model with 100 topics, and 0.85 for the topic model with 200 topics, indicating good to excellent 
agreement between the two raters29. The topics that were used in subsequent analyses were those topics judged 
by both raters as being cognitive, separately for all model runs (with 50, 100, or 200 topics). The 50, 100, and 200 
topic models contained 7, 17, and 25 cognitive topics, respectively, for a total of 49 cognitive topics. For each 
document, we created a vector of 49 topic probabilities that concatenated these probabilities across topic models. 
Next, for each subcortical structure, we averaged the vector values across all documents that were associated with 
the subcortical structure. The similarity between subcortical structures was computed on the basis of the correla-
tion between the topic vectors associated the subcortical structures.

Functional similarity.  The MeSH and topic modelling similarity were based on correlations for the 103 
structures that had at least one Psychological phenomena and processes MeSH term and a cognitive topic model 
association. Structures that were not associated with any Psychological phenomena and processes MeSH term were 
not considered in these analyses. For each given brain structure, a vector of counts was created representing the 
number of documents with a particular MeSH term. For each document, the MeSH terms are rolled up through 
the MeSH hierarchy, meaning that terms lower in the MeSH hierarchy are added to the higher level parent MeSH 
term count. For any two brain structures (X, Y), the similarity was based on ρ(X, Y), where ρ indicates the corre-
lation between the corresponding vector for structure X and structure Y. This was done for the MeSH vector and 
psychological topic probability vector separately. To have similar scaling for the MeSH count and psychological 
topic probability vectors the two similarities were normalized between 0.0 and 1.0.

http://www.pubmed.org
http://www.unifr.ch/ifaa/Public/EntryPage/ShowTA98EN.html
http://www.unifr.ch/ifaa/Public/EntryPage/ShowTA98EN.html
http://www.OSF.io/nf482
https://www.nlm.nih.gov/mesh/2017/download/2017MeshTree.txt
https://www.nlm.nih.gov/mesh/2017/download/2017MeshTree.txt
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Anatomical similarity.  The hierarchical anatomical terminology provided by FCAT is organized according 
to embryonic vertebrate brain development and topographical rules15. The anatomical similarity was based on 
the minimum number of edges in the hierarchical tree between each of the 103 structures that had a psychological 
phenomena and process MeSH term30. For instance, for the four structures (a) diencephalon, (b) subthalamus, (c) 
subthalamic nucleus, and (d) zona incerta, the corresponding hierarchal tree is equal to Fig. 6A.

This is because the subthalamic nucleus and the zona incerta are both child nodes of the subthalamus, which 
in turn is a child node of the diencephalon. The edge matrix was normalized between 0.0 and 1.0, and inverted so 
that 1.0 indicates the highest similarity (or shortest distance in the hierarchical tree) and corresponds to Fig. 6B.

As edge-counting does not take the taxonomic level into account, structures that are high in the taxonomic 
tree can have a similar edge distance as two lower nodes. Therefore, in addition to defining anatomical similarity 
by edge-counting, we also calculated the similarity by taking the taxonomic hierarchy into account31:

=
+

d x y Pmin x y
l x l y

( , ) ( , )
( ) ( )

where Pmin(x, y) denotes the edge distance between two structures, and l(x) and l(y) denote the tree depth of the 
structures in the FCAT taxonomic hierarchy. The concept hierarchy matrix was inverted so that 1.0 indicates the 
highest similarity and corresponds to Fig. 6C.

Statistical analysis.  The topic modelling was done in Matlab whereas the statistical analyses were done in R32. 
Assumptions of normality were tested using quantile-quantile plots and non-parametric Spearman correlations 
were used. Due to the large number of data points in the matrices, a significant p-value is not very informative33.  
To test whether the correlations were likely to have occurred due to noise, a sampling procedure was used. We 
sampled 10,000 times from the anatomical matrix using random permutations and correlated every single matrix 
with the MeSH or topic model similarity matrix. The sampling of the anatomical distance matrix was done using 
the R base function sample() and resulted in a matrix with identical mean and standard deviations as the original 
matrix but without the underlying anatomical hierarchy. Afterwards we calculated how many standard deviations 
(SD) the true correlation was removed from the permutated null distribution.

Data Availability
All abstracts resulting from the search query, code used to analyze the data, and generate the figures are freely 
available on osf.io/nf482.
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