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ABSTRACT: We provide an introduction to Gaussian process regression (GPR) machine-
learning methods in computational materials science and chemistry. The focus of the present
review is on the regression of atomistic properties: in particular, on the construction of interatomic
potentials, or force fields, in the Gaussian Approximation Potential (GAP) framework; beyond
this, we also discuss the fitting of arbitrary scalar, vectorial, and tensorial quantities.
Methodological aspects of reference data generation, representation, and regression, as well as
the question of how a data-driven model may be validated, are reviewed and critically discussed. A
survey of applications to a variety of research questions in chemistry and materials science
illustrates the rapid growth in the field. A vision is outlined for the development of the
methodology in the years to come.
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1. INTRODUCTION

At the heart of chemistry is the need to understand the nature,
transformations, and macroscopic effects of atomistic structure.
This is true for materialscrystals, glasses, nanostructures,
compositesas well as for molecules, from the simplest
industrial feedstocks to entire proteins. And with the often-
quoted role of chemistry as the “central science”,1,2 its emphasis
on atomistic understanding has a bearing on many neighboring
disciplines: candidate drug molecules are made by synthetic
chemists based on an atomic-level knowledge of reaction
mechanisms; functional materials for technological applications
are characterized on a range of length scales, which begins with
increasingly accurate information about where exactly the atoms
are located relative to one another in three-dimensional space.
Research progress in structural chemistry has largely been

driven by advances in experimental characterization techniques,
from landmark studies in X-ray and neutron crystallography to
novel electron microscopy techniques which make it possible to
visualize individual atoms directly. Complementing these new
developments, detailed and realistic structural insight is also
increasingly gained from computer simulations. Today, chemists
(together with materials scientists) are heavy users of large-scale
supercomputing facilities, and the computationally guided
discovery of previously unknown molecules and materials has
come within reach.3−8

Computations based on the quantummechanics of electronic
structure, currently most commonly within the framework of
density-functional theory (DFT), are widely used to study
structures of molecules and materials and to predict a range of
atomic-scale properties.9−11 Two approaches are of note here.
One is the prediction of atomically resolved physical quantities,
e.g., isotropic chemical shifts, δiso, that can be used to simulate
NMR spectra with a large degree of realism12thereby making
it possible to corroborate or falsify a candidate structural model
or to deconvolute experimentally measured spectra. The other
central task is the determination of atomistic structure itself,
achieved through molecular dynamics (MD), structural
optimization, and other quantum-mechanically driven techni-
ques. Many implementations of DFT exist and are widely used,
and their consistency has been demonstrated in a comprehen-
sive community-wide exercise.13

Electronic-structure computations are expensive, in terms of
both their absolute resource requirements and their scaling
behavior with the number of atoms, N. For DFT, the scaling is
typically N( )3 in the most common implementations; see ref
14 for the current status of a linear-scaling implementation.
Routine use is therefore limited to a few thousand atoms at most
for DFT single-point evaluations, to a few hundred atoms for
DFT-driven “ab initio” MD, and to even fewer for high-level

wave function theory methods such as coupled cluster (CC)
theory or quantum Monte Carlo (QMC). The latter techniques
offer an accuracy far beyond standard DFT, and they are
beginning to become accessible not only for isolated molecules
but also for condensed phases. However, runningMDwith these
methods requires substantial effort and is currently largely
limited to proof-of-principle simulations.15−17 For studies that
predict atomistic properties, such as NMR shifts, derived from
the wave function, a new electronic-structure computation has
to be carried out every time a new structure is considered, again
incurring large computational expense.
In the past decade, machine learning (ML) techniques have

become a popular alternative, aiming to make the same type of
predictions using an approximate or surrogate model, while
requiring only a small fraction of the computational costs. There
is practical interest in being able to access much more realistic
descriptions of structurally complex systems (e.g., disordered
and amorphous phases) than currently feasible, as well as a wider
chemical space (e.g., scanning large databases of candidate
materials rather than just a few selected ones). There is also a
fundamental interest in the question of how one might “teach”
chemical and physical properties to a computer algorithm which
is inherently chemically agnostic and in the relationship of
established chemical rules with the outcome of purely data-
driven techniques.19 We may direct the reader to high-level
overviews of ML methods in the physical sciences by Butler et
al.,20 Himanen et al.,21 and Batra et al.,22 to more detailed
discussions of various technical aspects,23−26 and to a physics-
oriented review that places materials science in the context of
many other topics for which ML is currently being used.27

The use of ML in computational chemistry, materials science,
and also condensed-matter physics is often focused on the
regression (fitting) of atomic properties, that is, the functional
dependence of a given quantity on the local structural
environment. For the case of force fields and interatomic
potentials, there are a number of general overview articles28−31

and examples of recent benchmark studies.32,33 There are also
specialized articles that offer more detailed introductions.34−38

In the present work, we review the application of Gaussian
process regression (GPR) to computational chemistry, with an
emphasis on the development of the methodology over the past
decade. Figure 1 provides an overview of the central concepts.
Given early successes, there is significant emphasis on the
construction of accurate, linear-scaling force-field models and
the new chemical and physical insights that can be gained by
using them. We also survey, more broadly, methodology and
emerging applications concerning the “learning” of general
atomistic properties that are of interest for chemical and
materials research. Quantum-mechanical properties, including
the eletronic energy, are inherently nonlocal, but the degree to
which local approximations, taking account of the immediate
neighborhood of an atom, can be used will be of central
importance. It is hoped that the present workindeed the entire
thematic issue in which it appearswill provide guidance and
inspiration for research in this quickly evolving field and that it
will help advance the transition of the methodology from
relatively specialized to much more widely used.

2. GAUSSIAN PROCESS REGRESSION
We begin this review article with a brief general introduction to
the basic principles of GPR. The present section is not yet
concerned with applications, but rather provides a discussion of
the underlying mathematical concepts and motivates them for
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modeling functions in the context of chemistry and physics, as a
preparation for subsequent sections of this review. A glossary of
the most important terms is provided in Table 1.
Inferring a continuous function from a set of individual

(observed or computed) data points is a common task in
scientific research. Depending on the prior knowledge of the
process that underlies the observations, a wide range of
approaches are available. If there exists a plausible model that
can be translated to a closed functional formula, parametric
fitting is most suitable, as limited data are often sufficient to
estimate the unknown parameters. Examples include the
interaction of real (nonideal) gas particles, the Arrhenius
equation, or, closer to the topic of the present review, the r−6

decay of the long-range tail of the van der Waals dispersion
interaction.
In practice, not all processes can be modeled well by simple

expressions. Structure−property relations, kinetics of biomo-
lecular reactions, and quantum many-body interactions are
examples of observable outcomes that depend on input variables
in a complex, not easily separable way, because of the presence of
hidden variables. Instead of trying to understand this depend-
ence analytically, one may set out to describe it purely based on
existing data and observations. Interpolation and regression
techniques provide tools to fill in the space between data points,
resulting in a continuous function representation which, once
established, can be used in further work. Linear interpolation
and cubic splines are widely used examples of thesemethods, but
they are limited to low-dimensional data and cases where there is
little noise in the observations. With more than a few variables, it
becomes exponentially more difficult to collect sufficient data for
the uniform coverage that is required by these methods. As
interpolation techniques are inherently local, noise in observa-
tions is not averaged out over a larger domain, meaning that
these approaches tend to be less tolerant to uncertainty in the
data.
From the practitioner’s point of view, GPR is a nonlinear,

nonparametric regression tool, useful for interpolating between

data points scattered in a high-dimensional input space. It is
based on Bayesian probability theory and has very close
connections to other regression techniques, such as kernel
ridge regression (KRR) and linear regression with radial basis
functions. In the following, we will discuss how these methods
are related.
Nonparametric regression does not assume an ansatz or a

closed functional form, nor does it try to explain the process
underlying the data using theoretical considerations. Instead, we
rely on a large amount of data to fit a flexible function with which
predictions can be made; this is what we call “machine learning”.
GPR provides a solution to the modeling problem such that

the locality of the interpolation may be explicitly and
quantitatively controlled, by encoding it in the a priori
assumption of smoothness of the underlying function. To
introduce GPR, we consider a smooth, regular function, y(x),
which takes a d-dimensional vector as input and maps it onto a
single scalar value:

 y : d → (1)

We do not know the functional form of y, but we have made N
independent observations, yn , of its value at the locations xn ,
resulting in a dataset,

yx ;n n n
N

1= { } = (2)

We can consider the observations, yn to be samples of y(x) at the
given location, which may contain observation noise. The goal is
now to use these data values to create an estimator that can
predict the continuous function y(x) at arbitrary locations x and
also to quantify the uncertainty (“expected error”) of this
prediction.
There are two equivalent approaches to deriving the GPR

framework: the weight-space and the function-space views, each
highlighting somewhat different aspects of the fitting process.39

We provide both derivations in the following.

Figure 1. Overview of central concepts in Gaussian process regression (GPR) machine-learning models of atomistic properties. Left: The models
discussed in the present review are based on atomistic structure, and therefore, they require a suitable representation of atomic environments up to a
cutoff. The neighborhood is “encoded” using a descriptor vector, ξ, and a kernel function, k, which is used to evaluate the similarity of two atomic
environments. Center: In the regression task, the goal is to infer an unknown function from a limited number of observations or input data (section 2).
The result, in GPR, is a function with quantifiable uncertainty. Right: Applications of GPR. There are two main classes within the scope of the present
review. The first class of applications is the fitting of atomic properties (section 3): these can be scalar, such as the isotropic chemical shift in NMR, δiso,
or vectors or higher-order tensors, such as the polarizability, α. The second class of applications is the construction of interatomic potentials or force
fields (section 4), which describe atomic energies, εi , as well as interatomic forces, Fi. All these properties are fitted as functions of the descriptor, ξ. The
drawings on the left are adapted from ref 18. Adapted by permission of The Royal Society of Chemistry. Copyright 2020 The Royal Society of
Chemistry.
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2.1. Weight-Space View of GPR

In the weight-space view of GPR, which is also the one most
closely aligned with the usual exposition of kernel ridge
regression, we approximate y(x) by y (̃x), defined as a linear
combination of M basis functions (Figure 2):

y c kx x x( ) ( , )
m

M

m m
1

∑̃ =
= (3)

where the basis functions, k, are placed at arbitrary locations in
the input space, xm , comprising what we refer to as the
representative set, {xm}m=1

M (sometimes also called the “active” or
“sparse” set), and cm are coefficients or weights. At this stage, we
do not need to specify the actual functional form of k; we only
need to know that   k : d d× → describes the similarity
between the function at two arbitrary locations, x x, d′ ∈ , that

the function is symmetric to swapping its arguments, viz.
k(x, x′) = k(x′, x), and that it is positive semidefinite. The kernel
function is positive semidefinite when, given an arbitrary set of
inputs {xn}, the matrix built from k(xn, xn′) is positive
semidefinite.
Although the form of the kernel function does not matter in

principle, the practical success or failure of a GPR model will
depend to a large extent on choosing the appropriate kernel.
Figure 3a demonstrates this using the example of the Gaussian
kernel which includes a length scale hyperparameter, σlength
(defined in Figure 2). In fact, this kernel is a universal
approximator for any setting of the length scale, but choosing
an inappropriate length scale will result in very slow convergence
as a function of the number of training data points.
The fitting of the GPR model to the data is accomplished by

finding the coefficients c = (c1, ..., cM) that minimize the loss
function,

y y
R

x( )

n

N
n n

n1

2

2∑
σ

=
[ − ̃ ]

+
= (4)

where R is a regularization term and the relative importance of
individual data points is controlled by the parameters σn. In
GPR, the Tikhonov regularization is used, defined as

R c k cx x( , )
m m

M

m m m m
,

∑=
′

′ ′
(5)

Two objectives are included in the loss function that is defined in
eq 4. The first term is designed to achieve a close fit to the data
points. However, this term alone would lead to overfitting
because of the large flexibility of the functional form, and it is
therefore controlled by the second term, the regularization,
which forces the coefficients to remain small. The collection of
parameters {σn}n=1

N (together with the length scale hyper-
parameter) adjusts the balance between accurately reproducing
the fitting data points and the overall smoothness of the
estimator.
Crucially, the coefficients in this regularization term are also

weighted by the corresponding kernel elements, a relation that
can be understood when formally deriving GPR from the
properties of the reproducing kernel Hilbert space (RKHS),
which we discuss below.39,40 Equation 4 is often written as

Table 1. Glossary of Technical Terms and Concepts Relevant to GPRa

Covariance Ameasure for the strength of statistical correlation between two data values, y(x) and y(x′), usually expressed as a function of the distance between
x and x′. Uncorrelated data lead to zero covariance.

Descriptor In the context of regression, descriptors (sometimes called “features”) encode the independent variables into a vector, x, on which the modeled
variable, y, depends.

Hyperparameter A global parameter of an ML model that controls the behavior of the fit. Distinct from the potentially very large number of “free parameters” that
are determined when the model is fitted to the data. Hyperparameters are estimated from experience or iteratively optimized using data.

Kernel A similarity measure between two data points, normally denoted k(x, x′). Used to construct models of covariance.
Overfitting A fit that is accurate for the input data but has uncontrolled errors elsewhere (typically because it has not been regularized appropriately).
Prior A formal quantification, as a probability distribution, of our initial knowledge or assumption about the behavior of the model, before the model is

fitted to any data.
Regularity Here, we take a function to be regular if all of its derivatives are bounded by moderate bounds. Loosely interchangeable with “degree of

smoothness”.
Regularization Techniques to enforce the regularity of fitted functions. In the context of GPR, this is achieved by penalizing solutions which have large basis

coefficient values. The magnitude of the regularization may be taken to correspond to the “expected error” of the fit.
Sparsity In the context of GPR, a sparse model is one in which there are far fewer kernel basis functions than input data points, and the locations of these

basis functions (which we call the representative set) need not coincide with the input data locations.
Underfitting A fit that does not reach the accuracy, on neither the training nor the test data, that would be possible to achieve by a better choice of

hyperparameters.
aThese definitions do not yet refer to physical properties, but they will be used in subsequent sections. For a comprehensive introduction to GPR,
we refer the reader to ref 39.

Figure 2. Basic elements of GPR as discussed in the present section: (1)
observations of an unknown function at a number of locations; (2) basis
functions (only one of them shown for clarity), centered at the data
locations; (3) an estimation, y ̃, defined by the set of coefficients, cm, and
the corresponding basis functions; this is the prediction of the GPR
model.
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y y c k cx x x( ) ( , )
n

N

n n
m m

M

m m m m
1

2 2

, 1

∑ ∑σ= [ − ̃ ] +
= ′=

′ ′
(6)

using a uniform σn = σ parameter for all data points, but we later
exploit the ability to express the reliability of each data point
individually. Because in this form, σ multiplies the Tikhonov
regularizer, most practitioners identify σ with the regularization
“strength” or “magnitude”. Using this definition, we can rewrite
the loss function in matrix form:

y K c y K c c K c( ) ( )NM NM MM
T 1 TΣ= − − +−

(7)

where the matrix elements are defined as

kK x x( , )NM nm n m[ ] = (8)

and y = (y1, ..., yN). Recall that N indicates the number of data
points in and M indicates the number of representative
points, respectively. Our notation emphasizes the dimensions of
the various kernel matrices in the subscript and implies that
KNM
T ≡ KMN because the kernel function is symmetric. In eq 7, Σ

is a diagonal matrix of size N, collecting all the σn values, with

Σnn = σn
2. To minimize , we differentiate eq 7 with respect to cm

for all m and then search for solutions that satisfy

0cT∇ = (9)

and we obtain

K y K K c K c 0MN MN NM MM
1 1Σ Σ− + + =− −

(10)

Rearranging gives an analytical expression for the coefficients,

c K K K K y( )MM MN NM MN
1 1 1Σ Σ= + − − −

(11)

and once these coefficients have been determined, the
prediction at a new location x is evaluated using eq 3, which
in matrix notation is

y x c k x( ) ( )T̃ = (12)

where a shorthand notation k(x) is introduced for the vector of
kernel values at the prediction location (x) and the set of
representative points ({xm}),

kk x x x( ) ( , )m m[ ] = (13)

When the number and locations of the representative points are
set to coincide with the input data points, a case to which we
refer as “full GPR”, we have M = N, and the expression for the
coefficients simplifies to

c K y( )NN
1Σ= + −

(14)

We note that the expression in eq 14, together with eq 3, is
formally equivalent to kernel ridge regression (KRR), which is
also based on the solution of the least-squares problem using
Tikhonov regularization.41 Full GPR becomes expensive for
large datasets, because the computational time required to
generate the approximation scales with the cube of the dataset
size, N( )3 , and the memory requirement scales as N( )2 , at
least when direct dense linear algebra is used to solve eq 14.
While iterative solvers, which are ubiquitous in ML generally,
might reduce this scaling, they are not widely employed in the
context of GPR/KRR. In our applications, detailed in the rest of
this review, we use relatively few representative points, i.e.M≪
N, and we refer to this regime as “sparse GPR”, following the
Gaussian process literature.42,43 The matrix equations that
specify both the full and the sparse GPR fits are visualized in
Figure 4. More details on how we select representative points in
practice will be given in section 4.3.
2.2. Function-Space View of GPR

The function-space view is an alternative way of deriving,
defining, and understanding GPR/KRR. Again, we aim to
estimate an unknown function which we can sample at specified
locations, resulting in the dataset , and we consider estimators
of the form

y wx x( ) ( )
h

H

h h∑ ϕ̃ =
(15)

where ϕ are f ixed, and for-now unspecified, basis functions. It is
important to emphasize that even though eqs 3 and 15 are
formally similar, the basis functions ϕh are not equivalent to the
kernel function k (their relationship is shown below), nor are the
coefficients c equivalent tow. Whereas in the weight-space view,
the kernel basis functions are placed on the representative set of
points xm, which typically (but not necessarily) coincide with
data points, the fixed basis functions here are independent of the

Figure 3. Effect of the kernel length scale on the GPR fit for different
types of input data. (a) Learning from function value observations. We
illustrate the effect of using a small (left) or larger (right)
hyperparameter associated with the correlation length scale (repre-
sented by a solid bar in each panel) on the GPR models (solid black
line). Basis functions (teal dashed linesone is highlighted as solid for
clarity), centered on data points (red circles) sampled from the target
function (black dashed line), are also shown. (b) Learning from
derivative values (section 2.4). Data points are represented by red
points and derivatives by red sticks: in this example, the data values
themselves, i.e. the {yn}, are not included in the fits. For all fits in this
figure, the regularizer was very small, just large enough to ensure that a
stable numerical solution to the linear least-squares problem can be
obtained.
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data and serve purely as a framework to define a probability
distribution of functions.
The function y ̃ is determined by the coefficients,

w = (w1, w2, ...), which are drawn from independent, identically
distributed Gaussian probability distributions,

P w( ) (0, )h w
2σ∼ (16)

leading not to a single estimate of y ̃ but to a distribution of
estimators, which corresponds to a Gaussian prior and is
commonly called a Gaussian process (GP). For these
generalized estimators, the covariance of two estimator values
at the locations x and x′ is

y y P w w

P w w

x x w w x x

x x w w

( ) ( ) d ( ) ( ) ( )

( ) ( ) d ( )

h

H

h h
h

H

h h

h h
h h h h

,

∫
∫

∑ ∑

∑

ϕ ϕ

ϕ ϕ

⟨ ̃ ̃ ′ ⟩ = ′

= ′

′
′ ′

′
′ ′

(17)

With the information from eq 16, the integral evaluates to σw
2δhh′,

and then we have

x x x x( ) ( ) ( ) ( )
h h

w hh h h w
h

h h
,

2 2∑ ∑σ δ ϕ ϕ σ ϕ ϕ′ = ′
′

′ ′
(18)

The sum over the basis functions in the last expression is used to
define a kernel function, k, as

k x x x x( , ) ( ) ( )w
h

h h
2 ∑σ ϕ ϕ′ ≡ ′

(19)

This definition makes it clear why the kernel function needs to
be positive semidefinite: it has the structure of a Grammatrix, i.e.
a matrix of scalar products. For coinciding arguments (x = x′),
the value of the kernel function corresponds to a variance.

Each function value in the dataset is taken to incorporate
observation noise, yn = y(xn) + ϵ, where ϵ is a random variable,
independent for each data point and identically distributed,
drawn from a Gaussian distribution with zero mean and variance
σ2. It follows that the covariance of any two actual function
observations in the dataset is given by

y y k x x( , )n n n n nn
2σ δ⟨ ⟩ = +′ ′ ′ (20)

The probability distribution of all the observations y = (y1, ..., yN)
is therefore a multivariate Gaussian with zero mean and
covariance of KNN + σ2I, written as

P y y K I y( ) exp
1
2

( )NN
T 2 1σ∝ − + −

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (21)

Note that, for convenience in the derivation, we assume that the
mean of the prior distribution of functions is zero, but very often
there is a good prior guess for the mean of the function, in which
case it is straightforward to modify the distributionor simply
to subtract the prior mean from the observed function values
before fitting, to be added back on after prediction.
Function estimation based on the data now proceeds by fixing

the N data locations and values and considering the probability
distribution of a new function value, yN+1, observed at a new
location, xN+1. Bayes’ rule gives this distribution as a conditional
probability in terms of the old (previous) observations and the
joint distribution of the old and new observations,

P y
P y y y y

P
y

y
( )

( , , ..., , )

( )N
N N

1
1 2 1=+

+

(22)

After substituting eq 21 into eq 22 (using it for both the
numerator and denominator appropriately), and some algebraic
manipulation,44 we find that the distribution of y(xN+1) is also
Gaussian, and we can express its mean and variance as

Figure 4. Visualization of the matrix equations that define the fitting of full (eq 14) and sparse (eq 11) GPR models, and the way they are used for
prediction. (a) The reference database consists of entries {xn; yn}; the data labels y1 to yn are collected in the vector y (light green); the data locations x1
to xN are used to construct the kernel matrix, K, of size N × N (teal). The regularizer, Σ, is shown as a light gray diagonal matrix. By solving the linear
problem, the coefficient vector c (blue) is computed, and this can be used to make a prediction at a new location, y ̃(x) (eq 12), the cost of which scales
with the number of data locations,N. (b) In sparse GPR, the full data vector y is used as well, but nowM representative (“sparse”) locations are chosen,
with M ≪ N. The coefficient vector is therefore of length M, and the cost of prediction is now independent of N.
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y k K I y( ) andN NN1
T 2 1σ̅ = ++

−
(23)

y k x x k K I kvar( ) ( , ) ( )N N N NN1 1 1
2 T 2 1σ σ= + − ++ + +

−

(24)

where we again use k for the vector of covariances (kernel
values) evaluated between the new data location and the set ofN
previous ones,

kk x x( , )n N n1[ ] = + (25)

It is interesting to note that the GP variance estimate is formally
independent of the training function values: the expression in eq
24 depends solely on the location of data points but not on the
data values y. However, if the model hyperparameters are
optimized either by maximizing the marginal likelihood or by
cross-validation (see below), then the variance estimates do
implicitly depend on training function values through this
optimization.
The fact that both the estimators in eqs 23 and 24 only depend

explicitly on the kernel function, k, and not on the basis
functions, ϕh, shows that a GP may be defined by its kernel,
without ever specifying the underlying basis set (although it is
possible to determine the corresponding basis set from any given
kernel). Recall that the meaning of the kernel function is the
covariance of data values (eq 19) and is thus regarded as a
measure of similarity between data points. This route to
specifying a basis for modeling nonlinear functions is often
referred to as the “kernel trick”.
Note that the combination of eqs 3 and 14 defining GPR in

the weight-space view is equivalent to the result of the function-
space view in eq 23. This equivalence reveals that the magnitude
of the regularization term in the weight-space view, σ2 in eq 6, is
the same as the variance of the Gaussian noise model on the
function observations (cf. eq 20). We can use this to understand
regularization from a new perspective: it is the expression of
uncertainty of our observations and naturally leads to a model
with an imperfect fit to the data.
Notable kernels include the Gaussian, or squared exponential,

kernel (the latter name is in common use to emphasize the
distinction between the form of the kernel function and the
multivariate Gaussian distributions that underlie the entire GPR
framework),

k x x
x x

( , ) exp
2

2

length
2σ

′ = − − ′i

k

jjjjjj
y

{

zzzzzz
(26)

parametrized by the spatial length scale, σlength.
44 The linear, or

dot-product, kernel is defined as

k x xx x x x( , )
a

d

a a
1

∑′ = · ′ = ′
= (27)

where xa = [x]a are the elements of the d-dimensional input
vector x. Substituting this kernel definition into eq 3 gives the
prediction formula,

y c x xx x( )
m

M

m
a

d

a m a
a

d

a a
1 1 1

∑ ∑ ∑ β̃ = [ ] =
= = = (28)

which shows that using the linear kernel in GPR is equivalent to
performing regularized linear regression, with coefficients given
by

c xa
m

M

m m a
1

∑β = [ ]
= (29)

It follows that the basis functions corresponding to the dot-
product kernel are simply M functions that each pick out one
element of the data vector {xm}m=1

M . Finally, the polynomial
kernel is

k x x x x( , ) ( )′ = · ′ ζ (30)

and expressing the prediction formula explicitly reveals that the
basis functions are outer products of the elements of the data
vectors. For ζ = 2, for example, we obtain the expression

y c x x x xx x x( )
m

M

m
a b

d

a b m a m b
a b

d

ab a b
1 , 1 , 1

∑ ∑ ∑ β̃ = [ ] [ ] =
= = = (31)

that corresponds to a polynomial basis with a degree of ζ = 2.45

2.3. Explicit Construction of the Reproducing Kernel Hilbert
Space

It is instructive to see how the function-space view of GPR arises
from an explicit construction of an approximation of the
RKHS.46 Consider the kernel matrix that is computed for the
representative set of data points, KMM, and its eigenvalue
decomposition which is given by

K U UMM MM M MM
TΛ= (32)

Because the kernel is positive semidefinite, the eigenvalues, Λi,
are greater than or equal to zero, and it is possible to compute the
feature matrix,

U K UMM MM M MM MM M
1/2 1/2Φ Λ Λ= = −

(33)

such that

K U U K

K
MM MM MM MM M MM MM

MM

T 1 TΦ Φ Λ=
=

−

(34)

The definition in eq 33 corresponds to performing a kernel
principal component analysis (KPCA)47 without discarding any
of the resulting components and is consistent with the
introduction of an explicit function-space model, as follows.
The elements of a feature vector, ϕ, associated with an arbitrary
input point, x, are given by

k Ux x x x( ) ( ) ( , )j j
m

M

m mj j
1

1/2∑ϕ ϕ[ ] ≡ = Λ
=

−

(35)

where the sum runs over all M representative points and the
number of features is the same; that is, the index j takes values
from 1 toM. For any pair of locationswithin the representative set,
we have

kx x x x( ) ( ) ( , )m m m mϕ ϕ· =′ ′ (36)

which corresponds to the definition of the kernel in terms of a
scalar product in the RKHS, as given in eq 19. For arbitrary pairs
of locations that are not included in the representative set, the
above expression is only an approximation of the kernel, which
can be improved by enlarging M.
This point of view also makes it possible to directly derive the

Nyström form of sparse GPR,48 by considering it as ridge
regression in the RKHS defined by the representative points.
The feature matrix associated with a set of N points is
ΦNM = KNMUMMΛM

−1/2. This expression may be regarded as an
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approximate decomposition of the full kernel matrix
KNN ≈ ΦNMΦNM

T. The resulting regularized linear regression
weights are

w 1 y( )M NM NM NM N
T 1 1 T 1Φ Σ Φ Φ Σ= +− − −

(37)

and the predictions are given byϕ(x)·wM. By substituting for the
features,ϕ, the definition in terms of the eigendecomposition of
KMM (eq 35), we obtain the model predictions,

x w k U

U K K U 1

U K y

k K K K K y

( )

( )

( )

M MM M

MM M NM NM MM M
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T 1/2 T 1 1/2 1

T 1/2 T 1

T T 1 1 T 1

ϕ Λ

Λ Σ Λ

Λ Σ

Σ Σ

· =

× +

×

= +

−

− − − −

− −

− − −

(38)

This is the same as eq 11, revealing how the abstract function-
space derivation can be formulated as a matrix approximation
problem and more generally how kernel methods can be seen as
simultaneously addressing the problem of building a data-
adapted feature space and performing linear regression in it.
2.4. GPR Based on Linear Functional Observations

In later sections, we will need to use the GPR formalism to
estimate functions whose value cannot be directly observed.
This is the case for fitting an atomic energy function (using the
neighbor environment of an atom as the input) to data from
quantum-mechanical electronic-structure computations, which
yield the system’s total energy, not individual atomic energies,
and atomic forces and stresses, which are derivatives of this total
energy with respect to the atomic positions and the lattice
deformation, respectively. It is therefore useful to consider this
problem in the abstract: estimating a function when it is not
possible to directly observe values of a function, but we have
access to derived properties. The formalism that follows was
introduced in ref 49 for modeling materials, which itself builds
on ref 50 that discusses learning a function from its derivatives
using GPR.
As a simple example, assume that we observe data values Y at

data locations X, but we wish to model the estimator as a sum of
values of the elementary estimator function y ,̃

Y y yX x x( ) ( ) ( )̃ = ̃ + ̃ ′ (39)

where x and x′ are subsets of the degrees of freedom in X,

X x x x x,= ⊕ ′ ≡ [ ′] (40)

using a kernel function that is defined between points in the
smaller space, k(x, x′). In the spirit of the function-space view of
GPR, it follows that the covariance of two such observations Y1
and Y2 (taken at X1 = x1⊕ x1′ and X2 = x2⊕ x2′, respectively) is
given by the sum of kernels,

Y Y k

k k k k

X X X X

x x x x x x x x

( ) ( ) ( , )

( , ) ( , ) ( , ) ( , )
1 2 1 2

1 2 1 2 1 2 1 2′ ′ ′ ′

⟨ ̃ ̃ ⟩ =

≡ + + +

and the rest of the regularized kernel regression formalism
follows using this definition of the kernel. When building a
sparse GPR model, we have the choice of picking representative
points such as x from the smaller space or X from the larger
space. In either case, kernels can be computed between the
observed data locations and representative points, e.g.
k(X1, x) = k(x1, x) + k(x1′, x).

It is straightforward to generalize this construction to any
linear functional observation, and the resulting kernel model
becomes a linear functional of the corresponding kernel
functions. To formalize this, we model the observations as

where L̂i is a linear operator applied on the elementary model
function y. In the previous example, L̂ was simply the identity
operator, but it can also include differentiation, scaling, or any
other linear operation. To illustrate how fitting based on
derivative observations can be performed, we consider the
derivative of the estimator function defined in eq 15 with respect
to the α component of the input vector, x, viz.

y wx x( ) ( )
h
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h h∑ ϕ∇ ̃ = ∇α α
(42)

We obtain the covariance of two such derivative observations as
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(43)

from which it follows, using eq 19, that the kernel for derivative
observations is the double derivative of the original kernel:

x x
kx x x x( ) ( ) ( , )w

h
h h

2 ∑σ ϕ ϕ∇ ∇ ′ = ∂
∂

∂
∂ ′

′α β
α β (44)

In a similar manner, the covariance between a function value
and a derivative observation can be found as

y y
x

kx x x x( ) ( ) ( , )⟨∇ ̃ ̃ ′ ⟩ = ∂
∂

′α
α (45)

allowing a covariance matrix to be built for arbitrary
observations that are linear functionals of an underlying
function. For example, the block of the covariance matrix
corresponding to the data vector [y,∇1y], collected at the points
[x, x′], is given by

k
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For a general linear operator, L̂, the coefficients in eq 11 that
constitute the regularized solution of the regression problem
then become
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L L Lc K K K K y( ) ( )MM NM NM NM
T 1 1 T 1Σ Σ= [ + ̂ ̂ ] ̂− − −

(47)

where y, of length D, contains all the training data. This matrix
equation is visualized in Figure 5. When implementing this in
code, the operator L̂ is applied to the kernel matrix KNM which
results in a matrix of size M × D, that we label LK( )̂ or
alternatively .
Figure 3 illustrates these concepts for a simple one-

dimensional function (dashed lines) for which GPR estimates
are made (solid lines). The examples presented here show “full
GPR” fits (i.e., when the set of representative points associated
with the basis functions is exactly the same as the set of input
data points) in the two cases when either function values (Figure
3a) or derivative values (Figure 3b) are used in the regression. In
each case, we show two choices for the length scale of the
squared exponential kernel, σlength, namely a value that is too
small, and also a larger (near optimal) value. If the length scale is
chosen too small (left panels in Figure 3), the result is a terrible
overfit in both cases, but showing different behavior. When
fitting to function observations, the fit matches the data exactly
near the data points (red points) and reverts to near zero away
from the data points. When fitting to derivatives, the estimate
has the correct derivatives locally but overall is nearly zero
everywhere. For the near optimal value of the length scale (right
panels in Figure 3), fitting to function observations results in an
excellent fit near the right-hand side minimum where there are a
lot of data and a rather poor fit elsewhere. Fitting to derivatives
reproduces the shape of both minima, and the maximum in
between qualitatively too, despite there being no data points
there. However, the relative depths of the two minima are not
well captured.
In Figure 6, we show the fit quality for the same simple one-

dimensional function, but this time using sparse GPR and
exploring different ways of constructing the representative set

and the corresponding basis set. In the first row, only function
values are used in the fit, in the second row, only derivatives are
used, and in the third row, function values and derivatives are
combined to form the dataset. The first column shows full GPR
(as in Figure 2), using square kernel matrices and placing a basis
function on each data point, with the basis function type
corresponding to the data type: function value observations
induce Gaussian basis functions, and derivative value observa-
tions induce Gaussian-derivative basis functions (cf. eq 45).
Therefore, in the first column of Figure 6, the top panel shows a
fit to the function values and uses eight Gaussian basis functions,
the middle panel shows a fit to only derivative values and uses
eight Gaussian-derivatives, and the bottom panel shows a fit to
all the available data and uses both types of basis functions (16
altogether). The improvement in the fit from top to bottom is
steep, with the bottom panel showing an almost perfect fit.
The second, third, and fourth columns of Figure 6 all use

sparse GPR fits, but with Gaussian basis functions irrespective of
what the type of the data is (that is, even if only derivative values
are used). In the second column, the eight basis functions are
simply placed at the input data locations (and thus the first two
panels of the first row are identical!). In the third column, again
we use eight Gaussian basis functions but they are centered on a
regular grid. This has little effect when the fitting data consist of
function values, but it shows a considerable improvement in
rows two and three, when derivative data are used. In the fourth
column, the locations of the representative set are optimized (by
maximizing the marginal likelihood; see below). Note that fewer
than eight basis functions are used, because some of the basis
function centers have merged during the optimization. We
observe some improvement in the first row and an improved
estimation of the maximum in the second row, albeit with a poor
description of the relative depths of the minima. In the last row,
when both the function value and derivative information are

Figure 5. Sparse GPR fitting based on different types of input data (eq 47). In this example, two types of data are present in the reference database:
function values (corresponding to the identity operator, I) and derivatives (corresponding to the differential operator, ∇). All these observations are
combined into a single vector, y, which hasD entries. The fit itself proceeds as shown in Figure 4b but now includes the use of a matrix of operators, L̂.
Some sizes of vectors and matrices (M,N, or D) are indicated. The regularization, Σ, is indicated as a block diagonal matrix (one block corresponding
to function values, one to derivatives); more individual settings are also possible. Once c is determined, it is used for sparse GPR prediction in the same
way as shown in Figure 4.
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provided, the fit is as good as using a regular grid and almost as
good as with full GPR (first column).
Studying such simple toy models can be very instructive in

understanding GPR, but of course one has to be careful in
drawing conclusions and applying them to the high-dimensional
problems of materials and molecular data. Nevertheless, it is
clear that full GPR does not scale to large datasets and that high
dimensionality precludes the use of regular grids when setting up
basis setsindeed the fundamental reason why GPR is efficient
even inmany dimensions is because the basis set can adapt to the
data locations. In the Gaussian approximation potential (GAP)
scheme, detailed in section 4, the construction is most similar to
column-four-row-three of Figure 6, because both total energy
and derivative data are used, and the representative set is
selected as the optimized subset of the very large number of
atomic environments that are present in the input dataset.

The general formulation in eq 41 for modeling arbitrary linear
observations in the framework of sparse GPR allows for the
complete separation of the basis functions of the representative
set and the training data. This greatly simplifies the application
of GPR for force-field development, where a large proportion of
the training data are in the form of atomic forces. This is because
each structure contributes three times the number of atoms as
Cartesian force components and just one total energy value.
Attempting to use full GPR would result in square kernel
matrices with row and column sizes equal to the number of input
data values, which in turn would limit the models to rather small
datasets. Therefore, in the context of interatomic potentials,
where the fitting data correspond to total energies (sums of
many atomic energies), forces, and stresses (sums of partial
derivatives of many atomic energies), we model the atomic
energy as the elementary function and use representative points

Figure 6. Effects of different types of data and basis functions on GPR fits. These are illustrated using the same example function as in Figure 2 (black
dashed lines), showing the predicted mean (black solid lines) and variance (light blue shaded area) of the fit. Observations are indicated by the red
points for values and short red line segments for derivatives. The fitting data included only function values in the first row, only derivative values in the
second row, and both function and derivative values in the bottom row. Full GPR was used for the data shown in the first column, and sparse GPR for
those in the others. Representative point locations (vertical dotted lines) coincide with the data point locations for the first and second columns,
whereas they were placed at regular intervals for the third column. In the fourth column, the number and location of representative points were
optimized to maximize the marginal likelihood. The regularization hyperparameter σ as well as the length-scale hyperparameter σlength were
independently optimized for each panel to maximize the marginal likelihood. Insets show the kernel basis functions used in the fit (solid for Gaussians;
dashed for Gaussian derivatives); scale bars represent the optimized values of σlength.
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that are individual atomic environments and corresponding to
kernel (rather than kernel derivative) basis functions.

2.5. Regularization

Regularization can be regarded as a mechanism to deal with
noisy and incomplete data, which balances the requirements of a
smooth estimator and a close fit to the data. We introduced the
Tikhonov regularization term when we described the weight-
space view of GPR in section 2.1 and made the connection with
the noisemodel assumed for function observations in section 2.2
in the function-space view of GPR. From a Bayesian point of
view, a noise parameter that is significantly larger than the
covariance of function values, σ2 ≫ k(x, x′), favors the prior
assumption on the function space, which is smoothness, and
ultimately leads to the trivial solution of the constant function
y(x) = 0 as σ → ∞ (assuming that the mean of the GP prior is
zero). Equivalently, the loss function in eq 4 is dominated by the
regularization term for the choice of large σ and leads to the
trivial solution of c = 0 in the σ→∞ limit. Conversely, small σ
values force the estimator to follow the data points as closely as
possible, at the price of potentially significant overfitting. The
extreme case of σ = 0 reduces eq 4 to the unregularized least-
squares fit.
Apart from these considerations, regularization is of practical

relevance from the point of view of numerical stability: it
conditions the kernel matrix by adding a diagonal matrix with
positive values. In the case of the location of some data points
coinciding, the determinant of the kernel matrix KNN would
otherwise become zero, and the inverse KNN

−1 would become
undefined without conditioning the diagonal values. Of course,
it would be possible to remove exactly duplicate data points, but
even close data points would cause numerical instabilities in
practice, which are less trivial to eliminate. Furthermore, it may
actually be desirable to have multiple data points at the same or
similar locations if the observations do genuinely contain noise,
as the observed function values would sample the function, and
GPR would effectively and automatically perform averaging.
Note that noise in the observations does not have to be of
stochastic nature: even in the case of deterministic observations,
model error can give rise to deviations that appear as noise, as we
will discuss in section 4.

2.6. Hyperparameters

A particularly appealing feature of GPR is that it is parameter-
free, in the sense that once the prior assumptions (i.e., the kernel
and the observation noise) are specified, the function estimator
follows. In some cases (particularly when working in the well-
established field of atomic-scale modeling), the appropriate
kernel and the observation noise might be known. For example,
we might have a very good idea of how smoothly the atomic
forces vary with atomic position (corresponding to the length
scale hyperparameter, σlength, introduced above), or how much
error we expect in observed values (corresponding to σ) due to a
lack of convergence in the electronic-structure computations
that provide the fitting data. But often, the hyperparameters
describing the problem are not available. In section 6 below, we
will describe strategies to set these for material models that we
found effective. Formally, when using sparse GPR, the locations
of the basis functions are also hyperparameters, and their choice
can dramatically influence the accuracy of the fit (cf. Figure 6).
In the Bayesian interpretation of GPR, we have already made

use of the marginal likelihood44 (or evidence; eq 21), which can
also be understood as a conditional probability over the
hyperparameters,
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This provides a route to eliminating all of the unknown
hyperparameters, because Bayes’ formula allows one to integrate
the likelihood over all possible hyperparameter values when
making a prediction. This is essentially an encapsulation of the
Bayesian principle of “Occam’s razor”: we are not just interested
in hyperparameter settings that lead to small fitting error, but in
solutions that are also robust, in the sense that parameters in a
large volume of parameter space near the optimum all lead to
small fitting error. This turns out to be a good predictor of
performance on any future test set, without having to explicitly
do the test.
However, integrating the likelihood is often not a practical

proposition for large models, because the integral cannot be
evaluated analytically. Instead, the hyperparameters correspond-
ing to the highest marginal likelihood are often selected, and
these can be obtained in a straightforward way by maximizing
the logarithm of the marginal likelihood,
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for which the derivatives with respect to hyperparameters may
also be computed.
Another route for hyperparameter optimization, more often

used in the context of KRR, is cross-validation. There are many
variations to this approach, but commonly the available data are
divided into a “training” and a “test” set. The training set is used
for the regression, with the predictions evaluated on the test set.
The hyperparameters are then adjusted to achieve the lowest
possible error on the test set. There are more sophisticated
versions, where multiple splits are created (so-called “k-fold
cross-validation”).

3. LEARNING ATOMISTIC PROPERTIES

Let us now show how the general GPR framework translates into
a scheme to model the atomic-scale properties of molecules and
materials. First, we discuss how the Cartesian coordinates and
the atomic numbers that determine the specific configuration of
the system should be represented to obtain a description that is
suitable for atomistic ML. This is one of the central problems in
the field, and we refer the reader to a dedicated review51 in the
present thematic issue for a more detailed discussion. Here, we
limit ourselves to a family of approaches which covers most of
the example applications that are discussed in what follows. We
then present a “hands-on” example: the construction of a GPR
model of the energy and dipole moment of an isolated water
molecule. We use this example to introduce the relevant
concepts and show them “in action”; for more details, the reader
is referred to subsequent sections. We provide Python (Jupyter)
notebooks that reproduce the results shown in the present
section, and we report code snippets to show the connection
between general expressions and the practical implementation
for an atomistic problem.
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3.1. Representing Atomic Structures

The chemical structure of molecules and materials is defined
most directly by the Cartesian positions, {ri}, of the constituent
atoms. Interatomic potential models do not typically use these
positions as input directly but rather transform them into a
different mathematical representation. This way, the resulting
potential can automatically gain some desirable properties,
particularly symmetries of the potential energy with respect to
translation, rotation, and permutation (swapping) of atoms of
the same element. Furthermore, the representation should
reflect other physical requirements, such as smoothness of the
mapping, additivity when applied to the learning of extensive
properties, as well as correct limiting behaviors, e.g., that the
atomization energy is zero (by definition) when atoms are at
infinite separation.
The classic example of such a transformation is to represent

the relative positions of two atoms i and j by their mutual
distance (Figure 7a),

r r rij i j= | − | (50)

If, in addition, the potential energy is written as a separable sum
of functions of these distances, the result is a pair potential,

E V r( )
i j

ij
,

2∑=
(51)

where V2 is a one-dimensional function. The simplicity of the
above form obscures its implications as the basis of a regression
model for atomic-scale properties. The fact that the interatomic
distances are independent of an absolute coordinate reference
frame guarantees that the potential is invariant with respect to
translation and rotation. Since the true potential energy obeys
these invariances exactly, this is universally agreed to be a good
thing. The true potential is also invariant to permutation of like
atoms, and the separable form and the sum over each pair of
atoms guarantees this invariance but at the cost of a drastic
approximation: the true quantum-mechanical energy is not
separable into a sum of pairwise terms. Whether this
approximation still results in a usable potential depends on the
system: the Lennard−Jones pair potential is an excellent
approximation for noble gases, and similar models give
qualitatively decent models of simple fcc metals54 and simple
ionic halides55 and some oxides.56 For covalently bonded
systems, pair potentials that reflect the connectivity of the
system can provide reasonably accurate descriptions of small
displacements, e.g., vibrational dynamics, but fail to give a
natural description of chemical reactivity and are basically
unusable as general-purpose models.
The traditional route to improving the potential is to add a

correction in the same spirit, but at a higher body order, i.e. a
term that explicitly depends on the positions of three atoms
(Figure 7b) and is summed up over all atom triplets in the
system to preserve permutational symmetry:

E V r V r r r( ) ( , , )
i j

ij
i j k

ij ik kj
,

2
, ,

3∑ ∑= +
(52)

The three-body term is sometimes approximated to explicitly
depend only on the angle between the three atoms (cf. Figure
7a), rather than their individual distances, thereby reducing the
number of adjustable parameters. Interestingly, as a result of
recent developments in high-dimensional fitting using many
parameters, it has become apparent that a lot can be
accomplished with just three-body but fully flexible poten-

tials.57−62 In principle, one could continue along this direction
and add even higher-order, viz. general four-body, terms.
Because of the complexity of managing the increasing number of
parameters while still maintaining the permutation symmetry
exactly (which involves summing over all atom tuples of
increasing size), this has only been done systematically for small
molecules63 and is only now beginning to be explored for larger
systems64 and materials.65

Figure 7. Descriptors for atomistic structure. (a) Conventional 2-body
and 3-body terms, viz. distances and angles between atoms, as typically
used in empirical force fields. Adapted from ref 29 with permission.
Copyright 2019 Wiley-VCH. (b) General descriptor for 3-body terms:
the three distances, d, between the atoms, specify the relative geometry
of the three atoms completely. (c) Schematic of the smooth overlap of
atomic positions (SOAP) descriptor.52 The neighbor density ρ is
permutationally invariant; expanding it in a local basis of radial
functions and spherical harmonics, Yl

m, and then summing up the square
modulus of the expansion coefficients cnlm over the index m ensures
rotational invariance of the power spectrum p (eq 56). Adapted from ref
53. Original figure published under the CC BY 4.0 license (https://
creativecommons.org/licenses/by/4.0/). (d) Illustration why the
power-spectrum vector, p, is a 3-body descriptor (here shown without
element indices for clarity); the consequences of this are discussed in
the text.
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An alternative approach is to not make the approximation of
separability in body order in the first place but instead to write
the total energy of the system as a sum of atomic (“local” or
“site”) energies that depend on many-body descriptions of
atomic environments. This, however, requires a representation
that itself is invariant to permutation of like atoms and also
incorporates the approximation that interactions are of finite
range. The foundational works of Behler and Parrinello66 and
Bartoḱ et al.49 precisely hinged on such innovations: the former,
on atom-centered symmetry functions; the latter, on spherical
harmonic spectra, originally the bispectrum and later the power
spectrum,52 also called the smooth overlap of atomic positions
(SOAP; Figure 7c). Coupled with nonlinear regression models,
the remaining significant approximations are controlled by the
number of training data points and the interaction range. All of
our examples in sections 6 and 7 will use the SOAP
representation, and so we give a brief definition here for
completeness.
To obtain the SOAP representation of the neighborhood of a

given atom i, we first build a set of neighbor densities, one for
each chemical element in the set that is relevant for the system at
hand:52
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where the sum is over neighbors j of element a that are within the
cutoff rcut and fcut(r) is a cutoff function that smoothly goes to
zero at rcut. The hyperparameter σa has units of length and
determines the regularity (smoothness) of the representation.
The above neighbor density is thus a mollif ied version of a
neighbor distribution where each atom would be represented by
a Dirac delta function. It is tempting to associate the Gaussian
mollifier with an atomic electron density or a smeared nuclear
charge, but the correspondence is not so direct. The direct effect
of the mollification in the density is only to ensure that the
interatomic potential constructed using the SOAP representa-
tion is regular, and it would be reasonable to construct a SOAP
representation from Dirac delta densities, given that the
regularity of the potential is ensured in some other way. For
example, the moment tensor potentials (MTP)67 and the atomic
cluster expansion (ACE)68 do exactly that.
In the following, for each expression, we will give both the

notation that was introduced in ref 52 and (highlighted in blue)
a recently proposed69 bra-ket notation of the form that
uses q to describe the indices enumerating the entries of a feature
vector and A to indicate the nature of the representation. Note
that the expressions typeset in blue are here to make the
connection to ref 51 explicit and are not needed to follow most
of the exposition in the present review. Using this notation, for
example, the equivalent expression corresponding to eq 53
reads:

It is important to emphasize that for each atom i, irrespective of
what element it is, the full set of elemental neighbor densities is
constructed. Each elemental neighbor density is invariant to
permutations of that element. To achieve rotational invariance,
we first expand the neighbor density in a basis of orthogonal
radial functions, , and spherical harmonics,

,
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(55)

or equivalently,

where the expansion coefficients are labeled cnlm
i,a for consistency

with earlier publications34,52 and are not to be confused with the
coefficients of the kernel regression model that have been
introduced in section 2. Note the similarity with how atom-
centered orbitals, containing radial and angular parts, are
constructed in quantum chemistry. As emphasized by the bra-
ket notation, the expansion in spherical harmonics just amounts
to a change of basis, and these coefficients are not rotationally
invariant. A symmetrized combination of these coefficients
yields the power spectrum,

where the notation i
2ρ⊗ hints at the fact that the SOAP power

spectrum is obtained by averaging a two-point tensor product of
the atom density over rotationswhich, in the spherical
harmonic basis, is equivalent to summing over m. The l-
dependent prefactor in the definition of the power spectrum is
necessary to make a connection to the overlap of densities (see
below). Note that various other constant numerical factors have
appeared in the definition in the past,34,52 but none of them are
consequential, because the power spectrum is typically
normalized to yield a unit length vector. The descriptor for
each atomic environment now has five indices: two for the
neighbor-element channels (a, a′), two radial channels (n, n′),
and an angular channel (l). This power spectrum, also
commonly referred to as the SOAP descriptor, or SOAP vector,
is a concise representation of atomic neighbor environments. It
is smooth and continuous with respect to atomic displacements
and invariant with respect to physical symmetries, and its only
free parameters, the cutoff and the length scale, σa, are physically
intuitive.
An important question in the context of building atomistic

regression models based on any structural descriptor is whether
the descriptor is complete, in the sense that two atomic
environments that are not related by symmetry should map to
different descriptors (that is, whether the functional definition of
the descriptor is injective). If this were not the case, the accuracy
of any ML model based on the descriptor would be ultimately
limited by the corresponding loss of information. Since their
introduction, it was believed or implied70 that SOAP and all
related descriptors (i.e., those that are based on three-body
correlations, such as the atom centered symmetry functions of
Behler and Parrinello66) are complete. Recently, however, it was
discovered that neither SOAP nor the other equivalent
descriptors are complete, and counter-examples were shown
also for the higher-order bispectrum (which corresponds to
four-body correlations).71 Therefore, SOAP-based models
cannot describe an atomic energy function of its neighborhood
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to arbitrary precision, although practical successes suggest that
the corresponding errors are on the same order or smaller than
other systematic errors that are due to locality and k-point
sampling (see below for a more detailed discussion of these).
Yet, it may well be possible that complete descriptors can lead to
more efficient learning; see ref 51 for more details.
The full SOAP descriptor for each atom i contains all entries

of pnn′l
i,aa′, resulting in a vector whose length scales with the square

of the number of elements (due to the presence of the two
element indices, a and a′), with the square of the radial basis
expansion limit (due to the two indices n and n′), and linearly
with the angular basis expansion limit (due to the index l). This
vector has hundreds of components (thousands, for systems
with several elements) when the basis expansion of the neighbor
density is truncated in n and l such that these truncations do not
give rise to noticeable inaccuracy. It is therefore natural to think
about suitable subsets of the SOAP vector components that
could be used without compromising accuracy. There is a highly
abstract question here: given the dimensionality of the Cartesian
positions, most of the SOAP components must be algebraically
related to one another. Knowing such relationships would be
useful in reducing the number of components to the
independent ones, although it is quite likely that a regression
model might work significantly better with more inputs, even if
many of those are not independent, because the functional
relationship being modeled might be simpler. We are not aware
of any theoretical results in this area. On the practical side,
however, given datasets and specific regression models, one can
numerically experiment with choosing subsets of the SOAP
components, and considerable compression is possible.72−74

While such atomic environment descriptors can be used as the
basis of any kind of regression scheme, to use them in GPR
(which is the focus of the present review), we need to define a
kernel that allows us to compare two atomic environments,
denoted A and A′. While a standard Gaussian kernel is certainly
an option, applications to date have used low-order polynomial
kernels, viz.

k A A( , ) ( )ξ ξ′ = · ′ ζ (57)

where ξ and ξ′ indicate the feature vectors corresponding to the
normalized power spectrum vectors, ξ = p/|p|, associated with
the two environmentswith the power spectrum vector
associated with an atom i being built from the components
that are defined in eq 56, viz.

ppi nn l
i aa,= { }′

′
(58)

Considering the linear kernel (ζ = 1) explains the origin of the
SOAP name (cf. “smooth overlap of atomic positions”), because
the dot product of the power spectra is equivalent to the
rotationally integrated squared overlap of the corresponding
neighbor densities of two atoms,52
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where R̂ is a 3D rotation. A kernel model made using this linear
kernel results in a three-body model, i.e. one in which the model
can be written as a sum, over triplets of atoms, of a function
which only depends on the Cartesian coordinates of the triplet.58

This is not obvious, but it follows from the fact that the SOAP
vector itself is a three-body representation of the atomic

environment, which is not obvious either, but which we show as
follows (and have illustrated in Figure 7d).
Let us separate out the contribution of each neighbor j to the

neighborhood density of atom i,
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so that the neighbor density for element a is simply
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We then form the two-point correlation of this density,
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and compute the SOAP vector by transforming it into the
spherical harmonic basis in both arguments and then summing
over m to ensure rotational invariance:
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where Pl are the Legendre polynomials. Thus, the SOAP vector
elements can be written explicitly as sums over pairs of
neighbors. In all software implementations, eq 56 is used to
compute the SOAP vectors, because that makes the calculation
independent of the number of neighborsthis is commonly
referred to as the “density trick” and is essentially the swapping
of the sum and the integral in the last expression.
Using ζ = 2, i.e. raising the scalar product to the power of 2,

results in dependence on four neighbors and together with the
central atom yields 5-body terms; in general, the body order of
the model is 2ζ + 1. Quantum mechanics is a fundamentally
many-body theory, and although it is clear that for many
properties an expansion in atomic body order is a good idea,
formally all body orders are necessary for convergence. In the
kernel framework, there is no extra computational cost to
increasing the body order in this way, because there is no explicit
sum over atom tuples: the SOAP components are computed just
once, and the body order is set when the kernel is evaluated
between environments. Yet, it is likely a good idea to not choose
the body order higher than necessary for achieving the target
accuracy: a model with lower body order, and therefore with
lower dimensionality, will converge more quickly to its ultimate
accuracy as the amount of input data is increased. Many
successful SOAP-GAP interatomic potentials for materials have
been built with ζ = 2 and ζ = 4, and such potentials and their
applications are discussed in section 6.
We note that this link between the body order of the model

and the quadratic nature of the power spectrum features (and
the fact that the bispectrum features correspond to the next body
order) leads naturally to body ordered linear models, that are
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three-body potentials if they use the power spectrum58,75−77 and
four-body when using the bispectrum (because its terms are
cubic in the neighbor density coefficients), as is the case for the
spectral neighbor analysis potential (SNAP).78 One can go
further in body order explicitly while continuing to keep the
regression linear.64,65,67,68,73,79

3.2. Symmetry-Adapted Representation

In contrast to scalar properties such as the potential energy,
which are invariant under rotations of a system, tensorial
properties such as molecular dipole moments and material
polarizations transform covariantly when the system is rotated. A
natural way to account for this covariance is to build it into the
training and prediction processes. The procedure for doing so
was first discussed by Glielmo et al. in the context of learning
Cartesian vectors.80 They noted that the GPR interpretation of a
kernel function as a covariance naturally dictates the symmetry
properties of kernels for predicting vectors, requiring the kernel
function k(ξi, ξi′) to be replaced by a matrix-valued function
k(ξi, ξi′). In this function, the block kαα′(ξi, ξi′) represents the
coupling between the Cartesian component α of a coordinate
system centered on the i-th atom and the coordinate α′ of a
reference system centered on the i′-th atom. A number of
symmetry-adapted methods for predicting tensors have
appeared in recent years, generally relying on the use of
reference frames based on the internal molecular coordinates.
These have been successfully applied to generate MLmodels for
the multipole moments of small organic molecules81,82 and the
hyperpolarizability of water,83 as well as being used to predict
vibrational spectra, including infrared spectra of organic
molecules84,85 and the Raman spectrum of liquid water.86 It
has become clear in the past few years that both linear73,79,87 and
fully nonlinear88−90 models can be built using covariant
representations.
It is possible to generalize the approach of ref 80 to arbitrary

orders of tensor by applying analogous symmetry argu-
ments,91,92 and we refer to the resulting method as symmetry-
adapted GPR (SA-GPR). Rather than working with Cartesian
tensors, it is more convenient to decompose them into their
irreducible spherical components,93 which are more naturally
related to the transformation properties of the rotation group
and afford a more concise description of the problem. For
instance, the polarizability (a symmetric 3 × 3 tensor with six
independent components) can be decomposed into its trace,
which transforms as a scalar, and a 5-vector that transforms as a λ
= 2 spherical harmonic. (Note that we use λ to indicate the
angular momentum symmetry of the fitting target, rather than l,
to distinguish it from the analogous angular momentum index
that appears in the density expansion.) Given that a covariant
kernel must describe the correlations between the entries of the
tensors associated with two environments, this transformation
allows us to work with a 1× 1 and a 5× 5 kernel, rather than one
with 6 × 6 entries. The transformation between Cartesian and
spherical tensors is not entirely trivial for λ > 1, but it is well-
established93 and necessary for separating the Cartesian tensor
into components according to how they transform under
rotation. The basic form of a kernel that is suitable for fitting
spherical tensors of order λ is a generalization of the SOAP
kernel of eq 59:
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RD ( )̂λ is the Wigner D matrix of order λ. These kernel matrices
encode information on the relative orientation of the two
environments, as well as their similarity, and are referred to as λ-
SOAP kernels. A kernel built using eq 66 satisfies the two
properties that are necessary for learning a tensorial quantity:
namely, that the predictions of a SA-GPR model are invariant to
a rotation of any member of the training set and that when a
rotation is applied to a test structure, the predictions of the
model transform covariantly with this rotation.
For λ = 0, which has RD ( ) 1,0 ̂ ∝ eq 66 reduces to the

expression for the scalar SOAP kernel. For the general spherical
case, the integral of eq 66 can be carried out analytically.91 In
practice, the kernel can be computed from an equivariant
generalization of the power spectrum,

where l m l m;1 1 2 2 λμ is a Clebsch−Gordan coefficient,
is a density expansion coefficient (eq 55), and the

notation alludes to the fact that these are features
obtained from the symmetrized average of a two-point density
correlation (akin to SOAP) that transforms under rotation as a
spherical harmonic Yλ

μ. The λ-SOAP kernel (eq 66) can be
obtained by summing over the feature indices,

where we use q as a shorthand notation for the full set of indices
a n l a n l;1 1 1 2 2 2 .

3.3. H2O Potential Energy: A Hands-On Example

The Dataset. We consider as a toy model the prediction of
the energy of a water molecule, deformed along the bending
coordinate ω and the asymmetric stretch coordinate
ν′ = dOH(1) − dOH(2), with fixed symmetric stretch coordinate

d d( ) 0.951
2 OH OH(1) (2)+ = Å (Figure 8). The dataset is a

collection of 121 configurations, equally spaced along the two
directions in an 11 × 11 grid, which we use below to select
training and representative set configurations. For each
configuration we evaluate the energy, E, and the dipole moment,
μ, using the Partridge−Schwenke model,94 which constitute the
targets for regression. These structures are highly distorted, with
energies in the electronvolt range relative to the most stable
configuration. Note that we choose one of the coordinates to be
the asymmetric stretching coordinate, ν′, so that the manifold is
symmetric with respect to reflection relative to ν′ = 0,
corresponding to a swap of the labels of the two hydrogen atoms.

Computing Features. The structure of the molecule is
uniquely determined by just the twoO−Hdistances and theH−
O−H angle. However, for the purposes of this example, we
parametrize the GPR model in terms of the SOAP power
spectrum features pnn′l (equivalently ) centered on
the O atom with σa = 0.5 Å.
Using the SOAP implementation of the librascal package,95,96

as illustrated in the Python notebook that is provided to
accompany the present paper, we compute the feature matrix
using the following code:
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In this code extract, the structures are loaded and stored in the
variable structures (in the Atoms format of the Atomic
Simulation Environment, ASE,97 to which librascal,95,96

QUIP,98 and some other SOAP implementations are coupled).
The hyperparameters (hypers) describe the extent and shape
of the cutoff function delimiting the atomic environment, the

spread of the atom density, the parameters of the radial and
angular expansion, and how the feature vectors should be treated
after being calculated. These parameters could be optimized by
cross-validation but often can be chosen by hand, taking into
account the specifics of the modeling problem.

Data Splitting. We split the dataset into a training set
(which we indicate with the letter N and which is used to
determine the model parameters) and test points, which we
indicate as T, that are used to assess the accuracy of the
predictions. This is common practice, as discussed in section 2.
The corresponding indices within the overall dataset are stored
in the variables itrain and itest. We also select
representative points that are used as basis functions to expand
the sparse GPR ansatz. We indicate the representative set as M
and store the indices in the variable irep. It is worth stressing
that, even though it is customary to take the representative
points to be a subset of the training set, this need not be the case,
and methods exist that optimize the feature vectors of the
representative points so that they do not even correspond to an
actual structure.

Kernel Matrices and Regression. As discussed in section
2, the kernel matrix can be built by evaluating a positive-definite
kernel function, k(ξi, ξj), over all pairs of training configurations.
The elements of the power spectrum feature vectors for all the
structures in the dataset and are collected into a featurematrixΞ,
in which each row is associated with one O-centered
environment. The linear kernel matrix is obtained as

KNN N N
TΞ Ξ= (69)

where each element is a scalar product between the
corresponding feature vectors, leading to a model which is
equivalent to linear regression. The true advantage of GPR,
however, comes when we use the kernel to incorporate an
element of nonlinearity into the model. This could take the form
of a polynomial kernel (e.g., taking k(ξi,ξj) = (ξi·ξj)

ζ) or of a
Gaussian kernel, k(ξi, ξj) = exp(−|ξi− ξj|

2/2θ2). The latter allows
for the approximation of any sufficiently regular function defined
on the chosen feature space.39 Here we implement a sparse GPR
model, which corresponds to the minimization of a loss
analogous to eq 7, and so we compute kernel matrices within
the representative set (KMM) and between training and
representative set (KNM), using a polynomial kernel with
exponent ζ = 2, as follows:

The GPR weights are determined by eq 11 which, using a
single value σ for the regularizer, takes the form

c K K K K yNM NM MM NM N
T 2 1 Tσ= [ + ]−

(70)

and can be easily implemented using linear algebra library
functions, for example, with a least-squares solver:

The predictions for the test set, or indeed for any new
structure, can be easily computed as yT = KTMc, i.e.

As shown in Figure 8, using only 12 training points and 8
representative points, the model achieves an error below 15
meV, which is less than 2% of the intrinsic spread of energies in
the dataset. An important observation is that the errors are

Figure 8.Hands-on example for atomistic GPR: learning the potential-
energy surface of a single water molecule. (a) Structures in the dataset
are defined by two coordinates: the asymmetric stretch coordinate ν′
and the bending coordinate ω; the sum of both bond lengths is fixed to
2 × 0.95 Å. (b) Target property to be represented by the model,
spanning several eV because a very large range of distortions has been
chosen for this toy example. (c) Error in the GPR-predicted molecular
energy as a function of (ν′, ω). Stars indicate structures used for
training; crosses indicate structures used as representative points of the
sparse GPR model.
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exactly symmetric with respect to ν′ = 0: the use of an invariant
representation guarantees that molecular symmetries are
automatically enforced, which improves the accuracy of
predictions even if we do not exploit them explicitly in the
selection of the training set.
Even for this simple problem, the performance of a GPR

model depends on the choice of the structure and hyper-
parameters of the model. The choice of the kernel itself can have
a very substantial effect on the accuracy of the predictions and on
its ability to fit (and overfit!) the targets. Figure 9a compares the

error one incurs when using four different kernels. For
simplicity, and to avoid confounding effects, for this figure we
use a full (i.e., not sparse) kernel model, even though this is
rarely the most effective choice in computational practice. For
this simple system, linear regression based on SOAP features has
an accuracy comparable to that of the nonlinear, square kernel.

The Gaussian kernel, instead, leads to clear overfitting for a small

length scale hyperparameter: the training points have zero error,

but structures away from the data points in the (ω, ν′) space of
Figure 9a exhibit a very large discrepancy (up to 1 eV) between

reference values and model predictions. With a larger length

scale hyperparameter, the fit accuracy is similar to those with the

linear and quadratic kernels.
The effect of changing the hyperparameters for this dataset is

shown in Figure 9b. The strongest dependence is on the width

parameter of the kernel function used to define the GPR model

covariance (here denoted by θ, to distinguish it from a spatial

length scale, since the descriptors are the SOAP features). The

optimal value is around 1, which is large compared to the typical

distance between data points in the space of SOAP features,

which is approximately 0.03 for this dataset. In this example, the

Gaussian kernel performs well using a hyperparameter for which

it is dominated by the first term in the Taylor expansion of the

exponential and therefore in effect becomes very close to a linear

kernel.
For this simple dataset, which has a low intrinsic

dimensionality, the effect of regularization is minor, but one

can still see that if the basis functions are wide enough (θ > 1),

there is an improvement of the test-set accuracy for finite,

nonzero regularization compared to the nonregularized (σ = 0)

case. In more realistic scenarios, and particularly in the high-

dimensional, data-poor, or extrapolative regime, a careful choice

of σ can substantially improve the robustness of a model.

Practical aspects of regularization in GAP models are discussed

below (section 4.6), as are heuristics for setting other

hyperparameters that influence the representation: the SOAP

density smearing length scale (σa), the cutoff radius, and others.

3.4. Symmetry-Adapted GPR

We now give an example of the construction of a regression

model for a tensorial property, namely, the dipole moment of the

water molecules, computed for the same set of distorted

structures. Functionally, symmetry-adapted GPR is very similar

to standard GPR, with eq 3 for the estimator replaced by

y c kx x x( ) ( , )
i

N

i i
1

∑ ∑=μ
μ

μ μμ
λ

= ′
′ ′

(71)

for the μ component of the spherical tensor y (x). Given that the
dipole moment is just a vector and that (real-valued) l = 1

spherical harmonics correspond to (y/r, z/r, x/r), we build the

kernel using just the Cartesian components. Hence, the variable

yl holds the N × 3 components of the dipole moments in the

overall dataset.
To compute λ-SOAP kernels, we first compute the

corresponding equivariant feature vectors, q A; ; 1i
2ρ μ⟩⊗ ,

implemented in the code as follows:

Figure 9. Effect of different kernels and hyperparameters for the H2O
example. (a) Error in predicting the energy for the distorted H2O
molecule using different kernels as noted in the legends. Stars denote
the training point locations. For all kernels, the features, ξ, are the SOAP
power spectrum components, centered on the oxygen atom, with σa =
0.5 Å and regularization σ2 = 10−8. (b) Test-set RMSE for the H2O
energy model based on a Gaussian kernel, as a function of the
regularization σ and the kernel length scale θ. The two blue crosses
correspond to the hyperparameters used in the lower two graphs in
panel a.
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The hyperparameters are the same as for the invariant SOAP,
except for covariant_lambda that identifies the required
equivariant channel and inversion_symmetry that
retains only components with the appropriate behavior with
respect to inversion.
Kernels are composed of 3 × 3 blocks, computed using eq 68.

This requires some careful indexing:

The tensorial expression for the GPR weights is

c yK I( )i
j

i j j
2

,
1∑ σ= +μ

μ

λ
μ μ μ

′
′

−
′

(72)

Hence, in SA-GPR we are solving fundamentally the same
problemthat of matrix inversionas in standard GPR, but we
now incorporate the intrinsic geometric correlations between
the components of the target properties through the form of the
covariance matrix. In terms of implementation, this also requires
some bookkeeping:

Afterward, it is possible to perform tensorial predictions by
just applying eq 71:

Figure 10 demonstrates the accuracy of the SA-GPR model.
The predictions are symmetric across ν′ = 0, consistent with the
geometry of the problem and a consequence of the equivariant
framework. Note that the kernel we use here has a scalar-product
form and so is equivalent to a linear ridge regression model built

on the q ;i
2ρ λμ⟨ ⟩⊗ features. As discussed in ref 99, nonlinear

tensorial kernels cannot be built by manipulating the λ-SOAP
block elementwise but should be constructed by combining a
nonlinear scalar kernel with a linear tensorial part, e.g.

k A A k A A k A A( , ) ( , ) ( , )i i i i i i
, 0 1′ = ′ [ ′ ]μμ

λ ζ
μμ
λ λ ζ

′ ′ ′ ′
=

′
−

(73)

for a polynomial kernel. (Note that kλ=0 corresponds to the
original, scalar SOAP kernel defined in eq 57.)

4. GAUSSIAN APPROXIMATION POTENTIAL (GAP)
FRAMEWORK

The introduction of ML methods for modeling the Born−
Oppenheimer potential-energy function using suitable descrip-
tors of atomic environments49,66 has opened up a new research
field in materials science and chemistry. Although there was
important early work using ML models (e.g., for the low-
dimensional potential-energy surface (PES) of small mole-
cules100−102 even near surfaces103), the key advance was the
systematic description of the many-body environment of atoms,
coupled with high-dimensional fitting techniques (neural
networks66 and kernel methods49). The descriptors of Behler
and Parrinello and the smooth overlap of atomic positions
(SOAP) kernel52 obey all physical symmetries (translations,
rotations, and permutation of like atoms) and represent the local
environment with a high degree of completeness,71 while
remaining smooth and continuous with respect to the
movement of atoms.51 When combined with appropriate
databases of quantum-mechanical reference data, these ML
frameworks were demonstrated to be capable of providing
highly accurate interatomic potential models for materials and
molecules.
In the present section, we review the Gaussian approximation

potential (GAP) framework, one of the schemes for generating
ML-based interatomic potentials that have recently found
widespread use. The software implementation is part of the
QUIP code.98 Formally, GAP is an application of GPR to infer a
decomposition of the total energy of an atomistic system into
atomic (“local”) energies, from input data that can comprise
total energies and their derivatives (forces and stresses). As with
other ML potential fitting frameworks, the three components of
GAP modeling are the reference database, the representation of
atomic environments using suitable descriptors (including, but
not limited to, SOAP), and the regression task itself which is
here carried out in the GPR framework (Figure 11). We discuss

Figure 10. SA-GPR predictions of the dipole moment for the water
molecule. The training data were generated using the Partridge−
Schwenke model; the definition of the coordinates ν′ and ω, as well as
the molecular structures, are the same as in Figure 8. Blue crosses and
black stars indicate the representative and training point locations,
respectively. Arrows indicate the magnitude and direction of the
predicted dipole moment for each structure (the y axis corresponds to
the C2 axis of the ideal molecule), and the background color scale
indicates the magnitude of the model error. For reference, the typical
scale of the dipole moment of a water molecule is 1.8 D (corresponding
to the size of the gray arrow in the inset), and so the fitting errors are on
the order of a few percent.
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at some length the methodological choices that we have made in
developing and defining this framework, and we explain the
reasoning that leads to them.
The following principles guide the construction of GAP

models:

• All available data are used: total energy, forces, and
stresses (for periodic systems), combined into a singleML
fit. The design of the input database is critical to the
success of the model and has been a cornerstone of all
presently available general-purpose GAPs. The selection
of reference data is as much an area of ongoing methods
development as is that of representation and regression
(section 4.1).

• The choice and specification of structural descriptors
(representation) is tightly coupled with the choice of
kernels, and both are an essential part of the user input.
They incorporate prior knowledge about the nature of the
potential-energy functionspecifically, its regularity.
Commonly used examples are distances and angles
between atoms together with a squared exponential
(Gaussian) kernel, or the many-body SOAP representa-
tion with a polynomial kernel. These are not mutually
exclusive: low-dimensional kernel models can be fitted
together with many-body ones, with appropriate weight-
ing between them. All representations and kernels in GAP
have finite distance cut-offs, typically about 5−6 Å, and
therefore they represent the local environments of the
atoms (section 4.2).

• Baseline models, determined a priori, are used where
possible. The baseline could be a certain level of electronic
structure (say, we fit the difference between DFT and
coupled-cluster potential energies), or an analytical long-
range potential, e.g., an electrostatic or dispersion model,
or in fact any fast force field or even just a purely repulsive
interaction. Hierarchical models, in which multiple fitted
potentials are added together, are discussed in section 4.2.

• The atomic energy is written as a sum of a fixed number
and type of kernel basis functions, irrespective of the type
and exact amount of input data, making the model a
sparse Gaussian process. Decoupling the number of input
data points, D, from the number of basis functions
(“representative points”), M, makes the prediction cost
formally independent of the amount of input data
(although in practice a larger M may be needed to

represent a larger, more diverse training set). Therefore,
the storage and cost requirements of using a GAP model
scale with the number of representative points, not with
the size of its reference database (section 4.3).

• Hyperparameters of the GAP model are chosen and fixed
a priori as much as possible and optimized only where
required. The main hyperparameters are (i) the relevant
length scales, which define the cutoff radius and the
smoothness of the kernel, and (ii) the expected errors
(arising both from noise in the input data and limitations
of the model, e.g., due to the necessarily finite cutoff
radius; section 4.4), which determine the regularization of
the fit (section 4.6). Practical choices for hyperparameters
are discussed in section 4.5.

While the rest of the present section will expand on the details
of GAP, we note here briefly that over the past decade,
numerous other works have proposed many-parameter fitting
schemes inspired by a variety of ML methodologies, blending
them with a range of materials modeling approaches. Following
the foundational work of Behler and Parrinello,66 feed-forward
neural networks with a handful of layers are used in the ANI
series of force fields for organic molecules,104,105 as well as the
ænet,106 Amp,107 DeepMD,108 and Panna109 implementations,
and have even been coupled with charge equilibration
schemes.110 For more details, ref 111 provides a review in the
present thematic issue. Independent implementations of GPR/
KRR were also used with SOAP-like features for tests in bulk
vanadium hydride112 and zirconium113 and also to directly
predict force vectors rather than the potential energy.114,115

4.1. Reference Data

The quality of any ML model hinges on the quality of its input
data, and interatomic potentials including GAP are no
exception. The choice of reference data is particularly important
because ML potentials are nonparametric: they lack a physically
justified functional form, and thus they have enormous
variational freedom that must be constrained by the input data.
A range of approaches have been developed for the

construction of reference databases. These are primarily guided
by the intended purpose of the potential. “General-purpose”
potentials are intended to accurately represent amaterial under a
wide range of conditions, whereas others might be fitted for a
specific purpose, e.g., to study the transition between specific
crystalline phases116,117 or the Li-ion mobility of a given
compound.118−120 In the following, we show some examples of

Figure 11. Three main components for GAP: (1) a reference database of quantum-mechanical data for suitably chosen structural models, (2) a
representation of the atomic environments (typically using combinations of 2-body and SOAP descriptors; section 4.2), and (3) the GP regression
itself. Adapted from ref 29 with permission. Copyright 2019 WILEY-VCH.
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the development of different strategies for building databases,
from hand-selected configurations to almost fully automated
protocols. In keeping with the scope of the present review, we
discuss these strategies in the context of GAP, although many
ideas and methodological approaches are transferable to other
fitting frameworks.
4.1.1. Hand-Built Databases. Early GAP fitting databases

were developed by hand, using physical intuition to select
relevant configurations. Among the first examples was a GAP for
elemental tungsten, which was designed to describe the material
in its ambient body-centered cubic (bcc) crystal structure with
relevant low-energy defects, including vacancies, surfaces,
generalized stacking faults, and dislocations.121 The fitting
proceeded in stages, starting from a narrow range of
configurations and gradually adding more structurally diverse
ones (Figure 12). Initially, the GAP was fit only to snapshots

representing the bulk bcc phase with small perturbations, and
consequently it was accurate only for properties that depend
exclusively on such geometries, such as elastic constants and
phonon frequencies. Configurations with very different atomic
environments, such as defects, had much larger errors in
predicted energy because they had not been “shown” to the fit.
As increasingly diverse configurations were added to the fitting
database, the applicability range expanded: at each stage, adding
configurations representing various defects improved the model
prediction results for that defect type, without appreciably
worsening its accuracy for the configurations considered at a

previous stage. This desirable behavior is a reflection of the
variational freedom of GAP, its locality in atomic-environment
space, and the stability of GPR: fitting in additional regions of
configurational space does not necessarily change the behavior
for previously fit regions. Some care has to be taken to achieve
this; for example, the number of representative configurations
might need to be increased.
The design of a fitting database for a GAP must take into

account the risk of unphysical predictions for structures that are
far from the fitting configurations, due to its large variational
freedom and the lack of constraints from built-in physics beyond
symmetries and smoothness. A potential with only low-energy
configurations in the fitting database may not correctly predict
the true increase in energy at the boundary that separates the
physically reasonable regions from inaccessible, high-energy
configurations. Using such a potential in a configuration-
sampling method, such as MD, may therefore cause the system
to evolve into unphysical regions of configuration space. Thus, in
order to obtain a usable potential, it is essential to fit not only the
configuration-space region of ultimate interest but also its
“boundary”. Note that the dimensionality of configuration space
could make this a challenging taskeven when the n-
dimensional volume of interest can be adequately sampled, if
the required boundary has comparable length scale, its volume
would be of order 2n times larger.
A practical way to address the requirement to fit the boundary

is to make the fitting process iterative. A proposed potential is
used in an MD or Monte Carlo sampling of configurations at
conditions that are more extreme than those of interest (e.g.,
higher temperatures or a wider range of pressures). Config-
urations that will improve the fit must be identified and
evaluated with the reference method for inclusion in the fitting
database. The GAP is refit with the additional configurations,
and the process is repeated until no more unphysical behavior is
seen.122 Variance prediction can provide a useful tool to identify
poorly predicted configurations for fitting (sections 4.1.2 and
5.2), although it has not been widely used for GAP model
development so far.

4.1.2. Iterative and Active Learning. One important
contrast that we would like to draw is between what we describe
above as iterative fitting and what is often referred to as “active
learning” in theML community. In iterative fitting, we add more
fitting data points at each iteration, and convergence is
determined by the performance of the model on some
independent and physically meaningful property. The challenge
is then to select the best (most informative) fitting data to add at
each iteration and to develop a convergence test that ensures
that the resulting model is sufficiently accurate and robust for
future application. The goal is to approach a stable, “converged”
potential, which can then be used in practice without having to
continually refine it further. In the next subsection, we give an
example of such a procedure with configurations generated by
random-structure search.
Active learning, on the other hand, depends on the ability to

efficiently predict the accuracy of the model for each
configuration as it is generated during a simulation, for example
using the predicted variance for a GP,61,123−125 D-optimality for
a moment tensor potential (MTP),126,127 or model ensemble
variation for a neural network.128,129 Details on how to obtain
such error estimates are given in section 5.2.
When configurations that are expected to be poorly described

by the existing model are encountered, they are evaluated using
the reference method and added to the training set, and the

Figure 12. Accuracy of GAP models for tungsten fitted to a series of
progressively more comprehensive, manually constructed databases
(labeled as “GAP 1” through “GAP 4”). Numerical errors for four
different properties are given: if the corresponding type of configuration
has been included in the database, the GAP performs well in predicting
this property (indicated in green). Figure drawn with data from ref 121
and adopting the color scheme from that work.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00022
Chem. Rev. 2021, 121, 10073−10141

10092

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig12&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


model is refit. In practice, active learning is often used without
the goal of developing a single general-purpose potential that
describes the material under all conditions, but rather one that
ends up being tailored for a specific simulation (material, crystal
structure, temperature range, etc.).124 The process converges
when a particular simulation stops producing configurations that
are considered novel enough to be added to the training set
this may or may not be reached in practice.
Active learning was first proposed for interatomic potentials in

the context of neural networks,128 where it was successfully
applied to MD simulations of Cu bulk and surfaces. It is still
being used in neural-network models with more complex
architectures, for example in the development of “deep
potential” models for Al−Mg alloys.129 In that work, the active
learning loop was added to MD simulations of temperature
ramps starting from known crystal structures at low temper-
atures and increasing to values above the melting point. The
resulting models reproduce not only the PES sampled by the
simulation but also structural properties such as the liquid radial
distribution function, as well as energies of configurations that
are unlikely to be represented in theMD trajectories such as free
surfaces. Active learning in the context of reference-data
selection for GAP was demonstrated for liquid and amorphous
phases of hafnium dioxide130 and very recently coupled with
experimental observations into a fitting workflow for this
material.131

The developers of the VASP first-principles simulation
software132 integrated an automated GPR-based potential
using active learning as a technique for accelerating their
simulations.123−125 Using SOAP descriptors but slightly differ-
ent expressions for regression than GAP, and using the GP to
predict variances of forces and stresses as well as energies, they
showed that predicted variances are good proxies for actual
error, as shown in Figure 13a. Although a rescaling was required
to bring them into quantitative agreement with the actual error,
the predicted variances were effective for use in selecting fitting
configurations for active learning. The authors applied their
methodology to a wide range of systems, including metals, AB2
Laves phases, and hybrid perovskites: for example, Figure 13b
shows the evolution of the lattice parameters of methylammo-
nium lead iodide (CH3NH3PbI3), during the orthorhombic to
tetragonal to cubic transitions, as compared to experimental
results. This material has been widely studied with DFT.133

Tong et al. used a similar predicted-variance criterion for active
learning of configurations during the search for low-energy
structures of large boron clusters,134 culminating in the
prediction of a new ground state structure for B84. The VASP
code with this built-in SOAP-GPR-based acceleration technique
has since been used by other groups, e.g., to study the atomic-to-
electride liquid−liquid phase transition of potassium.135

Vandermause et al. employed GPR variance prediction to
drive an active learning procedure for an interatomic potential,
although they used two and three body descriptors, rather than
SOAP.61 While this choice of descriptors led to a somewhat
higher error relative to their reference data, the authors were able
to map the resulting potential to a spline form for greatly
increased computational speed. The method was applied to
melting and point defect diffusion in aluminum, as well as a
wider range of materials (metals, semiconductors, metal oxides)
at a narrower range of temperatures (and therefore of
geometries). In this case, the hyperparameters of the GP were
optimized by maximizing the marginal likelihood, and it is likely
that this is a key component of accurate error predictions. In fact,

the dependence of the variance prediction on the fitting data
values (not just fitting data locations, i.e. the geometry of the
configurations) is only through this optimizationthe
predicted variance expressions themselves are only explicitly
dependent on kernels between input configurations.
Finally, MTPs have been presented as part of an active

learning loop explicitly based only on the volume of the input
data space spanned by the training dataset, rather than explicitly
predicting the error in the output,126,127 although these are
related through the idea of D-optimality. The procedure was first
applied to simple metals in the solid and liquid phase and later
showed success in the much more complex and geometrically
diverse process of structure search in a wider range of materials,
including metals, semiconductors, and insulators.127 Several
other applications of active learning to other types of interatomic
potentials are listed in a recent overview.125

4.1.3. GAP-RSS. The majority of ML potentials has been
developed based on a knowledge of the relevant atomistic
structures: crystalline phases added to the reference database by
hand; liquid and amorphous structures taken from first-
principles MD simulations; specified structures that serve as
the starting point for “on-the-fly” potential fitting. These

Figure 13. Fitting of a GPR-based ML potential as fully integrated with
ab initio molecular dynamics. (a) Time evolution of measured and
predicted force errors in an on-the-fly fitted GPR model for the
methylammonium lead iodide (CH3NH3PbI3) hybrid perovskite
during an MD simulation. (b) Lattice parameters of this material as a
function of simulation temperature for the GPR model (MLFF), as
compared to experiment (EXP), showing structural phase trans-
formations as indicated by the orange and yellow vertical bars.
Reprinted with permission from ref 123. Copyright 2019 by the
American Physical Society.
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potentials are accurate in the sense that they reproduce the
energetics of crystalline phases to within a few millielectronvolts
per atom and often a range of other relevant properties (Figure
12). They can also be flexible enough to drive a global search for
crystal structures that would normally be carried out with
DFTfor example, in the widely used ab initio random
structure searching (AIRSS) approach by Pickard and
Needs.136,137 In the context of GAP, the ability to carry out
structure searching successfully has been demonstrated for
carbon138 and silicon,139 identifying low-enthalpy minima and
describing the density distribution of energies in good
agreement with DFT.
In the present section, we review a method for the de novo

exploration and fitting of potential-energy surfaces without the
prior inclusion of any known structures. Starting from
randomized configurations, a GAP is fitted and used to carry
out structure searching; the resulting minima are labeled with
DFT and fed back into the training; the process is then repeated
until convergence. We refer to this method, combining GAP
fitting and random structure search, as “GAP-RSS”,140 in
analogy to AIRSS. Here, we focus the presentation on GAP, in
keeping with the scope of the present review article, but we note
that other ML fitting schemes have also been successfully
combined with different structure-searching techni-
ques.126,134,141

Whether such a de novo approach would work at all is not
obvious: in fact, AIRSS and related methods start from
randomized structures that are highly dissimilar from exper-
imentally known phases, and therefore, the exploration
especially of the higher-energy regions of the PES requires
sufficiently accurate energy and force evaluations, normally
afforded by DFT. Why, then, would an ML potential find new
lower-energy structures to which it has not been fitted and which
it therefore describes rather poorly? The key is that the potential
does not have to be accurate for a low-energy structure in order
to find it: the combination of large structural diversity generated
by the random-search algorithm and suf f icient smoothness (of
both the DFT potential-energy surface and the GAP fit) allow
the potential to explore lower-energy regions in subsequent
iterations, eventually converging to a good description of the
PES.
The central idea behind GAP-RSS, namely that of starting

with randomized atomic configurations and coupling fitting and
exploration, was introduced in ref 140. The test case in that work
was elemental boron, which is challenging because multiple
structurally complex allotropes exist and need to be correctly
described by the method, and even the simple α-rhombohedral
structure is based on B12 icosahedra (see section 6.2). The
search started from random configurations, created using the
buildcell functionality of the AIRSS code,137 for which DFT
reference data were computed and an initial GAP was fit. From
searches (that is, structural relaxations) using this initial
potential, structures were taken after 5 and 200 relaxation
steps, corresponding to RSS “intermediates” and configurations
closer to local minima, respectively. Iterative DFT computa-
tions, potential fits, and searches with the next potential version
led to progressively improved GAP models, quantified using the
energy error for the bulk allotropes which the potential had not
initially “seen”. Of course, once the bulk structures were added,
their description was improved much further. This initial work
also explored the role of GAP atomic energies, showing that for a
supercell model of β-rhombohedral boron with the relevant
crystallographic sites all fully occupied, high (unfavorable)

atomic energies are predicted for the B13 site that
experimentally show a partial occupation; see ref 140 for details.
The approach was then expanded by a selection step in

subsequent work, which focused on phosphorus as a test case:142

rather than feeding back all configurations in a given iteration,
only the most favorable ones were selected. In this case, the
criterion was that all atoms in a given structure needed to be 3-
fold-connected,142 in accord with the crystalline allotropes of
phosphorus and its location in the fifth main group of the
Periodic Table. Indeed, in this study, the orthorhombic structure
of black phosphorus was “discovered” after a few iterations, and
once the corresponding snapshot had been fed back into the
database, the energy−volume curve was brought into good
agreement with DFT.142 The work furthermore explored GAP-
RSS searches at high pressure, in this case showing how the As-
type and simple-cubic allotropes can be recovered.142

Subsequently, for elemental systems, this process has been
automated using general heuristics for the hyperparameters, RSS
process, and structure selection criteria, so that only the
chemical element needs to be specified.143 In this case, a length
scale is set from a tabulated characteristic elemental radius
(metallic or covalent) and a volume scale that is derived from
this length scale and the geometry of typical open-network
(covalent) or close-packed (metallic) structures. The length and
volume scales are used to set all spatial hyperparameters,
including the potential cutoff distance, SOAP smoothness σa,
and RSS initial structure density and minimum interatomic
distance. In the initial step, a set of 104 random structures is
generated and 100 are selected for maximum diversity using
leverage-score CUR,144 similar to that used for the selection of
representative atomic environments in GAP fitting (section 4.3).
In this case, the CUR algorithm is applied to the “average SOAP
descriptors” that describe an entire structure by a single power-
spectrum vector, built from coefficients corresponding to the
local environments.145

As in ref 140, an initial GAP is then fit to DFT reference value
energies, forces, and stresses for the selected configurations. In
the methodology of ref 53, for each subsequent iteration, the
GAP from the previous iteration is used to find RSS minima
from 104 initial random configurations, with the minimization of
enthalpy under a random pressure from a user-defined
distribution. First, a set of relevant minima is selected with a
two-step process. A Boltzmann-biased flat histogram in enthalpy
is used to select a few thousand minima, to ensure that the set is
independent of the probability density of the RSS minima
population (through the use of the flat histogram) and biased
toward low-enthalpy configurations (through the Boltzmann
weight). A diverse subset of these minima is selected using CUR,
as in the initial step, and the entire set of minimization trajectory
configurations leading to these minima is used as a pool for the
fitting configuration selection. From this set, 100 configurations
are selected using the same flat-histogram and CUR process,
evaluated with DFT, and added to the fitting database. This
process ensures that the fitting database focuses on a wide range
of diverse local minima as well as higher-energy configurations
that might be encountered during a simulation; it retains the
advantage of selection by CUR on the kernel matrix (purple in
Figure 14) and avoids the computationally expensive task of
computing the kernel matrix on the entire large set of
configurations generated by the RSS minimization process
(104 trajectories with about 100 steps each).
The evolution of the GAP-RSS process is shown in Figure 14.

With each iteration, the accuracy of the GAP prediction
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(compared to the reference DFT value) for the DFT minimum
α-B12 structure improves, with the best convergence seen with
the use of CUR on the descriptor kernel matrix. The evolution of
the corresponding RSS itself is shown in the bottom panel of the
figure, in the form of visualizations of fragments and plan views
of the respective lowest GAP-energy structure found. Even the
fourth iteration finds a structure with many three-membered
rings, which are important in several low-energy B crystal
structures. Subsequent iterations find structures that become
increasingly close to the nearly ideal icosahedra in the DFT
minimum energy structure.
The iterative combination of structure search and fitting has

not been restricted to AIRSS and GAP: in fact it can be done
with any combination of methods, in principle, as noted in ref
138. An evolutionary structure searching approach, imple-
mented in the USPEX code,146 was combined with moment-
tensor potentials (MTP) to accelerate the structure search
process for a number of elements.127 Described as a way of
accelerating the discovery of new crystal structures, the
combination was successfully applied to C, Na under pressure,
and B. The structure-search algorithm combined with the
computational efficiency of the moment tensor potentials
(MTP) enabled the construction of several 105−108 atom
approximants of the β-B structure, which is highly complex with

many partly occupied sites. In terms of nanostructures, it was
shown, for example, how the fitting of a neural-network potential
can accelerate evolutionary searches for the structures of
nanoparticles on surfaces.147

Another algorithm, viz. crystal-structure searching by particle-
swarm optimization148 as implemented in the CALYPSO
software,149 was combined with a GAP model (using atom-
centered symmetry functions rather than SOAP descriptors) to
iteratively search for structures and refine the GAP.134 In one
variation active learning was used, selecting configurations to be
added to the fitting database based on predicted error from the
variance of an ensemble of GAP models. The generated GAP
models were shown to be effective for CALYPSO searches, and
they were used to predict a new ground-state structure for the
B84 cluster; examples of this search and others will be discussed
in section 6.2. As stated above, presumably any ML potential
could benefit from similar approaches, as long as the potential
can take advantage of smoothness or other physical properties of
the PES to have sufficient transferability to reproduce (at least
semiquantitatively) the diverse range of configurations that
appear in a random structure search.

4.1.4. Automatic Training Set Selection. A common
problem one encounters is that of extracting from a large set of
configurationsfor instance obtained from exploratory ab initio
molecular dynamics or from simulations performed at a lower
level of theory or with an empirical force fielda smaller set of
configurations that exhibit maximum diversity, to be recom-
puted with a more accurate method, or just to discard redundant
configurations to accelerate the fitting procedure. Both farthest-
point sampling150 (FPS, a greedy algorithm that selects at each
stage the structure that is most different from those that have
been selected already) and CUR decomposition (a factorization
that uses columns and rows of a matrix to approximate it) have
been used for this task.72,143,151,152 Whenever the regression
target, or an inexpensive approximation of it, is available for the
large dataset, it is possible to use it to improve the quality of the
selection, either with genetic algorithms153 or with extensions of
FPS and CUR techniques154 inspired by principal covariate
regressions.155

4.1.5. General-Purpose Databases. General-purpose ML
potentials aim to describe a material under all reasonable
conditions, including a diversity of phases, surfaces, relevant
defects, etc. They require general-purpose databases that cover
all this wide variety of local environments. The defining attribute
of such a potential is that it can be used by other researchers, not
involved in its construction, sometimes for new purposes that
were not envisaged when the fitting database was assembled.
The first such database was painstakingly built by hand using a
combination of chemical intuition and “trial and error” for
silicon,139 leading to a database that contains over 170,000
atomic environments. The GAP model fitted to this database
provides near first-principles accuracy for a wide variety of
properties. This is illustrated by the bar chart in Figure 15,
showing the percentage errors with respect to DFT for a number
of simple material properties, in comparison to several empirical
potentials available for silicon. Beyond these, the GAP gives an
accurate description of vibrational modes, thermal expansion,
dislocations, and crack tips and complex surface reconstructions
for diamond-type silicon, the equations of state for various
relevant crystalline phases, and the structure of amorphous and
liquid silicon.139,151 It has recently been used in a large-scale
simulation to shed light on the behavior of amorphous silicon

Figure 14. Exploring and fitting structural space from scratch with the
GAP-RSS methodology.140,143 The example shown here illustrates how
the structure of α-rhombohedral boron is discovered within a few
iterations of GAP fitting and iterative random structure searching.
Reprinted from ref 143. Original figure published under the CC BY 4.0
license (https://creativecommons.org/licenses/by/4.0/).
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under high pressure, which we discuss at the end of this
review.164

The amount of manual work that was required to assemble the
silicon database is clearly not sustainable if similar general-
purpose potentials are to be developed for a wider variety of
materials. Figure 16 combines several of the ideas discussed in
the present section into a blueprint for making general-purpose
potentials. The example case, shown at the center of the figure, is
elemental phosphorus, a structurally highly complex systemwith
multiple low-energy crystalline polymorphs: see, for example, ref
165 for the synthesis and characterization of monoclinic
“fibrous” red P and ref 166 for a computational survey of the
different allotropes. Phosphorus is also of application interest in
terms of monolayers (“phosphorene”; ref 167) and, more
recently, nanoribbons168 derived from the layered structure of
black P. This structural diversity, together with the need to
describe certain regions of the PES highly accurately (in this
case, for example, the exfoliation curve of phosphorene), places
demands on the construction of the reference database that is
used in the potential fit. The database developed in ref 163, for
which a SOAP-based structure map is shown in the center of
Figure 16, aims to achieve this goal. On the one hand, it
enhances transferability by including a highly diverse set of
structures from an earlier GAP-RSS search,142 and on the other
hand, it ensures application relevance by including carefully
chosen configurations that are relevant to specific physical
problems that might be studied: here, for example, the
description of phosphorene nanoribbons, which have been
synthesized recently.168

4.2. Hierarchical Models

Having discussed the development of reference databases in
some detail, we turn now to the other aspects of the GAP
methodology which are concerned with the fit itself. While it is
certainly possible to fit an interatomic potential using GPR and a
many-body kernel such as the SOAP (eq 57) on its own, we
suggest that this is almost always a bad idea. The reason is that
there are at least two distinct energy and length scales in

Figure 15. Accuracy of the general-purpose silicon GAP.139 The bar
chart shows the percentage error of some basic material properties and
the formation energy of selected defects with respect to DFT: elastic
constants (B, c11, c12, c44); surface energies for the (111), (110), and
(100) surfaces; vacancy (“vac”) and interstitial (“int”) formation
energies in the hexagonal (“hex”), tetrahedral (“tetr”), and dumbbell
(“db”) configurations. While the local environments relevant to the
properties on the left side of the figure are well represented in the
database, the (112)Σ3 symmetric tilt grain boundary and unstable
stacking fault energies on the shuffle (γus

(s)) and glide (γus
(g)) planes, on the

right of the figure, are not and therefore indicate a degree of
transferability to new, unseen properties. Also shown are the errors of a
number of empirical potentials: EDIP,156 Tersoff,157 Purja Pun,158

MEAM,159 SW,160 ReaxFF,161 and DFTB.162 Although some of these
have not been fitted to DFT data for the relevant configurations, and
sometimes not to any DFT at all, the variance between values obtained
with different flavors of DFT (and even with experiments) for the
properties shown is typically less than the errors of the empirical
potentials. Reprinted from ref 139 under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

Figure 16. Different strategies for constructing reference databases for ML potentials, indicated by cartoons in the boxes. The center of the figure
shows a database of phosphorus configurations used to fit a general-purpose GAP for this element. The structural map, visualizing the (dis-) similarity
between different configurations, illustrates the connection between random structure search (gray), exploration with the potential using MD
(orange), and manual database building (blue, green). Adapted from ref 163. Original figure published under the CC BY 4.0 license (https://
creativecommons.org/licenses/by/4.0/).
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potential-energy surfaces: the attractive regime of interatomic
bond formation on the length scale of Ångströms and energy
scale of electronvolts (hundreds of kJ mol−1) and the repulsive
regime between nuclei (including electronic exchange repul-
sion) on the length scale of tenths of Ångströms and energy scale
of tens of electronvolts and higher. In most applications, we are
interested in a detailed and accurate description of the former
and just a rough approximation of the latter (one exception to
this is the study of high-energy impact events, which will be
reviewed in section 6).
We can augment the many-body model with low-body-order

terms (as in eq 52), which are themselves fitted at the same time
as the many-body model. It is convenient to retain the linear
algebra framework of the kernel regression method, and this can
be done if all the terms which we wish to fit are expressed as GPR
models. All we need to do to achieve this is to define suitable
descriptors and kernels for each term and use them in the “linear
functional observations” framework introduced in section 2.4.
For the pair potential, the distance between two atoms is the
canonical choice. For the three-body term, either two distances
and an angle or three distances are equally suitable. In both
cases, permutational symmetry must be enforced, either by
symmetrizing the descriptor or by summing the potential term
over the permutation group of three particles (depending on the
three element identities). The total energy expression of a
combined two-body and many-body model, using Gaussian
kernels for the two-body terms, is then
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where we have introduced weights δ2 and δMB for the two terms,
which scale the relative contributions of the different terms and
have units of energy. (Because kernels are unitless and the
coefficients c have units of inverse energy, each term on the right-
hand side has appropriate energy units.) The two-body term is a
one-dimensional sparse GP with M2 representative points
located at the interparticle distances rm, which in practice we
often take to be a regular grid up to some cutoff. In this
formulation, the different terms are not independent: a general
many-body term of course can describe any two-body
interaction too, but not efficiently, since it is intrinsically high-
dimensional. So it is only in combination with the regularization
of the fitting coefficients and specifying different weights, by
using different δ prefactors, that we obtain the benefit of
separating out these terms. (Note that it is actually possible to
separate out the two-body contributions from the many-body
SOAP descriptor explicitly.169)
Figure 17 illustrates the trade-off between robustness,

flexibility, and overall quality that is linked to the choice of
descriptors or combinations thereof, here shown for the example
of carbon.122 Increasingly complex models, viz. 2-body, 3-body,
and many-body (SOAP) terms, capture the potential energy
increasingly well, albeit requiring higher computational cost. A
pure SOAP model (dashed black line) reproduces well the
region where data are available but fails notably at very small
interatomic distances. In contrast, the combined 2b+3b+SOAP
model (red line) correctly captures the repulsion at very small
interatomic distances and therefore is robust even in MD

simulations of liquid carbon at 9,000 K (details may be found in
ref 122).
An alternative way to describe core repulsion is to employ a

simple analytic pair potential, V2(r), as a baseline that is
constructed to be repulsive.139 This is data efficient, because less
effort is spent collecting data and fitting configurations where
only two atoms in a large structure are close to each other. There
are other cases too in which a simple baseline model outside the
GPR framework looks very advantageous, e.g., adding a fixed-
charge electrostatic model170,171 or a 1/r6 pair potential to
describe the long-range part of (van der Waals or London)
dispersion.152,163,172 The energy expression to be fitted is then
the sum of the fixed pair potential and the many-body term that
depends on the many-body descriptor for each atom, ξi,

E V r V( ) ( )
ij

ij
i

i2 MB∑ ∑ ξ= +
(75)

The training of such a hybrid model is identical to that of a pure
many-body modelexcept that the energy, forces, and stresses
of the pair potential are first subtracted from the input data, and
the dif ference is then fitted by theMLmodel, rather than the total
potential. The central idea is sketched in Figure 18a, with the
baseline model denoted by the letterA and the ultimate target of
the potential by the letter B. The baseline does not have to be as
simple as a pair potential. Using a polarizable electrostatic force
field as a baseline to augment a short-range many-body ML
model also fits into this category.173

The baseline could be even more complex, e.g., when the
target of the fit is the energy difference between two dif ferent
electronic-structure methods.419 These can differ in their treatment
of electron correlation (e.g., DFT versus wave function
methods) or basis set (e.g., the minimal basis set of tight-
binding or LCAO methods versus the complete basis set limit).
Although formally this type of modeling does not differ from
using a simple analytic baseline, in practice the hyperparameter

Figure 17. Hierarchical combination of different descriptors in GAP
fitting. The figure shows a potential-energy scan for a carbon dimer in
the gas phase, evaluated with different GAP models that have been
fitted to a large database of bulk, surface, and dimer configurations
(lines).122 DFT-LDA data for the dimer are shown as reference (blue
circles). A model with just a many-body SOAP term (black dashed)
matches the DFT dimer data well but has an unphysical local maximum
at around 0.6 Å, whereas the 2-body (2b, light gray), combined 2-body
and 3-body (2b+3b, dark gray), and a model with 2-body, 3-body, and a
SOAP term (red) all extrapolate to high energies for small distances,
with the last one also accurately reproducing the data. Reprinted with
permission from ref 122. Copyright 2017 by the American Physical
Society.
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choices for the fitting can be rather different. This is because the
simple analytic potentials are used as a crude estimate of the
energy for configurations that are not well covered by the dataset
or interactions that are not described by the finite-range many-
body model. In contrast, even approximate electronic-structure
methods are expected to give a rather good description of the
total energy (in an absolute sense) for all configurations. The
ML model which is added on top is used to capture delicate
details of the potential, fractionally much smaller than the
binding energy, perhaps also varying on a longer length scale
than the typical Ångstrom scale of covalent bonding. These
differences in turn affect how one chooses the descriptors and
hyperparameters of the ML model.
The use of an electronic-structure method as a baseline can

lead to a combined model whose total computational cost is
dominated by that of evaluating the baseline. Such models are
not force fields but can be thought of as “corrected” or
“enhanced” versions of electronic-structure methods, and
depending on the application, such models can be highly
effective. An early example of such anML correction was used to
obtain an accurate description of bulk liquid water (with respect
to the experimental oxygen radial distribution function and the
diffusivity), based on a DFT baseline, corrected with a GAP
model for each pair of water molecules fitted to the difference
between DFT and CCSD(T).174 See also section 6.6 for a more
recent example, fitting the difference between DFTB and DFT
for organic crystal-structure prediction.175 (A completely
different way of using reference data on multiple levels of
electronic-structure theory is in ref 176 where the electron

density is used as an intermediate “descriptor” in improving
DFT energies to CCSD(T) level.)
A variation on the difference fitting approach is illustrated in

Figure 18b. Here, the baseline model A is also fitted by an ML
model, perhaps using amuch larger dataset afforded by the lower
cost of evaluating model A in comparison with B. When the
database for the difference fit is constructed, Ã, i.e. the fitted
model for A, is subtracted from B. A more systematic study of
many “difference models” on top of each other, capturing each
intricate term (with cm−1 or 0.1 meV accuracy) separately in a
perturbative wave function approach, was used to significantly
reduce the total cost of building the reference database of
electronic-structure calculations for the CH3Cl molecule.177

Figure 18c illustrates a more complicated setup, in which
again two levels of theory are used for reference calculations
(e.g., with different treatment of electron correlation), but also
some other aspect of these calculations needs to be converged
(e.g., the basis set employed). Here, a database and a
corresponding ML model is created with the lower level of
theory,A, and a high level of basis convergence. To this, a second
ML model is added, which is fitted to the difference between
method A and B calculated at a low level of basis convergence
because a high level of convergence is unfeasible using the more
expensive method, B. This approach was used in ref 174 for
modeling water dimers, the two levels of theory being MP2 and
CCSD(T), and also in ref 164 for silicon where the two levels of
theory were DFT and RPA.
The latter case is an example from materials modeling, where

the limitation due to computational costs associated with model
B was not the basis set employed but rather the system size.

Figure 18. Overview of different approaches to the hierarchical fitting of potential-energy surface (PES) models. In this figure, the actual PES are
labeled E; fittedmodels are labeled E ̃; the indicesA and B refer to different types of PES. Drawings are based on the presentation in ref 164. (a) Using a
lower-level baseline model, which might be a simple analytical term that only describes certain aspects of the PES (e.g., pair repulsion, fixed-charge
electrostatics, or London dispersion) or a fast semiempirical method. The baseline model is subtracted from the reference data before the fit, resulting
in a difference model, E ̃B−A, to which the baseline model EA is then added back when predictions are made. (b) Fitting a higher-level target: for a
suitably chosen baseline, the difference fitting target is smoother (e.g., the range of input data is smaller, or the difference target varies on a larger length
scale), and therefore fewer reference points are required. Here, Ã in the subscript of EB Ã − ̃ indicates that the fit was made to a potential-energy
difference where the fitting target was obtained by subtracting a f itted model of PES A from the actual PES B. (c) A more complex setup in which
convergence (e.g., with basis set or system size) can be achieved for level A but not for B, which might be because B uses a higher level of treatment for
electron correlation and therefore is more computationally costly.
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Large amorphous silicon structures were described at the DFT
level (A) based on reference configurations of up to 216 atoms
per unit cell, whereas the structures used for constructing the
correction up to the RPA level (B) contained only 16 atoms per
cell at most. The latter structures would certainly not have been
sufficient on their own to create a stand-alone fitting database
capable of accurately describing amorphous silicon; however,
they suffice for constructing the difference model. The small
structures were taken from a GAP-RSS database (ref 143), thus
illustrating the usefulness of random structure search for
generating structurally diverse yet computationally feasible
reference data for ML potential fitting in a variety of contexts.
Figure 19 illustrates several of the concepts discussed in the

context of hierarchical GAP fitting, using as example the general-
purpose phosphorus potential of ref 163. Here, both aspects
discussed in the preceding paragraphs are now relevant: the
combined 2-body and many-body GAP fitting (which are both

used to describe the atomic neighbor environments up to 5 Å)
and the use of an additional, longer-range empirical baseline.
The reason for the latter is the importance of van der Waals
(vdW) dispersion in various phases of phosphorus: this includes
interactions between P4 molecules, phosphorene sheets, or
tubular motifs, and even an accurate energy ranking of the bulk
allotropes that requires vdW effects to be included in the
computational treatment.166 A benchmark study illustrated how
the interlayer spacing and exfoliation energy in the structurally
comparatively simple black phosphorus is described in very
different ways by a range of computational methods, and
sophisticated approaches are required to achieve even
satisfactory behavior.178

4.3. Sparse GPR

All GAP models are sparse kernel models (see section 2 for a
detailed exposition of the distinction between full and sparse
GPR), which means that the basis functions for the linear
expansion of the atomic energy do not directly correspond to the
set of input data to which the model is fitted. This is rather
natural for fitting a model of atomic energies, since that is not a
quantum mechanically defined observable; only the total energy
is. The total energy, as well as many other microscopic
observables to which we wish to fit, are linear functionals of
the atomic energye.g., the Hellmann−Feynman forces are
derivatives of the total energy with respect to atomic positions,
and therefore also sums of derivatives of the atomic energy
function, and so are stresses.
For the case of a single and fixed system size, one could

develop a non-sparse (full) GP model, in which the total energy
that we ultimately want to predict is written using a linear
combination of basis functions each of which precisely
corresponds to an observed data point (irrespective of whether
it is an energy or a force component), the linear algebra (as
outlined in section 2, both in the kernel learning framework and
the GP framework) is straightforward, and indeed the sGDML
model179−181 does exactly this, very successfully, to obtain
potential-energy surface models of specificmolecules using a few
thousand input data values. However, such a model is not
applicable to a different sized system (even one composed of
copies of exactly the same set of atoms). For most materials
modeling applications, transferability to different system sizes
(in fact exact size extensivity) is a fundamental requirement.
Furthermore, it is empirically the case that vastly fewer (≈104)
basis functions than observed data values (≈105) are suf f icient
for the construction of very accurate interatomic potentials for
materials. Since solving the linear algebra problem of fitting
sparse GP scales with the square of the number of basis functions
and linearly with the number of data points, using the sparse
model results in an enormous saving compared to a full GP. In
the GAP framework we choose individual atomic environments
as the elements of the representative set, and the corresponding
kernel basis functions are used to expand the atomic energy.
Given a fixed training dataset, we consider the number of basis

functions (or equivalently the size of the representative set) to
be a convergence parameter. In practice, it is clear that for small
basis set sizes, the accuracy of the model improves dramatically
when the basis set is increased but eventually levels off: the
remaining error is dominated by a combination of locality error
(see below) and lack of input data diversity. As well as the total
number of entries, the critical point is that the representative set
needs to encompass the diversity of the training set. One could
just pick the representative set randomly from the available

Figure 19. Hierarchical descriptors and fitting at the example of a
general-purpose GAP for phosphorus.163 (a) Combination of 2-body
and SOAP terms constitutes the short-range GAP modelboth terms
being fitted simultaneously, with appropriate scaling factors, similar to
ref 122. In addition, a 1/r6 (or “R6”) term is used, with a much longer
cutoff. (b) Illustration of how these terms are smoothly brought to zero
in the region up to the cutoff. (c)VR6 term for longer-range interactions.
(d) Phosphorene exfoliation curve, showing the performance of the
combined “GAP+R6” model (red) compared to a short-range GAP
(gray dashed line), the DFT+MBD reference (black dashed line), and
high-level quantum chemistry benchmark data (blue and green
markers). Reprinted from ref 163, where more detail and references
may be found. Original figure published under the CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).
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training configurations. The disadvantage of uniform random
selection is that the chosen basis set is heavily influenced by the
way the training set is put together. For example, we would like it
to be the case that putting more data of a particular phase or a
particular type of molecule should not make the fit worse for
other unrelated types of configurations. By skewing the
distribution of the basis set, uniform random selection can
easily result in some types of configurations to not make it into
the basis set at all and thus reducing the diversity of the
representative set, leading to a significantly worse model
performance for the corresponding types of configurations.
To ensure diversity in the representative set, we experimented

with a number of strategies. For low-dimensional descriptors,
such as 2-body terms, it is sufficient to ensure that all interatomic
distances (within the cutoff) are well represented, and therefore
a uniform grid in the one-dimensional space of the descriptor is
chosen. Such a strategy is not efficient for the high-dimensional
representations such as SOAP, so here we recommend the
leverage-score CUR algorithm,144 which maximizes the span of
the basis set in a linear sense in the high singular value subspace
of the full training set. Note that leverage-score CUR was
designed as an alternative to PCA that guaranteed that the
selected points were in fact real data points, which is not actually
required for sparse GPR models. Nevertheless, we have
empirically found it to be a good algorithm for use in
constructing SOAP-GAP models. Whether basis functions are
centered on data points or not can, in principle, have some effect
on the quality of the fit (especially for derivative observations),
as seen in Figure 6but for the SOAP hyperparameters we
recommend here, we do not expect that to be the case. In a loose
sense, selecting representative points using CUR from a much
larger set can be viewed as a cheap proxy for optimizing their
location.

4.4. Locality

In general, atomic interactions are expected to be long-ranged,
due to electrostatics, charge transfer, and dispersion. Despite
this, interatomic potentials with finite cutoff radius have been
successful in describing many materials, due to the effects of
screening. Formally, for an interatomic potential model with
three- or higher-body interaction, displacing an atom affects the
force on other atoms in a range of up to twice the cutoff radius of
the model, as illustrated in Figure 20.

This assumption of locality imposes an inherent limitation on
the accuracy of the interatomic model: any long-range effect that
would otherwise be observable from the quantum-mechanical
description of an atomic system will not be captured by the
model. In the context of ML potential fitting, this non-
representable contribution to the interactions between far-
away atoms is manifested as noise, or uncertainty, in the input
data because two atoms with locally identical configurations
might still experience different forces. Knowing the magnitude
of this uncertainty for a material is useful: it corresponds to the
smallest attainable error of a potential model with a given cutoff
radius, entirely independently of what descriptor or fitting method
is used to make the potential. In other words, no finite-range
potential can be more accurate, regardless of the amount of
training data or degree of model complexity.
One can quantify the degree of locality in a material directly

using quantum-mechanical calculations. The following proce-
dure provides an estimate of the lower bound of the force
localization. Given an atomic configuration A, the environment
Ai around atom i is fixed, and the positions of the remaining
atoms in A are perturbed, resulting in configurations A′. The
standard deviation of the quantum-mechanical force F(i),
measured on atom i as embedded in different configurations
A′, provides the lower bound on the force locality. This
procedure is illustrated in Figure 21a.
The magnitude of this standard deviation will, in practice,

depend on the magnitude and type of perturbation of the other
atoms outside the environment Ai. The ensemble of
perturbations may be motivated by the physics of the system
and the configuration space intended to be studied. For example,
the locality of forces in diamond and graphite were determined
by applying uniformly random perturbations or MD simulations
that selectively moved atoms outside the fixed radius. Figure 21b
presents the measured locality of quantum-mechanical forces at
the DFT-LDA level, for different radii of the fixed environments
in diamond and graphite.122 These results show that locality can
be highly structure dependent, and materials of the same
composition can display a large disparity in the locality of the
atomic interactions for different phases. Indeed, given the lack of
significant charge transfer (and hence no long-range electro-
static interactions) in these systems, the main qualitative
difference is in the nature of the electronic structure, with
diamond being an insulator and graphite a semimetal.184

Forces due to uniformly random perturbations of a crystalline
structure convey essentially the same information as the
orientation-averaged force-constant matrix, but in a disordered
system a different ensemble of perturbed configurations conveys
more relevant information on the locality. For instance, in a
liquid, a much larger configuration space is available for the
atoms outside the fixed environment Ai, which can be
conveniently sampled by molecular dynamics. Figure 21c
shows the results of using uniform random distortions as well
as MD for the case of crystalline β-Ga2O3.

182 The absolute
magnitudes are dependent on the size of the distortions, and
MD will sample the Boltzmann distribution and therefore
generally shows smaller force deviations than uniform random
distortions. For any given application, the ensemble of
perturbations should be chosen bearing in mind what kind of
distribution will be sampled once the potential is being used for
making predictions.
Other than moving atoms outside the atomic environment Ai,

it is possible to perturb the configuration by adding atoms to the
configuration. It is expected that the addition of an atom affects

Figure 20. Locality of forces in case of atom-centered three- or higher-
body order potential terms. The displacement of atom A affects the
local atomic energy of atomB, which in turn affects the force on atomC.
Both atomsA andC are just within the cutoff radius of atomB, and thus
the locality of the forces in the model is twice the cutoff radius.
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those closest, and the effect decays with increasing distance.
Fujikake et al. studied the intercalation of Li in carbon structures
and quantified the localization error of forces on carbon atoms
due to the presence of a Li atom.119 Quantum-mechanical force
components computed at the DFT-LDA level were compared
on the same structures with and without an interstitial Li atom,
respectively, and the deviations are shown in Figure 21d as the
function of distance from the Li site.
A much more drastic perturbation is to isolate a finite cluster

corresponding to the fixed environment Ai and comparing the
quantum-mechanical forces obtained on atom i in the cluster
with open boundary condition to that of the periodic reference
calculation. Such a study was performed on bulk silicon with a
defect.183 To minimize the effect of metallic states due to the
surface atoms on the clusters, they were terminated by hydrogen

atoms. The locality of the forces improves suddenly for a cutoff
beyond 6 Å, as seen from the results in Figure 21e, suggesting
that this is the length scale of electronic locality in this material.
Overall, such tests objectively inform the developer of a

potential what force accuracy is achievable using a given cutoff
radius. However, it is important to note that different body-
order interactions may have significantly different locality
properties, and these tests only present the locality in terms of
fixed many-body environments, the worst-case scenario. It is
often feasible to use different cutoff radii for different body-order
terms as dictated by the locality of the specific interactions.
We only considered the locality in covalently bonded systems,

but similar questions are worth asking about other materials.
Interestingly, although electrons are highly delocalized inmetals,
the very short screening lengths give rise to favorable locality

Figure 21. Protocols for quantifying force locality. (a) Schematics of three approaches that make increasingly drastic changes to the structure up to a
characteristic radius, rlocdrawn following ref 122, with the left panel adapted from that work. From left to right: (i) distortions of atoms outside rloc
around a central atom, estimating locality by measuring the standard deviation (SD) of the force on this atom as a function of rloc; (ii) insertion of a
guest atom, estimating locality bymeasuring the change in the forces on all atoms depending on their distance from the guest atom, taken to be rloc; (iii)
isolation of a cluster fragment with radius rloc, estimating locality by determining the force difference for the central atom between the cluster and the
original system. (b) Results of locality tests for diamond and graphite, highlighting qualitatively different behavior: in diamond, the interactions decay
quickly, and perturbing atoms more than 5.5 Å away from the center does not substantially influence the force on the central atom. In graphite, on the
other hand, there is a high degree of nonlocality. Reprinted with permission from ref 122. Copyright 2017 by the American Physical Society. (c) Same
for β-Ga2O3. Two different strategies were used: random distortions, as in the panels above, or MD-induced distortions. Adapted from ref 182.
Copyright 2020 AIP Publishing. (d) Force locality in graphitic and other carbon structures, where the perturbation is the addition of a Li atom.
Adapted from ref 119. Copyright 2018 AIP Publishing. (e) Force locality in bulk silicon configurations, estimated via the force component differences
on the respective central atom between clusters of different radii and the corresponding original structure.183 Republished with permission of IOP
Publishing, from ref 183; permission conveyed through Copyright Clearance Center, Inc. © 2005 IOP Publishing. Reproduced with permission. All
rights reserved.
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properties, which is evidenced by the long history of useful
short-range empirical potentials and also successful GAPmodels
(see section 6.1). When modeling liquids that are strongly ionic
or polar, the traditional wisdom is that the explicit treatment of
long-range electrostatic interactions is essentialnevertheless,
successful potentials have been made using short-range cutoffs
for water185 and even ionic melts such as LiCl186 and HfO2.

130

The rising level of interest in short-range many-body ML
potentials has led to a dedicated study of locality for water.187

Finally, the locality test described above is not only useful
when assessing the limitations of a short-range model. When the
long-range interactions in a material need to be included
explicitly, these are often described by an analytic baselinemodel
(see above in section 4.2). Once such a baselinemodel is chosen,
the locality of the original target potential with baseline
subtracted can be measured, since this is the difference potential
that will be fitted with the short-range ML model. The logic can
be reversed too: the optimal baseline model for the purposes of
hierarchical ML fitting is the one which, after subtracting it from
the original target, leads to the best force locality.

4.5. Practical Choices for Hyperparameters

Many hyperparameters are required to specify the regression
problem preciselythis is a common feature of all non-
parametric modeling approaches. It is common to treat these
degrees of freedom by optimization. While naively it might seem
that simply minimizing the fitting error on the training set is how
one should proceed, this is not the case. (This is in fact the
reason for the notion of hyper parameters as opposed to regular
parameters.) The issue is that the total number of degrees of
freedom is so large (in the GPR framework, the coefficients of
the representative points; in neural network fits, the connection
weights and biases) that there is always a danger of overfitting to
the training setyielding a model that is useless because it
would give uncontrollably large errors on any test data that have
not been included in the training set. This is most easily
demonstrated for simple GPR with the Gaussian kernel: if the
length scale of the Gaussian is chosen to be very small, the kernel
matrix becomes diagonal. In this case, the fitted function is a sum
of extremely narrow Gaussians, each with a magnitude equal to
its corresponding training data point, and therefore giving nearly
zero value away from any training point. See Figures 3 and 9a for
two examples of this overfitting behavior.
The two most common ways to optimize hyperparameters

while avoiding overfitting are cross-validation and marginal-
likelihood maximization (section 2.6). While these techniques
are very general and often work well, in the specific case of fitting
interatomic potentials, we can usually do without them. Good
values can be chosen a priori using physical and chemical
principles and specific knowledge about the target functions.
There are several advantages to doing this, beyond the obvious
one of saving computational effort. First, our choices are not
contingent on having a sufficiently large training set or a
sufficiently diverse test set, which are needed for the general
methods to work effectively. Second, the above methods only
make sense when the complete dataset with which we work is
fixed (prior to splitting it into training and test sets). But in our
case, this is not so: we can and should consider the composition
of the dataset to be open to optimization too! So the problem is
turned upside down: instead of finding the best hyperparameters
for our training set, we choose the hyperparameters that express
our prior knowledge on the nature of the function we are fitting,
together with a target accuracy (which is intimately related to

some of the hyperparameters, see below), and then build our
dataset in such a way that our accuracy goal is achieved.
In the context of GAP, we distinguish two classes of

hyperparameters. On the one hand, there are those of the
kernel itself, whose choice is driven by the underlying physical
modeling assumptions such as the cutoff radius and the basis
truncation coupled with the length scale of the mollification of
the neighbor density that together control the smoothness of the
kernel. On the other hand, other hyperparameters have more to
do with the composition and nature of the dataset itself, such as
the selection of representative atomic environments that
correspond to the basis functions in the sparse kernel regression
model and the regularization parameters that act like weights on
the different parts of the dataset.

4.5.1. Cutoff Radius. We discuss the kernel hyper-
parameters first. The most important parameter, which appears
in every short-range interatomic potential, is the radial cutoff
distance. This applies not only to interatomic potentials but to
any atomistic model that is describing how a property of an atom
depends on its neighborhood, e.g., a model of NMR chemical
shifts or atomic polarizability. It does not however apply to
models that are not explicitly range restricted, e.g., models of the
intramolecular energy of isolated molecules or clusters that are
built based on a representation of the entire system. Examples
are the PIP models of Bowman and Braams63 and Paesani,188

many other expansions of molecular potential-energy surfaces
(see references in section 5.4), and also the GDML models of
Chmiela et al.179

Every finite-range potential can be cast in the form of a sum
over site energies or atomic energies, and the cutoff radius defines
the range of this local term. The actual interaction range is twice
the cutoff radius, because atoms up to this distance can
potentially interact with one another via a many-body term
centered on an atom in between them (Figure 20). As detailed in
section 4.4, when we approximate a quantum-mechanical
potential energy (which is not formally local) using a local
atomic energy with cutoff radius rcut, the error we necessarily
incur can be characterized in the form of a force variance. In
section 4.4, we had therefore described direct tests to measure
the possible accuracy of a local model122,183irrespective of the
representation, regression, or other aspects of the model. We
propose to use the measured force variance, which we call the
“locality error” for a given cutoff, as a benchmark against which
the ML model (or indeed any model with that cutoff) should be
tested. Once this accuracy has been reached, the model can be
considered fully trained, and the only way to make it better is to
increase the cutoff radius.
In practice, this concept of the locality error is often used in

reverse. We set a target prediction accuracy before the model is
created (e.g., we wish to achieve 0.1 eV/Å accuracy on the force
components) and determine the required cutoff distance that
results in a locality error below our target. We are not aware of
successful fits with cutoffs much beyond 6−8 Å with descriptors
that have full atomic resolution and aim to retain all geometric
information. Thus, if the locality error suggests that larger cutoffs
are necessary, then either the accuracy target needs to be revised
or multiple hierarchical models need to be used that, with some
range separation, describe long- and short-range interactions
(section 4.2).

4.5.2. Kernel Regularity. Part of the success of kernel fitting
can be attributed to the fact that well-chosen kernels impose
regularity on the model, complementing the usual regularization
practice (which will be discussed in section 4.6). Having fixed
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the cutoff, and therefore the local atomic neighborhood that
constitutes the input to the potential, the next set of
hyperparameters to think about are the ones defining the spatial
resolution or, equivalently, the regularity (smoothness) of the
representation. For two-body and three-body kernels, this might
be the spatial length scale of the basis functions (e.g., Gaussians)
that are used to expand the model or, in the case of the SOAP
representation, the length scale of the Gaussian that is used to
mollify the neighbor density, σa. A larger length scale will smear
the density more and result in a smoother potential (for a fixed
number of representative points in the GP) but at the cost of
reduced accuracy, perhaps compensated by reduced over-
fitting.140 In practice, for fitting interatomic potentials to
quantum-mechanical potential-energy data, the appropriate
length scale is about σa = 0.3 Å in the presence of hydrogen
atoms and σa = 0.5 Å for atoms up to the third row in the
Periodic Table (with no hydrogen present). Larger length scales
could be used when fitting potentials for structures solely
containing elements with large atomic radii. A larger SOAP-
kernel length scalethat is, a smoother description of the
structurewas found to be important in the initial work on
GAP-RSS: boron, despite its small atomic radius, was described
with a setting of σa = 0.75 Å, enabling iterative exploration of the
potential-energy surface from randomized configurations only
(section 4.1.3).140

SOAP uses an expansion of the neighbor density in spherical
harmonics and a radial basis, and once the density has been
mollified, it makes sense to truncate this expansion, which is
achieved using the band limits nmax in the radial and lmax for the
angular part. In contrast to the density mollification length scale,
these band limits are not true hyperparameters, but convergence
parameters, because higher band limits will always result in a
more accurate representation of the mollified density.
The convergence of the accuracy of potentials in terms of the

band limits for a fixed cutoff and mollification length scale is
shown in Figure 22. The important result is not so much the
absolute value but the relative accuracy. While many early GAP
fits used equal values for nmax and lmax for simplicity, e.g., (nmax,
lmax) = (8, 8) for C-GAP-17,

122 the figure shows that while giving
reasonable force errors, this choice is clearly not optimal: higher
radial band limits (nmax > lmax) give better accuracy at the same
total cost. In this case, for example, a lower error would be
expected for (nmax, lmax) = (12, 3)note that the contour lines in
Figure 22 provide an estimate for the computational cost of the
prediction. Generally, a setting of (6, 2) would correspond to a
low accuracy potential with a short descriptor vector, while (12,
6) would lead to a very accurate potential. These numerical
results, shown here for the implementation of SOAP in the GAP
code, depend strongly on the particular choice of radial basis
functions and might well be different in other implementations
of SOAP, such as in Dscribe,189 librascal,95,96 soap++,190

TurboSOAP,191 and the implementation in VASP.123

4.6. Regularization in GAPs

The regularization of the linear expansion coefficients is a key
part of successful kernel ML models. Purely in the linear algebra
context, it is simply considered a trick to help with the ill-
conditioning arising from the near-linear dependence of the
basis functions; this does not offer any guidance on what the size
of the regularization term should be. In the formally equivalent
GPR view, the same role is played by the hyperparameters
corresponding to the variance of the stochastic noise that we
assume to be present in the input data. This view suggests that if

we use a Tikhonov regularizer (eq 5 in section 2.1) of a given
value, we are assuming noise in the input data of about the same
size, and we should not expect an accuracy better than this level.
Indeed, if our model appears to be more accurate, that is an
almost sure indicator of overfitting, an inadequate test set, or
some other shortcoming of the procedure. Therefore, if we can
estimate the actual level of noise in our data, the theory of GPR
suggests using that value as the regularization hyperparameter
and to add data to the model until the corresponding level of
accuracy is reached.

4.6.1. Noise in the Input. Is there noise in the electronic-
structure calculations that describe potential-energy surfaces?
The answer is subtle and somewhat surprising. Once the
parameters of a quantum chemistry or plane-wave DFT
calculation are specified, including perhaps the pseudorandom
number that initializes the computation, one might consider the
ground-state energy and its derivatives (forces, stresses) to be
deterministic functions of the inputs, and therefore free of noise.
There are three reasons why this is a misleading view in the
context of fitting interatomic potentials.
The first reason is the locality error to which we have alluded

above: our model uses a finite cutoff to describe atomic
properties, assuming “near-sightedness” and sufficient screening,
and the extent to which this is not accurate is an indeterminacy
of the target function (the atomic energy) in terms of its inputs
(i.e., the local environment). In the case of GAPs, and in fact any
interatomic potential with a finite cutoff, the reference (typically
DFT-computed) force on an atom is not exactly determined by
the positions of the neighboring atoms within the cutoff, and so
when it is modeled as such, it appears to have some component
of noise.

Figure 22. Performance of a SOAP-GAP fit to a database of carbon
configurations, as a function of the number of maximum radial (n) and
angular (l) components in the SOAP kernel.152 The colormap indicates
the force error. Here, the black contour lines approximately indicate
parameter choices resulting in equal length SOAP descriptor vectors,
corresponding to roughly equal computational cost of prediction.
Schematic drawings illustrate the role of the different functions that are
affected by the lmax (angular functions) and nmax (radial functions)
convergence parameters, respectively; the equidistant Gaussians that
are shown in the lower part of the figure are subsequently
orthogonalized in the construction of the SOAP kernel.52 Drawn
with data from ref 152.
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The second reason is to do with inconsistency between
different pieces of data. Typically we fit potentials to both
energies and forces, and the extent to which the calculated forces
are the true derivatives of the energy (or indeed, if we do not
explicitly fit to energies, then the extent to which the forces are
curl-less, i.e. the directional derivative of a well-defined scalar
function) hinges on numerical approximations. The details
depend on the particular electronic-structure method and can
often be adjusted by choosing convergence parameters. The
level of this noise, understood as the difference between the
observed data and the true values that would correspond to
perfect data consistency, can be measured by numerical
experiments. We find that input data for fitting potentials must
be significantly more stringently converged than what is typically
used for direct studies of electronic structure, because the latter
often benefit from error cancellations.
One aspect of this convergence requirement, namely k-point

sampling in periodic calculations, requires special attention,
because the corresponding errors are often underestimated. As
the cell parameters and lattice vectors are varied (as is typically
the case in databases for materials; section 4.1), the k-points at
which the Brillouin zone is sampled also move around, and two
slightly different simulation cells might end up having dissimilar
k-point grids. The resulting data inconsistency is of the same
order of magnitude as the overall convergence error of the finite
k-point grid; it depends on the particular scheme to generate the
grid and on the symmetry and shape of the cell. Morgan et al.
recently characterized this error192 and found that a linear k-
point spacing of 0.1 Å−1 is needed to reliably converge the error
below 1 meV per atom; this corresponds to about 1000
irreducible k-points per Å−3. (These are spacing and density
units of VASP and may be divided by 2π to obtain the
corresponding values for Castep.) Such high k-point densities
are rarely affordable, especially when larger unit cells are
involved. Using a variety of different cell sizes and therefore
different k grids is often required in practice. The resulting
inconsistency appears as noise from the model’s point of view,
since the exact same local environment, when part of different
periodic unit cells with different k-point grids, will appear to have
different energies and forces. Even with highly converged grids,
depending on the system, the corresponding error may exceed
that due to locality and therefore should inform the choice of
regularization.
4.6.2. Dealing with Inhomogeneous Data. All the above

considerations help to quantify the lowest achievable error and
can therefore be used to set the minimum values of the
regularizers for energy, force, and virial stress data. But the actual
values we set might very well be larger. Apart from the simplest
cases, the datasets to which we fit are not homogeneous: they
include samples frommultiple phases (say, liquid and solid) and
may in fact range from nearly random (e.g., in GAP-RSS; section
4.1) to further relaxed configurations that are much closer to
low-enthalpy crystalline structures. It is not practical, or indeed
desirable, for our potential to aim to have the same accuracy for
all these disparate configurations. This is because we care about
accuracy for properties more than the pointwise accuracy of the
potential energy for each configuration (the rather intricate
question of what makes the whole GAPmodel “accurate” will be
discussed in the following section). The elements of the
regularizer, Σ, control how closely the fitted potential is
constrained by the corresponding data. Again, consider the
GPR view of the regularizer: all else being the same, a larger

regularizer corresponds to assuming a larger observation noise
variance, and hence it loosens the fit to that data item.
The relationship between the accuracy of the fit to the PES for

a group of configurations and the accuracy of observables that
depend “mostly” on those configurations is complicated (and
largely unexplored, both theoretically and computationally).
Nevertheless, it is easy to make qualitative statements. For
example, we would like to have lower absolute error for solid
configurations (close to local minima of the potential) than for
liquid configurations, where the interest is in radial and angular
distributions or diffusivities, which are statistical properties that
are empirically observed to be well converged already while the
pointwise errors on energies and forces remain larger. We
express such empirical knowledge by setting larger regularizers
for groups of data expected to tolerate larger errors without
compromising the accuracy of observables. In turn, this will
allow the fit to use its flexibility to achieve lower error for
configurations where that is needed. Typical values that have
worked well are (σE = 0.001, σF = 0.05, σV = 0.05) for a crystal
and (σE = 0.03, σF = 0.2, σV = 0.2) for a liquid configuration, with
units of eV/atom for energies (σE) and virial stresses (σV) and
eV/Å for force components (σF). A loose approximate heuristic
for solid configurations with well-defined local minima (valid
when using units of eV and Å) is that the target accuracy on
energies (which scale with the square of the displacement) is the
square of the target accuracy on force and virial stress
components (which scale linearly with displacement).
The above argument underscores why the regularizers of

GAPs that are fit to diverse datasets are not set using
conventional cross-validation procedures by measuring the
RMSE on a small test set: the actual errors that we wish to
minimize are very costly to evaluate, perhaps requiring large-
scale MD. In principle, it might be possible to set up an
automated procedure that computes the complex observables
and adjusts the regularizers accordingly, thereby improving the
model further. In the absence of such a procedure, we have
found that simple heuristics work effectively and produce very
accurate potentials. Examples (with the quality measure being,
say, the accurate description of an amorphous structure which
can be validated against experimental observables193) will be
given in one of the following sections.

4.6.3. Implementation. Once the appropriate regularizers
are chosen for each energy (E), force (F), and virial stress (V)
data item in each group of configurations in the reference
database, their values, σ2, are collected into the diagonal matrix
Σ that scales the Tikhonov regularization term (eq 5),
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where ni refers to the number of atoms in each of the N
structures, which are not necessarily all of the same size; that is,
we scale the energy (and similarly virial stress) terms by ni. To
understand this scaling, recall that these regularization terms
represent the expected deviation of our fitted function from the
data due to all of the effects discussed previously. The total
energy and total virial stress are extensive quantities, so all else
being equal, they will scale linearly with system size, i.e. the
number of atoms, n. If all atomic environments in a structure
were the same, the variance of the total energy (which in this
case would be just n times the atomic energy) would be n2 times
the variance of the atomic energy. We scale the regularizer by n
and not n2 because most of our configurations are far from
equilibrium, so each atom that contributes to the energy and
virial stress has a different local environment, and we expect
some error cancellation when their contributions are added up.
A more precise implementation could indicate whether the
individual atomic environments in an input structure are
expected to be correlated or not and adjust the scaling with
system size accordingly to either n2 or n, respectively. This could
even be determined automatically by considering the diversity of
descriptor values in each configuration.
We can go further and have even finer control over the fitting

weights. Rather than grouping configurations together depend-
ing on how they were generated or what structure they
represent, we can set the regularization of each force component
datum on each atom proportional to the size of the force on that
atom. The result is a small regularization value (and
corresponding large weight in the solution of the linear least-
squares system) for atoms with small forces on them and a loose
regularization (small weight) on atoms with large forces. This
idea has been used in ref 196 and explored in a systematic
fashion in ref 194. In the latter work, the aim was to extend an
existing general-purpose potential introduced in ref 139 and
denoted “GAP-18” for accurate phonon predictions, which is
done by adding supercell configurations with small random
displacements of atoms out of equilibrium.194 Such reference
structures correspond to what would normally be used for finite-
displacement phonon computations with DFT, and in fact the
structures were generated using the widely used phonopy
code.197 For this part of the extended database, we set the
regularization for the force components on the ith atom, σF

(i),
according to194
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Using numerical experiments, we found f = 0.01 and Fmin = 0.01
eV/Å to give good results; the regularization for these “small
displacement” configurations is therefore much smaller than
what has been used in typical potentials that use a single value for
the force regularizer. This approach was shown to lead to
potentials which can very accurately predict phonons in a wide
range of silicon allotropes, with an RMS phonon frequency error
of about 0.1−0.2 THz for the different structures (Figure 23). It
was also demonstrated that too small a value ( f = 0.001) leads to
unstable potentials, as tested by a diagnosticMD simulation: this
is an example of “overfitting”, because the potential now has
been made to very accurately reproduce the forces in the
reference data but exhibits uncontrolled errors for other
configurations.194 Further studies of the role of such atom-
wise regularization in GAP fitting are expected to be worthwhile.

5. VALIDATION AND ACCURACY
Once an interatomic potential model has been fitted, it must be
validated before it can be broadly applied. This is particularly
important in the case of ML potentials where there is no
inherent physically motivated functional form. As a conse-
quence, validation is a critical and highly nontrivial part of
atomistic ML model development, particularly so for the case of
ML interatomic potentials. The items reviewed here are rather
specific to GAP models, but many ideas are expected to be
applicable more generally.
5.1. Physical Behavior versus Numerical Errors

There are two related but distinct issues when evaluating the
accuracy of GAPs (or in fact any ML-based interatomic
potential). The more obvious one is that of goodness of fit,
including numerical prediction error on the available test data.
However, in practice the more serious concern is whether an
MD or Monte Carlo simulation using the potential generates the
correct probability distribution over configuration spaceand
therefore, whether they lead to a physically and chemically
correct result. The highly flexible form of a data-driven potential
means that in such a simulation many of the explored
configurations are inevitably in the extrapolative regime. While

Figure 23. Atom-wise force regularization leads to high accuracy for
phonon computations in silicon.194 The general-purpose GAP-18
model already predicts accurate phonon frequencies for diamond-type
silicon (“mp-149” identifier in the Materials Project database;195 < 0.2
THz RMS error) but performs substantially worse for other allotropes,
because it has not been fitted for those. The asterisk (*) indicates a
structure which is erroneously predicted to be dynamically unstable.
The extended GAP-18C model, which added specifically selected
crystalline configurations, including supercells describing individual
displacements with atom-wise force regularization, shows accurate
phonon predictions throughout. Adapted from ref 194. Original work
published under the CC BY 4.0 license (https://creativecommons.org/
licenses/by/4.0/).
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prior assumptions such as smoothness help, they are not
sufficient to fully control the behavior of the model outside the
region represented by the fitting data, and energy errors of either
sign can occur, leading to incorrect over- or undersampling in a
simulation of thermal equilibrium.
It is neither practical nor necessary to achieve a uniform data

coverage either in the training or the test dataset. This is only
partially due to the high dimensionality of atomic configura-
tional space, which would require extremely large quantities of
data to place data points uniformly. The other reason for data
sparsity is the fact that large regions of configurational space
might not be relevant, if the corresponding potential energy is so
high that an equilibrium simulation at reasonable temperature
will not visit them with appreciable probability. For example, for
a configuration in which at least two atoms are very close to one
another, the energy is dominated by repulsion due to the Pauli
exclusion principle. While such a configuration is not relevant,
and therefore onemight conclude that the accuracy of themodel
is not important here, this is not entirely true. If the prediction of
the potential energy is unphysically too low, a simulation using
the potential with such a “hole” will visit this region, leading to
unphysical configurations with very small interatomic distances.
In a simulation with the potential, the likelihood of the system
finding such unrealistic regions (if they exist) monotonically
increases with the length of the simulation.
If the configurations for the fitting database are generated by

sampling the target potential energy (e.g., finite-temperature ab
initio MD), which is naturally biased away from such
configurations, it will be hard to generate sufficient data to
avoid having holes in the potential. The effect of inadequate data
coverage of repulsive configurations in the training set can be
mitigated by adding a baseline model to the ML potential,139 as
described in section 4. Such a baseline potential can be very
short-ranged, serving only the purpose of imposing a sufficient
repulsive interaction to prevent the system from exploring
unphysically low interatomic distances.
A similar sampling problem leading to errors of the opposite

type can also occur. The method used to generate fitting
configurations can fail to explore important basins in the PES,
for example due to energy barriers with a low transition
probability in a finite simulation. This can happen if the
simulation generating the fitting data is very short or if it uses a
potential that overestimates the barrier (or even qualitatively
fails to reproduce the existence of the missed local minimum).
Since those regions would not be represented in the fitting
database, the model may predict erroneously too high energies.
Potential-energy errors of this type would lead GAP-driven
simulations to also fail to sample the same regions, even during
much longer simulations than those used to generate the fitting
data.
Figure 24 shows a situation in which the GAP model is

accurate to within 10 meV/atom but fails to capture an
important subtlety of the DFT potential-energy surface. If the
practitioner was unaware of the existence of the local minimum
corresponding to the 4-fold defect in diamond-type structure
silicon, its existence will not be revealed by simulations using this
specific GAP model.
Exacerbating the problems of both falsely identified and

falsely missed minima is the common practice of using a single
dataset, generated by sampling a particular region of
configuration space using a particular method, that is then
partitioned into training and testing sets randomly, which
therefore represent the same single region and correspondingly

fail to include configurations from regions not represented by
the original dataset. Achieving a low error on such a test set
appears to indicate that the quality of the model is sufficient, but
its transferability can be poor. As a result, rather than merely
inspecting energy and force errors, a more reliable way to assess
transferability of ML potentials is by performing extensive and
wide-ranging explorations of atomistic configurations, such as
random structure searches,139 MD simulations at high temper-
atures,122 or transition path calculations.198

Even the apparently more straightforward question of
prediction error on available data is, in fact, also affected by
sampling issues. In line with the standard procedures of broader
ML research and applications, the most basic validation test of
machine-learned potentials is the comparison of directly
predicted properties, such as total energies and forces, to
those obtained from ab initio calculations, on a test set of
configurations not used in the fit. However, benchmark results
such as the RMSE depend on the circumstances of the sampling
from which the testing configurations were obtained. Tamura et
al.199 computed the MAE of the force errors of ML potentials of
Si and Ge on configurations sampled at different temperatures.
As different parts of the configuration space are sampled, the
variation of the absolute values of the forces is significantly
different at different temperatures, and as a consequence the
magnitude of the MAE increases with the temperature. A
conceptually similar result is shown in Figure 25, where tests
have been done separately for various types of configurations of
very different structural nature, ranging from highly random
(GAP-RSS) configurations to snapshots of phosphorene and
bulk crystalline allotropes, all covered by a general-purpose GAP
for phosphorus (cf. Figure 16).163 The different aims of the
potential are reflected in the qualitatively different distributions

Figure 24. Predicted errors of a GAP model. The figure shows the
energetics of the pathway leading from perfect diamond-type silicon
(left) to the formation of a 4-fold defect (right); the color of the curve
corresponds to the largest predicted atomic energy error in the
simulation cell, given by the Bayesian error estimate. For small
distortions, the GAP prediction is in practically quantitative agreement
with a DFT reference (show as thin black line); for larger distortions,
roughly to the right of the dashed vertical line, the prediction deviates
from the DFT result, and concomitantly the predicted error rises
notably. Note that DFT predicts the 4-fold defect as a local minimum
(highlighted by an arrow), whereas the GAP does not. Adapted from ref
139, where details, as well as other example cases, may be found.
Original figure published under the CC BY 4.0 license (https://
creativecommons.org/licenses/by/4.0/).
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in panels a and b of Figure 25. In the former case, the GAP-RSS
snapshots serve to construct a flexible model, at the cost of a
substantial residual numerical error, even for the further relaxed
structural snapshots (purple). In the latter case, structures have
been added by hand, and the overall magnitude of the force-
component errors is about half of that in panel a. That said, the
range of absolute force components is substantial for the
crystalline phases as well, because distorted copies of the
respective unit cells at various volumes have been included; the
errors show a clearer trend with the degree of structural
complexity, and both are largest in the network liquid (with
highly diverse bonding environments) and smallest for the
crystalline phases. Studying such variation is a necessary but not
a sufficient test for the validity of any new ML potential, as
discussed above.
Based on the preceding discussion, we argue that the

validation of GAP and similar ML potential models needs to
go beyond simple out-of-sample testing, and protocols should
involve testing on “self-consistently” generated configurations,
i.e. sampled using the potential itself. In practice, the potential
can then be improved iteratively, by adding newly generated
configurations using the current version of the potential to
define a new potential, until it is accurate on the samples
generated by itself. This design helps to eliminate “false positive”
regions (overly stable or fictitious local minima), but “false
negative” regions, or missed minima, are even more challenging
to detect. Various approaches to using iterative fitting to build up
the reference database are discussed in section 4.

5.2. Predicted Errors in GPR

Gaussian process regression is a statistical learning technique
which generates an ensemble of functions, based on a priori
assumptions. The prior distribution of these functions is
modified by the reference dataset, resulting in a posterior
distribution of functions. The mean of these functions is the
GPR prediction, but it is also straightforward to compute the
variance, providing an error estimate in addition to the function
value. As introduced in section 2, the posterior distribution of
the prediction, given a dataset , is

P y y yx x x( ( ) ) ( ( ), var( ( )))= ̅ (77)

where the mean and the variance are obtained from the
analytical expressions

y x k x K I y( ) ( ) ( ) andNN
T 2 1σ̅ = + −

(78)

y kx x x k x K I k xvar( ( )) ( , ) ( ) ( ) ( )NN
2 T 2 1σ σ= + − + −

(79)

where we have shown for emphasis the explicit dependence on
the predicted values on the location x. Note that while the
predictedmean can be calculated in time andmemory that scales
as the number of data points, the computational cost of the
predicted variance scales as the square of this number. Using
sparse GP will reduce this scaling, and analogous expressions for
the predicted variance are derived in ref 43. In practice, we often
use eq 79 but with the kernel matrix evaluated only on the
representative set,KMM. The expression for the variance in eq 79
does not explicitly depend on the observations, only on the set of
data locations, but it does depend on the hyperparameters (σ
and also those in the kernel function). If the hyperparameters are
optimized based on observations, then that brings an implicit
dependence of the predicted variance on the observations.
GAP models for materials based the SOAP representation

that we presented earlier essentially inevitably require the use of
a sparse GP and have not been shown, in general, to lead to a
quantitative prediction of the energy error. Nevertheless, for
well-converged models such as the general-purpose silicon GAP
in ref 139, the predicted variance was a good indicator of large
actual errors. As the example in Figure 24 shows, configurations
near the peak of the atom exchange pathway have large predicted
error since they were not represented in the fitting database, and
the corresponding actual error is also (relatively) large. In that
paper, similar results were also shown for generalized stacking
faults, vacancy migration, and brittle-crack tip configurations.139

Recently, the predicted error has been used as a tool for assessing
the quality of the prediction for various regions in a large and
realistic amorphous carbon film deposition simulation:200 it was
shown that the surface regions, while being structurally highly
disordered, are described by C-GAP-17 with low predicted
error, because small-scale structures that are representative of
disordered surfaces had been included in the construction of the
reference database.122

Some work on GP-based potentials used error predictions in
quantitative ways. As already discussed in section 4.1.2, a recent
study in ref 61 showed good agreement between predicted and
actual force errors and this was used for active learning. In this
case, the number of descriptors was small, and consequently the
model needed only a small number of fitting configurations
which enabled the use of full GPR. Figure 26a shows the results
for GPR models with low-body-order descriptors for bulk
aluminum, emphasizing how the true errors (dashed lines) and
predicted errors (solid lines) follow similar trends, with models

Figure 25. Force errors for the general-purpose phosphorus GAP of ref
163. Measuring the error in different types of configurations illustrates
two aspects: the different spread of data for randomized and
progressively relaxed configurations in random structure search
(RSS) (panel a) and larger error for liquid than for crystalline
configurations (panel b), associated presumably with a larger structural
diversity in the liquid. Adapted from ref 163. Original figure published
under the CC BY 4.0 license (https://creativecommons.org/licenses/
by/4.0/).
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using only 2-body descriptors showing higher overall error than
those that combine 2- and 3-body terms. The figure suggests that
the GP error tends to overpredict the true error, and this is
mirrored by the results in Figure 26b: in this case, atomic
environments near a vacancy defect were studied, and the GP
model showed an overprediction for practically all environ-

ments, irrespective of their distance from the vacancy. The figure
also illustrates how atoms near the vacancy (red) tend to have
higher absolute force errors than those that are further away and
therefore more bulk-like (blue). A more qualitative relation for
predicted and actual force error has been shown for SOAP-like
descriptors,123−125 enabling a different active learning method
(Figure 13). In this case, the descriptor space was much larger,
but the intended range of applicability was narrow, again making
it practical to use a full GP based on a relatively small number of
samples.
A more general study (including GPR as well as other types of

ML methods) of uncertainty quantification with relevance to
physical sciences was reported in ref 201. This study also
includes a didactic overview of uncertainty quantification
methods.
5.3. Committee Models and Uncertainty Propagation

Another approach to the determination of the uncertainty of a
ML prediction involves the generation of a committee model,205

i.e. a collection of models that differ in the choice of
hyperparameters,206 in the initialization of the fitting proce-
dure,129,207 or in different subsampling of the training set.202,208

The gist of the idea is that the spread in the predictions can be
linked to the reliability of the predictions: if changing details in
the model leads to large changes in the predictions for a
configuration, then this model is likely not trustworthy for that
particular configuration.
If the different models are created by resampling the original

dataset, there is considerable freedom in how that is done. One
approach, commonly referred to as bootstrapping,209 keeps the
size of each dataset the same as that of the original set, by
randomly drawing data points from while allowing
replacement. The subsampling technique,210 on the other
hand, creates datasets that are smaller than the original set and
does not include replacement. It should be noted that
bootstrapping introduces duplicate data points to the samples,
thereby altering the distribution of the data points, whereas in
subsampling individual predictions have larger uncertainty due
to the smaller size of individual data subsets.
These ideas have been used for some time in the context of

neural-network potentials128 but can also be shown to provide a

Figure 26. Relationship between true and predicted errors for low-
dimensional GPR models. (a) GP model errors for bulk fcc aluminum
for a 2-body (“2b”) and a combined 2b+3b model, as a function of the
cutoff radius of the model. (b) True versus predicted model error (for a
2b+3b model) for atomic configurations near a vacancy, with the
distance of each individual atom from the vacancy indicated by color.
Drawn with data from ref 61.

Figure 27. Schematic of the construction and use of a committee model for uncertainty estimation in sparse GPmodels, as described in ref 202. Similar
graphical representations are used as in Figures 4 and 5: here, multiple models are trained using the same representative set but different random
subselections of the training set, yj. The cost of training scales linearly with the number of committee members, nc, and each training yields a different
weight vector, cj. When performing a prediction, a single vector of kernels, k, needs to be evaluated (which is usually the computationally intensive task
for prediction), and multiple predictions, ỹj, can be obtained cheaply by taking scalar products of kwith the individual weight vectors corresponding to
the members of the committee. Example applications of this methodology are shown in Figure 28.
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rigorous estimate of the uncertainty,211 in a similar probabilistic
sense as that given by the GPR variance. In fact, committee
models are appealing for use in a GPR framework, particularly in
combination with a sparse GPR model: evaluating the
uncertainty entails a small overhead over a straightforward
model evaluation, and it is simple to propagate uncertainty from
the quantity that is directly predicted by the model to derived
quantities that can be arbitrarily complicated combinations of
predictions.
Here, we discuss a simplified version of the uncertainty

quantification framework discussed in ref 202, which is
illustrated in Figure 27. Given an overall training set containing
N configurations, and a representative set containing M
reference environments, we perform nc fits, keeping the
representative set fixed, but extracting in each case a different
random subset of the full training data to be used in each fit. This
yields a collection of regression weights, {cj}. When a prediction
is made for a new structure, one needs to compute a vector of
kernels, k, between the new structure and the representative set.
This is usually the time-consuming step, whereas the evaluation
of nc different predictions y c kj j

T̃ = is inexpensive. The

possibility of computing all predictions with a single set of
kernel evaluation makes the choice of building the committee by
randomizing the training set much more efficient than the
alternative option of randomizing the choice of representative
points, which would be more directly analogous to randomizing
the topology of a neural network (e.g., dropout), or by varying
other hyperparameters.
The set yj{ ̃ } constitutes the ensemble of predictions, and its

distribution reflects the behavior of the model with respect to
changes in the training set. For any atomic configuration, A, the
mean and the variance of the ensemble
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can be taken to represent the best estimate and uncertainty. In
practice one often finds that, similarly to the GP variance, this
uncertainty estimate is qualitatively informativesmall values
being associated with good predictions and large values being
associated with unreliable predictionsbut not quantitatively
accurate. In particular, there is a bias of the variance estimator for
small nc. This bias can be reduced by introducing a scaling factor
α, that can be computed by maximizing the log-likelihood of the
model over a test set, {A}, which yields204
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The corrected ensemble variance is then obtained by redefining
σ2 ← α2σ2. Furthermore, one can define “calibrated” committee
models whose predictions are ŷj ← y ̅ + α (y j̃ − y ̅), which have
the same mean as the initial committee, and an appropriately
scaled variance. The advantage of this second approach is that
one can then easily perform uncertainty propagation by
computing a derived property, F, that depends on the model
in arbitrary ways, by evaluating it on the calibrated model, Fj =
F(ŷj). This approach has been applied, for instance, to the
prediction of Raman spectra together with the associated

uncertainty (Figure 28a). These spectra are computed as the
Fourier transform of the polarizability of the simulation box

evaluated along the course of an MD trajectory.203 Another
application has been the prediction of the electronic density of
states (DOS) in amorphous silicon;164,212 details of this “ML-
DOS” methodology are provided in section 7.4.
More recently, this inexpensive approach to obtain prediction

errors has been put to use in practical applications to MD
simulations. A common scenario entails the use of a baseline
potential Vb (e.g., an empirical force field, or an approximate
electronic-structure method), which is corrected using an ML
model Vδ(A) to define an overall energy E(A) = Vb(A) + V ̅ δ(A)
that achieves the accuracy of more sophisticated, and expensive,
electronic-structure calculations (cf. Figure 18a). In this case,
one can use the committee error, σ(A), and an estimate of the
RMSE σb of the baseline (relative to the accurate method), to
define a weighted baseline potential
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b
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2 2
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σ σ
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+ δ̅
(82)

that smoothly interpolates between the corrected potential
Vb(A) + Vδ(A) when the ML model is predicted to be accurate

Figure 28. Applications of committee models for GPR predictions.
Two examples are shown: (a) the prediction of the Raman spectrum of
paracetamol form I;203 (b) the prediction of the melting point of
water204 by determining the difference in chemical potential, μ, of
hexagonal ice (“Ih”) and the liquid phase (“L”), and defining the zero
intersect as corresponding to the melting temperature. Panel a is
adapted from ref 203, where the original figure is published under the
CC BY 3.0 license (https://creativecommons.org/licenses/by/3.0/);
panel b is adapted from ref 204. Copyright 2021 AIP Publishing.
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and the bare baseline Vb(A) when the predicted error is large.
204

This improves the stability of simulations based on ML
potentials and simplifies the iterative refinement of the model
in all cases in which unexpected chemical reactions can occur,
leading to structures that are not represented in the training set.
A second application involves the determination of the effect

that uncertainties in the prediction of the ML potential have on
thermodynamic properties that depend on the sampling of
configurations, that is controlled by the potential-energy-
dependent Boltzmann weight, e−βE(A). An example application
which employs on-the-fly reweighting213,214 of a single trajectory
sampled according to the committee mean E A( )̅ is shown in
Figure 28b. The spread in the prediction of the energy by the
committee members translates into predictions of uncertainty in
the ultimate property of interestin this case the melting point
of water. The conventional reweighting approach works by
weighting the configurations in the trajectory driven by the
committee average E A( )̅ by a factor e(E̅(A)‑Ẽj(A))/kBT, which makes
it possible to compute averages as if the trajectory had been
driven by E ̃j(A). This schemeworks well only when the spread in
the predicted energies of the committee is comparable to kBT
throughout the trajectory. A more stable (albeit approximate)
estimate of the error can be obtained with a cumulant expansion
approximation,214 in which the averages ⟨y ̅⟩ computed using
E A( )̅ are corrected based on the correlation between y̅ and the
logarithm of the weights, (E ̅(A) − E ̅ j(A))/kBT. This
reweighting scheme cannot be used to assess the error on
dynamical properties, that are often computed from correlation
functions of the trajectory generated by MD. To the best of our
knowledge, the problem of error propagation to such
observables has not been addressed, and the only possible,
and rather time-consuming, strategy would be to generate
separate trajectories using each individual member of the
calibrated committee.

5.4. GPR Models for Isolated Molecules

Both in the present section and in the previous one, we have
focused on ML models of strongly bonded, extended materials.
This is where they had the largest impact early on, because
empirical interatomic potentials for materials are in many
respects rather poor models of the potential-energy surface. It is
almost needless to say that molecular potential-energy surfaces

are also an important area of application. The goal of the “first-
principles” approach to making molecular force fields has always
been the faithful reproduction of the potential-energy surface,
assessed, e.g., by the accuracy of the vibrational spectrum or
torsional “scan” around rotatable single bonds. For much of the
long history of molecular modeling, the covalent bonding
topology of a molecule has played a central role, giving rise to
two constraints on the model:

(i) identification of the set of atoms that are bonded together
and constitute the molecule;

(ii) the fixed network of covalent bonds used to define
coordinates of the model (bond lengths, angles, etc.), and
also to identify and differentiate between atoms according
to the functional groups of which they are part (cf. “atom
types”).

On the one hand, the formalism and approach that we
introduced thus far in sections 2−4 can in principle be applied to
molecules directly and lead to entirely topology-f reemodels, and
indeed this has been done and is particularly fruitful for
molecular materialswe defer their discussion to section 6.6.
On the other hand, there is a large body of modeling work that
lifts the topological constraints of (ii) but keeps (i). In this case,
an isolated molecule (or indeed a small cluster of molecules)
with its constituent atoms is specified, but the model makes no
further assumptions about the way in which the atoms are
bonded together. The geometry is typically represented by the
set of interatomic distances. A comprehensive and historical
review is outside our scope here, but we note in passing the
foundational works of Bowman and Braams223 that introduced
permutationally invariant polynomials of the interatomic
distances and the highly successful water model of Paesani
and co-workers based on this formalism.173,188,224,225 A recent
review of neural network models applied to the same problem is
given in ref 226.
Recently, GPR has been employed for the same task by a

variety of authors, fitting either the potential-energy surfaces
directly or the difference between different levels of theory. We
summarize recent works in Table 2, showing the system under
study, the fitting target, the dimensionality of the potential-
energy surface, and the efficacy; the last is indicated by a
combination of the number of training configurations and the

Table 2. Overview of Recent GPRModels of the Complete Potential-Energy Surfaces for Isolated Molecules and Small Molecule
Clustersa

Year System Target Dimensions Training set size RMSE ratio

2013 2 H2O
174 ΔMP2 12 9000 0.01

2013 2 H2O
174 ΔCCSD(T) 12 1000 0.05

2016 N4
215 CASPT2 6 1800 0.03

2016 CO2N2
216 MP2 9 200 0.005

2017 H2S
217 CCSD(T) 3 3700 0.0007

2017 2 HF218 MP2 6 300 0.001
2017 CH3Cl

219 CCSD(T) 9 11000 0.0001
2018 H2CO2

32 analytic 9 2500 0.00005
2018 H3O

+220 CCSD(T) 6 10000 0.0002
2018 OCHCO+220 CCSD(T) 9 2600 0.0004
2018 H2CO

220 MRCI 9 17000 0.0002
2018 2(HCOOH)220 CCSD(T) 24 9000 0.002
2020 H2CO

221 CCSD(T) 9 3200 0.0001
2020 CH3Cl

177 ΔCCSD(T) 9 2000 0.05
2020 C6N4H9

+222 MP2 51 5000 0.003
aThe last column shows the (rounded) ratio of the energy RMSE and the range of energies in the training dataset.
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ratio of the energy RMSE to the range of energies in the dataset.
The aim of the table is to give a sense of the complexity of these
models, rather than to compare the works of different groups
with one another directly. The modeling goals and the type of
input data in each work were quite different, and the complexity
of the task of fitting the potential-energy surface of different
molecules, even if the dimensionality is comparable, can be quite
different. Recent reviews of this topic are in refs 227 and 228.
There is yet more GPR work on molecular potential-energy

surfaces that did not quite fit into the table. Gradients can be
fitted directly to aid geometry optimization.229 If the ordered
matrix of interatomic distances is used as the representation,
although constraint (ii) does not apply formally, the lack of
permutation symmetry in the representation in practice limits
the model to fixed bonding topology. Nevertheless, for this
special case, highly efficient and accurate models can be created,
e.g., to fit a dispersion correction,230 or more generally the
potential-energy surface directly, as is done by Müller and co-
workers, also reviewed in the present thematic issue.231

Finally, a modeling task entirely different from approximating
potential-energy surfaces as a function of continuous atomic
position is to predict static properties of new molecules with
distinct bonding topologies. This is useful in high-throughput
screening applications, e.g., in the pharmaceutical and organic
semiconductor fields. A widely used benchmark to assess the
efficacy of molecular representations and regression methods is
the QM9 dataset of small molecules.232 In Figure 29, we show a
recent set of results that includes a variety of GPR/KRR and
neural-network models. Note that the quantity predicted in this
benchmark is the DFT-calculated atomization energy of the
molecules in their equilibrium geometry (as obtained using
DFT), so none of thesemodels in and of themselves are useful or

practical for high-throughput screening, because the model
input requires a DFT calculation (a full geometry optimization
in fact) that already yields the target quantity. Nevertheless, the
power of the density-based representations (FCHL and SOAP)
combined with KRR/GPR is evident and suggests that it may be
able to achieve other useful goals such as the fitting of correlated
wave function theory based energy as a function of DFT-relaxed
geometry.151 It is certainly the case that the QM9 benchmark
has been very useful over the past years in refining descriptors
and regression protocols, and the current crop of models
perform significantly better than those from the same groups in
earlier years.
One of the promises of ML force fields for molecules is that

they will enable the accurate and routine construction of general
reactivemolecular force fields.420 There is scant research on this
as yet, and Figure 29b shows that in comparison with closed shell
molecules (such as those in QM9), describing open-shell
radicals is much harder: the errors of the SOAP-based kernel
model are three times larger on the Rad-6 dataset, which consists
of all closed- and open-shell molecules containing C, H, and O
with up to six non-hydrogen atoms.

6. APPLICATIONS (I): FORCE FIELDS

The GAP framework is beginning to be applied to a variety of
research questions in chemistry and materials science. The aim
of the present section is to illustrate the step from the
methodology (section 4) and its validation (section 5) to
applications to practical problems, which are now beginning to
emerge. The cases discussed below are therefore built on the
premise that an accurate representation of a given potential-
energy surface has been obtained and appropriately validated,

Figure 29. Performance of ML models for atomization energies of small organic molecules and radicals. (a) Learning curves for the QM9 dataset,232

using a variety of representations and regressionmethods. For each value of the training set size, we show the mean absolute error (MAE) evaluated on
the test set which consists of the remaining structures from the full dataset. Models based on FCHL (2018),233 SOAP (2018),69 aSLATM,234 Coulomb
Matrix (CM),235 and Bag-of-bonds (BOB)236 representations use Gaussian process/kernel ridge regression, whereas NICE73 and MTP67 use linear
ridge regression, and SchNet237 and PhysNet238 are graph neural networks. GM-sNN uses a representation similar in spirit to MTP but based on a
Gaussian radial basis set and a feed-forward neural network for regression.239 (b) Learning curve for the Rad-6 dataset.240 Example species are shown
including a radical species, which actually account for over 90% of the total dataset (reprinted from ref 240; original work published under the CC BY
4.0 license; https://creativecommons.org/licenses/by/4.0/).

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00022
Chem. Rev. 2021, 121, 10073−10141

10111

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig29&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig29&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig29&ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig29&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and they highlight selected examples of what has been done with
GAP models to date.

6.1. Transition Metals

Materials with crystalline order have long been successfully
described with DFT, and larger-scale materials modeling
frequently relies on computationally highly efficient empirically
fitted potential models. There are cases, however, when neither
of those options is practical: when the empirical potentials are
too inaccurate to describe the specific (atomistic) materials-
science problem that is being studied, yet DFT cannot reach far
enough in terms of system sizes. ML-based interatomic
potentials have emerged as suitable alternatives over the past
decadewith applications to metals ranging from an early study
of a structurally complex copper surface128 to simulations of
compositionally complex high-entropy alloys.243

Tungsten was the first metal to be described by a dedicated
multipurpose GAP.121 Owing to the applications of this metal in
engineering, there are several important properties, ranging from
the elastic constants and the formation energy of isolated
vacancy defects to the delicate core structure of its screw
dislocations.244,245 While properties such as the elastic constants
can be derived from computations in small unit cells, and are
therefore routinely obtained from DFT, other structural
problems require thousands of atoms (and more) in the
simulation cell. The GAP model introduced in ref 121 correctly

describes the aforementioned core structure and can be used to
study extended defects and their interaction using many
thousands of atoms. This work has also been a prototype for
how reference databases are constructed manually, guided by
intuition and with specific applications in mindadding, for
example, vacancy or surface configurations and gradually
improving the application scope of the resulting potentials
(Figure 12).
The atomistic modeling of iron is notoriously difficult, partly

owing to the magnetic nature of the ambient bcc phase. A GAP
model fitted to ferromagnetic spin-polarized DFT calculations
was shown to recover the energetic and temperature-dependent
mechanical properties with high accuracy:241 a simple example is
the Bain path (the tetragonal distortion of the body-centered
unit cell, with c/a = 1 corresponding to the ground-state bcc
structure, and c a/ 2= to cubic close packing), for which
results from DFT and GAP are shown in Figure 30a. Later, the
same potential was used in a study of the migration of the screw
dislocation, in which the stress dependence of the Peierls barrier
(double-kink nucleation barrier in this case) was calculated
using a 50,000-atom system (Figure 30b−c).242 Furthermore, a
software was developed for studying Fe grain boundaries and
connected with the GAPmodel.246 We note that this potential is
accurate for ferromagnetic iron at ambient temperatures, but it
cannot simultaneously describe spin fluctuations and different
magnetization states: that requires the incorporation of new,

Figure 30. Applications of GAP to α-iron, from small unit cells (left) to large-scale simulations (right). (a) Energy for the Bain path, corresponding to
the distortion of a body-centered cubic (bcc) unit cell to give tetragonal cells including one corresponding to a face-centered cubic (fcc) structure, as
indicated. The results of spin-polarized DFT calculations for different magnetizations are shown, together with the prediction of a GAPmodel fitted to
data corresponding to the ferromagnetic state. The GAP predicted error, indicated by shading, is mostly smaller than the line width, except around the
c a/ 2= ratio corresponding to an fcc structure. Reprinted figure with permission from ref 241. Copyright 2017 by the American Physical Society.
(b) Simulation setup for the computation of the double-kink nucleation barrier of a screw dislocation in a large periodic supercell model; details are
given in ref 242. Adapted from ref 242, originally published under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). (c)
Minimum energy paths for the double-kink nucleation, drawn with data from ref 242: enthalpy change, ΔH, as a function of both shear stress, τ, and
reaction coordinate.
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magnetic degrees of freedom.247 In other words, among the
different DFT datasets shown in Figure 30a, only that for the
ground-state ferromagnetic state has a corresponding GAP
description.
As an example of an application at the other extreme of the

temperature and pressure scale (where magnetism is sup-
pressed), a GAP was developed to study liquid iron and sulfur
under conditions corresponding to those at the Earth’s core:
temperatures ranging from 4000 to 7000 K and pressures
between 110 and 430 GPa.248 One of the objectives of that work
was to study the partition coefficient of sulfur between solid and
liquid iron. The GAP model reproduced the radial distribution
functions of Fe, S, and Fe−S with high fidelity with respect to a
DFT reference, as well as the melting curve of Fe. Having an
accurate interatomic potential made it possible to carry out the
large number of independent simulations (altogether compris-
ing 10 M force evaluations on 180-atom unit cells) that were
necessary for determining free energies at various compositions.
In this application, the electronic entropy and its contribution to
the free energy are significant, due to the high temperature. This
required the construction of separate GAP models at each
temperature point (in steps of 1000 K), fitted to DFT
calculations which used the corresponding electronic temper-
ature to determine the electronic free energy and Hellmann−
Feynman forces. In the future, it would be desirable to
incorporate the electronic temperature into the ML model
itself explicitly, so that a single model would be able to predict
properties corresponding to different electronic temperatures.

6.2. Complex Allotropy and Crystal-Structure Prediction

While most elements, particularly metals, have rather simple
crystal structures, there are others which are much more
complex: carbon, boron, or phosphorus are textbook examples.
Such systems, even if comprising “only” a single elemental
species, may pose outstanding challenges for force-field
development, especially when multiple different allotropes are
to be described at the same time. In return, elements with
complex structures have turned out to be rewarding targets for
the development of GAPs and other ML potentials, where the
cost increase compared to empirical force fields may be justified
by the gain in accuracy. For example, early ML-driven atomistic
simulation studies of carbon allotropes were concerned with the
description of the graphite−diamond coexistence line116 and,
subsequently, with the nucleation mechanism of diamond in
graphite under compression.117 These studies have been carried
out with a neural-network potential following ref 66.
In cases where the structural diversity is large, and especially

where previously unknown structures are to be explored, the
requirements for ML potential development are shifted: rather
than meV accuracy, one is primarily interested in having a robust
potential that does not lead to unphysical behavior in
simulationsonly once that type of robustness is achieved,
one will “focus in” on the structures of greatest interest. For
example, a GAP for elemental carbon has been developed with a
focus on amorphous phases and therefore describes a wide
variety of structures including the coexistence of sp-, sp2-, and
sp3-like carbon atoms over a wide range of densities122 (this
model is referred to as “C-GAP-17” in the following). In

Figure 31. GAP-driven structure searching. Selected examples are shown for (a) hypothetical, crystalline carbon allotropes,138 (b) phosphorus
nanowires,142 and (c) gas-phase boron clusters.134 GAP-driven modeling can speed up the global exploration of structural space by several orders of
magnitude compared to purely DFT-driven computations and has been combined with existing approaches for structure search (panel b, AIRSS;137

panel c, CALYPSO149). Panel a adapted from ref 138, originally published under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.
0/). Panel b adapted from ref 142, originally published under the CC BY 3.0 license (https://creativecommons.org/licenses/by/3.0/). Panel c
republished with permission of The Royal Society of Chemistry, from ref 134; permission conveyed through Copyright Clearance Center, Inc.
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contrast, a GAP for pristine graphene describes a much more
limited configuration space, but at much higher accuracy.249 The
tests for the latter potential included phonon dispersions at zero
Kelvin as well as at elevated temperature,249 which provide an
intuitive measure for the force accuracy of the fit. Numerical
errors, given for in-plane force errors, are also instructive here:
the graphene-specific GAP arrives at an RMSE of 0.028 eV Å−1

for its test set; C-GAP-17, a more widely applicable potential,
shows a notably larger error in this test, viz. 0.27 eV Å−1, yet still
outperforms all empirical potentials in terms of the same error
measure (see details in ref 249). A subsequent general-purpose
carbon potential, “C-GAP-20”, extended the C-GAP-17 data-
base with a large ensemble of manually constructed simulation
cells representing defects in graphene, nanotubes, and other
more complex structures.152 This potential was fitted to data
computed at a higher DFT level than used for C-GAP-17, now
including dispersion interactions which are important partic-
ularly in low-dimensional and sp2-rich carbon nanostructures.
Tests in the initial work, as well as a separate, comprehensive
benchmark study,250 confirmed the overall high accuracy that is
afforded by this model. We note in passing that a similar
approach has been applied recently to the isoelectronic and
isostructural analogue of graphene, hexagonal boron nitride, and
used for simulations of thermal rippling in large cells.251

GAP-RSS has been discussed in section 4.1.3 as an efficient
way of exploring potential-energy surfaces and in section 4.1.5 as
a proposed component in the development of “general-purpose”
reference databases.163 There is, of course, now the question of
howGAP-RSSmay be applied in the next step, in a way similar to
how AIRSS and related DFT-based structure-searching
techniques have been used with great success to discover
previously unknown structures and compounds.4,137

Figure 31 illustrates three cases of structurally complex
elemental systems that have been studied with GAP-driven
structure searching in various implementations; it comprises
bulk crystalline phases (Figure 31a),138 structures with low
dimensionality (Figure 31b),142 and gas-phase clusters (Figure
31c).134 We focus on GAP below, but we note that more
generally, the ways in which crystal structure prediction can be
accelerated using machine-learned force fields (including
various fitting schemes and their applications) have been
reviewed in a recent perspective article.141

Early work was concerned with carbon, for which the
prediction of hypothetical allotropes is a very active research
area: see ref 252 and references therein. In 2017, it was shown
how a GAP can be used to drive crystal-structure searching138
employing an approach similar to ab initio random structure
searching (AIRSS)136,137 to generate a large ensemble of input
structures, and subsequently relaxing these random structures,
now using GAP. In this early study, the search was run by a
potential that had not been fitted for any crystalline phase,
instead including liquid and amorphous configurations in the
reference database (which, of course, do cover diverse local
structural environments). The work focused on all-“sp3” carbon
allotropes by filtering the output of the search to only include
those structures in which all atoms are 4-fold connected, and it
allowed for the identification of multiple hypothetical structures
that had not yet been included in the Samara Carbon Allotropes
Database (SACADA)252 at that time. Two previously described
hypothetical carbon allotropes (including the “chiral framework
structure”, CFS,253 with unj topology), that were recovered in
the GAP-driven search as well, are shown in Figure 31a. Below
them, two related structures are shown that were identified by

the GAP-driven search (indicated by the label “G” and a running
index in Figure 31a).
For boron, there exist multiple crystalline allotropes,254 some

of which are crystallographically disorderedmost prominently
rhombohedral β-B, which contains 105−108 atoms in the
primitive unit cell, depending on how the structure has been
described and refined (see ref 255 and references therein). The
work in ref 140, which introduced theGAP-RSSmethod, led to a
potential that could describe a variety of boron allotropes with
close to DFT accuracy, including multiple supercell models of β-
B with statistically distributed atoms on sites with mixed
occupations.140 We note that a moment tensor potential was
also developed for the boron allotropes by iterative structure
searching and fitting and that that work identified further
candidate structures for β-B.127

A related strategy, again using GAP fits and iterative
exploration of the potential-energy surface, has been coupled
to the CALYPSO particle-swarm optimization software for
structure searching148,149 and has been applied to gas-phase
boron clusters.134 Figure 31c shows representative structures
obtained in the process, including a cage-like cluster and a more
stable quasi-planar structure. Very recently, an application of
GAP- and CALYPSO-based structure searching to bulk phases
of elemental boron was reported as well: the authors identified a
possible metastable cubic B24 phase with an octahedral B6 unit as
an additional structural feature.256

Phosphorus is similarly a case where a diversity of structural
environments creates challenges for atomistic simulation. The
most common forms are “white” (P4 molecular), “red”
(amorphous), and “black” (puckered layers) phosphorus. But
other phosphorus allotropes based on cage-like fragments also
exist, and an even larger variety of such fragments has been
studied in early computational work.257 Due to this structural
diversity, new forms of phosphorus continue to be discovered:
for example, nanotubular structures were described by Pfitzner
and co-workers.258

An early GAP-RSS study dealt with phosphorus, showing how
the structure of black phosphorus can be “discovered” and added
to the reference database within a few iterations. It also included
a proof-of-concept for the search for more complex, tubular
structures, using an idea put forward by Ahnert et al.:259 rather
than initializing the search with individual atoms, one would use
entire fragments as the seedin this case, phosphorus cages
obtained from an information-theory-based decomposition of
the structure.259 Based on this type of approach, the authors
highlighted some candidate 1D and 3D structures (Figure
31b).142 A later study led to the prediction of a range of
hypothetical, hierarchically structured phosphorus allotropes
based on the simple P8 cage as a structural building block,
including single- and double-helix forms.260

Phosphorus monolayers highlight again the importance of 2D
structures, and several empirical force fields were developed
specifically for phosphorene. Further, structurally more complex
2D materials include Hittorf’s (“hittorfene”), first predicted261

and recently experimentally realized;262 such structures may
require more accurate computational treatment than fast
empirical force fields can provide. Indeed, the GAP model of
ref 163 is able to describe the exfoliation of hittorfene with high
accuracy compared to DFT+MBD reference data. We also
mention briefly the synthesis of nanostructures such as
phosphorene nanoribbons,168 for which structural models are
included in the reference database of that potential (cf. Figure
16).163
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6.3. Structure of Amorphous Materials

Beyond the crystalline structures discussed so far, amorphous
materials (i.e., those without long-range order) are natural
targets for ML potentials, because they require highly accurate
simulations over extended time scales and the use of large
simulation systemsa requirement that cannot be met by
established quantum-mechanical methods. In the following,
GAP-driven simulations of amorphous solids will be briefly
reviewed.
6.3.1. Carbon Nanostructures. The structural and

chemical diversity of elemental carbon is largely due to its
ability to form 2-, 3-, and 4-fold-bonded environments (typically
referred to as “sp”, “sp2”, and “sp3”, respectively, in a simplified
notation). In amorphous carbon, these structural environments
often coexist and their presence and relative abundance are
controlled by external factors, such as the sample density.264

Among the many examples which require a more diverse
description, we mention a computational study of the reversible
graphitization in cold-compressed glassy carbon265 that used a
state-of-the-art empirical potential model.266 The large struc-
tural diversity of amorphous carbon had motivated the
development of the GAP-17 model for this element, and the
initial work included tests for surface energies and the annealing
of surface slabs (inducing graphitization at the surface at high
temperature).122

In 2018, the usefulness of GAP-driven simulations was
demonstrated for deposition simulations of tetrahedral
amorphous carbon (ta-C) films (Figure 32).263 Starting with a
diamond-structured template, carbon atoms were accelerated
toward the surface one after the other, with a kinetic energy
corresponding to the energy of ions in deposition experiments
(e.g., 60 eV). This type of deposition simulation is common in
the carbon community but had previously fallen short of the
experimentally observed sp3 count in ta-C (the latter reaching up
to 90% in highly dense samples; see ref 264 and references
therein). In contrast, the GAP-driven study recovered the
experimental value.263 Furthermore, ML-driven atomistic
simulations can not only create accurate structural models but
also give insight into the mechanisms by which these structures
form. In the case of carbon, there had been an ongoing debate in
the literature as to which of several competing growth
mechanisms is responsible for the formation of highly sp3-rich
ta-C films (see references in ref 263). GAP-driven simulations
led to density profiles (averaged over many individual impact
events) which are consistent with the “peening” mechanism
proposed earlier by Marks267 based on simulations with the
environment-dependent interaction potential for carbon (C-
EDIP):266 a high-energy atom displaces atoms from the impact
region and leads to a net depletion of sp3 density directly at the
impact site; in contrast, the film grows laterally, around the
impact site, where the sp3 count increases. The study was
subsequently extended to cover a wide range of impact energies,
demonstrating that a diverse type of film structure can be
obtained as dependent on the impact energy (two examples are
shown in Figure 32d−e).200
Deposition simulations are computationally demanding, and

the more common way to obtain atomistic structural models of
a-C (and ta-C) is given by rapid simulated quenches from the
liquid state. A detailed study of structural and elastic properties
of different a-C networks, obtained by quenching, was carried
out by Jana et al., who compared simulations using an existing
empirical potential with simulations using the C-GAP-17
model.268 Another study included the generation of many

individual a-C model structures by GAP-driven quenching and a
subsequent link to experimental properties.269 A computational
study of plasticity in large structural models of a-C, again using a
combination of GAP and a faster empirical potential, was
reported in ref 270.

Figure 32.GAP-driven deposition simulations describing the growth of
amorphous carbon films.200,263 (a) Example of an impact event: a
carbon atom is placed 3 Å above the surface and given high velocity
(corresponding to a kinetic energy of 60 eV). Within 10 fs, the atom
impinges on the surface (corresponding to a spike in the energy of this
atom; blue) and then comes to rest such that its nearest-neighbor
distance is about 1.5 Å. (b, c) Schematic drawings of the proposed
growth mechanisms at low and high impact energies, respectively, that
are consistent with density changes over time observed in the GAP-MD
simulations. Details, as well as quantitative data supporting these
drawings, are given in ref 200. (d, e) Results of deposition simulations at
two representative impact energies. The structure in panel d is a low-
density, sp2-rich phase; that in panel e is a high-density, sp3-rich phase,
in which only the surface region has substantial sp2 character (as
determined by SOAP-based similarity and indicated by color coding).
Reprinted with permission from ref 200. Copyright 2020 by the
American Physical Society.
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Another direction in the atomistic modeling of carbon
materials is the thermal annealing of more disordered structures
to gradually generate more ordered ones, following an early
study in 2009 that used C-EDIP.271 There is a recent benchmark
study of various interatomic potential models for carbon272

which used such annealing simulations for a series of tests,
including C-GAP-17 and C-EDIP, and demonstrating good
performance of both potentials (for example, in terms of the
description of the graphitization process) compared to other,
often simpler empirical interatomic potentials. Simulations of
this kind have given rise to structural models of carbonaceous
energy-storage materials,273,274 which will be discussed further
below.
6.3.2. Amorphous Silicon. Silicon is perhaps the most

canonical covalent amorphous system, and its structure has
often been approximated as an ideal tetrahedral random network
in which all atoms have a coordination number,N, of four.276,277

However, defects (commonly defined as atoms with either N =
3, “dangling bonds”, orN = 5, “floating bonds”) are important as
well,278 and the description of these defects can be challenging.
An early work dealt with GPRmodels for energetics in silicon.279

In 2018, GAP-driven MD simulations were reported that
generated a-Si structures by quenching from the melt,193 varying
the quench rate over a wide range. A main advantage of the ML-
drivenmethodology is not only in the accessible system sizes but
also the accessible time scales, because the slow quenching and
optimization of a-Si structures can be computationally
demanding (see ref 280 for the recent DFT-based generation
of a highly relaxed a-Si structure). The enthalpy of the
amorphous network with respect to the more stable diamond-
type crystalline phase, experimentally measured by calorimetry,
is directly related to how ordered (that is, how well annealed) a
given sample is, and the excess energies of simulated quenched a-
Si samples obtained with quench rates between 1013 and 1011 K/
s are consistent with experimentally reported excess enthalpies.
These findings were later independently corroborated by a study
with neural-network potentials.281 Using a series of progressively
slower quenches for 512-atom a-Si systems, it was shown
subsequently that slower quenching (1010 K/s in the relevant
part of the simulation) does not seem to further lower the overall
potential energy compared to a 1011 K/s quenchbut it still
increases the medium-range order, as measured by the count of
six-membered rings.53 Concerning the question of how
structural models of amorphous materials may be validated,
which is a highly nontrivial task, ref 193 also included
comparison with previously reported experimental data for
29Si NMR chemical shifts and structure factors from diffraction
(see ref 193 and references therein).
The local atomic environments in a-Si were studied in terms

of their energetics, as derived from GAP regression models, as
well as structural properties (Figure 33).53 This study
demonstrated that to some extent, the atomic energies from
GAP can be interpreted in a chemical way (we note that a
counterpoint for neural network potentials has been made in ref
282). Second, it provides an explanation for the initially rather
counterintuitive finding that defective a-Si networks can be
energetically slightly favorable compared to those generated by
the WWW algorithm276 leading to a “perfect” random network
and subsequent DFT relaxation of both structures.53 The key
finding is that while the 3-coordinated atoms are generally
strongly unfavorable energetically, there exist 5-coordinated
atoms which are more favorable than highly strained 4-
coordinated atoms. This is another manifestation of the

limitations of assigning atomic environments based on
coordination numbers only (see ref 283 for a discussion in the
context of ta-C and SOAP analysis). The energetic analysis was
corroborated by studies of the electronic structure, particularly
the local density of states resolved according to different N-
coordinated atoms, revealing a fundamentally different character
of the different local environments.53

In the context of atomic energies from GAP models, as
characterized in Figure 33, it is worth noting a recent study in
which those local energies were correlated with structural
aspects of local distortions (“distortion scores”), with higher
local energies corresponding to larger distortion scores.284 It was
also suggested to combine the GAP atomic energies with a
pressure-dependent term to arrive at an atomic enthalpy; see ref
164. Further investigations of the information that can be

Figure 33. Machine-learned atomic energies in amorphous silicon (a-
Si) as obtained from GAP regression models. (a) Example snapshot
from an a-Si structure obtained by GAP-driven melt−quench
simulations (see ref 275 for details). Atoms are color-coded according
to atomic energies, referenced to crystalline silicon (c-Si). (b)
Distributions of atomic energies in two a-Si systems obtained by
quenching at a very fast (left) and slower (right) rate. (c) Two-
dimensional plot of structural similarity to c-Si (horizontal axis) and
atomic energy (vertical axis) for atoms in an ensemble of a-Si structures.
The plot focuses on atoms with N = 3 and N = 5 neighbors, for which
data are shown by larger symbols. Adapted from ref 53. Original figure
published under the CC BY 4.0 license (https://creativecommons.org/
licenses/by/4.0/).

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00022
Chem. Rev. 2021, 121, 10073−10141

10116

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig33&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig33&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig33&ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00022?fig=fig33&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


extracted from such atomic energies and enthalpies would seem
worthwhile.
6.3.3. Ge−Sb−Te Phase-Change Materials. Ge−Sb−Te

phase change materials (PCMs) are important components of
data storage and processing technologies287 and also relevant for
emerging applications in photonics.288 The reason for this
importance is a pronounced property contrast between
crystalline and amorphous phases, which needs to be under-
stood on the atomistic scale. DFT-based simulations have been a
key technique in understanding and optimizing PCMs,5,289,290

but such simulations have only been able to address relatively
small system sizes. Indeed, among the most extensive ones are a
DFT-based simulation comprising 900 atoms291 and a report of
simulations spanning over 8 ns but using smaller systems.292

Consequently, ML potentials are playing an increasingly
important role in the field. Foundational early studies have
been carried out for GeTe as a prototypical phase-change
material, for which artificial neural-network models have been
developed and applied by Sosso, Bernasconi, and col-
leagues.293−297 For example, the authors studied the thermal
transport in the material294 and described the crystallization
behavior of bulk295 and nanowire296 structures.
In 2018, Mocanu et al. reported a GAP model for Ge2Sb2Te5,

fitted to liquid and amorphous configurations of the ternary
compound as well as structures of the constituent crystalline
phases.285 Comparison of GAP-MD with DFT-MD data as well
as experimental reference data indicated a good performance for
liquid and amorphous Ge2Sb2Te5, assessed, for example, in
terms of the description of the structure factor, and the potential
was demonstrated to describe the formation of ordered,
crystalline regions from an amorphous structure upon annealing
(Figure 34a). This potential was furthermore used to generate
multiple relatively small structures in parallel, which were then
analyzed using first-principles DFT in regard to their bonding
properties.285 Initial simulations for a 7,200-atom system were
also reportedthereby demonstrating how Ge2Sb2Te5 may
now be studied in much larger simulation cells than would be
accessible to DFT-MD.285 Subsequently, simulations with
simulation-cell sizes up to 24,300 atoms were carried out
using the same potential, systematically addressing the role of
the simulation-cell size as well as that of the quench rate on the
resulting structures.298

In 2019, Konstantinou et al. described a study of the role of
midgap states in amorphous Ge2Sb2Te5, which further
emphasized the usefulness of combined GAP-driven modeling
and electronic-structure analyses.286 In this case, hybrid-DFT
level computations were used to study the nature of midgap
states in amorphous Ge2Sb2Te5, which are of central importance
to the electronic properties of the amorphous “zero bits”. The
availability of the computationally efficient GAP model allowed
the authors to generate a large ensemble of structural models to
serve as input for the subsequent electronic-structure analysis.
An electronic DOS analysis of such a (GAP-generated) structure
is highlighted in Figure 34b,286 and a detailed discussion may be
found in the original work in ref 286.
Recent studies were concerned with the supercooled liquid

phase as described by GAP-driven MD,299 assessed by
comparison with experimental data from ref 300 and with the
application of the Ge2Sb2Te5 model to the end member of the
quasi-binary line, Sb2Te3.

301 The latter work is a case study in
transferability: studying liquid and amorphous Sb2Te3 takes the
potential away from the region of configuration space for which
it was initially fitted. It is emphasized that the reference database

for the potential contained liquid and amorphous Ge2Sb2Te5, in
which the local environments of Sb atoms are expected to
partially resemble those in Sb2Te3 because of the chemical
relationship between the phases, but they will be different in
detail (especially beyond the first neighbor shell).
Ge−Sb−Te materials are an excellent example of how the

structural properties are directly linked to practical applications;
more details of this are given in a subsection below. It is worth
mentioning at this stage, however, that thermal properties of

Figure 34. GAP-driven modeling of the Ge2Sb2Te5 phase-change
memory material. (a) Partial crystallization of amorphous Ge2Sb2Te5.
The upper panel traces the increasing structural order, quantified using
the number of four-membered rings with “ABAB” alternation (as in the
rocksalt-type structure). Representative structural fragments are shown
and illustrate the transition from a disordered amorphous (left) to a
partially crystallized (right) structure. The lower panel shows the
potential energy of the system (as obtained from the GAP model),
which indicates a stabilization during crystallization, as expected.
Reprinted with permission from ref 285. Copyright 2018 American
Chemical Society. (b) Electronic structure of a 900-atom structural
model of amorphous Ge2Sb2Te5,

286 obtained from a GAP-MD
simulation, illustrating the synergy between large-scale GAP-MD and
single-point electronic-structure computations. The inset shows a
structural fragment and visualizes the electronic structure of the midgap
state associated with it. Isosurfaces of the wave function amplitude are
shown at an isovalue of ±0.015 e Å .3/2− Adapted from ref 286.
Original figures published under the CC BY 4.0 license (https://
creativecommons.org/licenses/by/4.0/).
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PCMs are likely to be of interest in the future, following early
work on binary GeTe that used a neural-network potential.294

Indeed, a recent study used a GAP to simulate temperature-
dependent vibrational properties in GeTe based on long time
scale MD simulations.302

6.4. Surface Chemistry

Real materials are not infinitely extended, and the study of
material surfaces opens up a further degree of structural
complexity. Take diamond-type silicon as an example: the
bulk crystal has a simple diamond-type structure, whereas the
most stable (111) surface structure is a complex (7 × 7)
reconstructionand its description by DFT computations has
been an important milestone.303 Similarly, the silicon (111)
surfaces and their reconstructions have served as a testing
ground for GAP models.139,151

Even more complex structures are found at the surfaces of
amorphous materials. For example, surfaces of amorphous
carbon have been studied in light of its applications in coatings
and chemical sensing; an overview of applications of those
materials in biosensing was given in ref 304. Recent work in ref
275 introduced a library of surface slab models, generated by
cleaving from bulk ta-C samples and subsequent thermal
annealing to “heal” dangling bonds at the surfaces. A systematic
study was carried out of the structural properties as dependent
on the system size, assessing the question of what size of
simulation cell would be required to reliably describe ta-C
surfaces. A system size of 216 carbon atoms per cell was found to
be a reasonable choice. Because the carbon GAP in this case was
fitted only for bulk elemental carbon,122 the authors showed
how its simulation outcomes (here, the annealed ta-C slabs) can
be further coupled to density-functional based modeling to
access a larger chemical space (here, that of hydrogen- and
oxygen-based functionalization which is relevant for practical
applications). Specifically, the hydrogenation of slabs was
described by grand canonical Monte Carlo simulations using
density-functional tight-binding models, which require less
computational effort than DFT and therefore allow for the
evaluation of many individual configurationsup to reaching a
hydrogen content of about 30%, consistent with experimental
samples. On the other hand, oxygenation involves much more
complex surface reactions and an interplay between, for
example, epoxy and carbonyl groups; simulations of this type
(again starting from the GAP-generated ta-C slabs) were
therefore carried out using DFT-based ab initio MD
simulations.275

Further analysis of the surface structures was carried out in a
companion paper.283 The use of “sp2” and similar labels was
compared with the outcome of a SOAP-based clustering
technique. The latter identified a number of typical environ-
ments that are taken to be representative of different types of
bonding in a-C materials: for example, an atom with N = 2
nearest neighbors might be either in a linear (−CC−) or in a
defective sp2-like environment, and the SOAP-based analysis
separates these two types of environments to a good degree. The
work also exemplified the ability to include properties beyond
the atomistic structure in the construction of kernel-based
models. Specifically, the authors “encoded” electronic-structure
fingerprints through the moments of the local density of states
and used those to construct a second kernel that separates
environments based solely on their electronic (and thereby,
bonding) nature. Combining this kernel with a SOAP term to
include the atomistic structure, Caro et al. demonstrated an

improvement in the prediction of hydrogen adsorption energies
(as a simple proxy for chemical reactivity) as compared to a pure
SOAP-GPR model.283

Aarva et al. predicted X-ray photoelectron spectroscopy
(XPS) and X-ray absorption spectroscopy (XAS) fingerprints
based on GAP-generated and DFT-functionalized structural
models,305,306 in another demonstration of how one may
interface atomistic structure to high-level computations.
Because the reference computations that predict the spectra
are computationally expensive, it is crucial to carefully select
those (relatively few) configurations for which computations are
to be donethis was achieved using SOAP-based clustering,
similar to ref 283. This methodology is beginning to be used to
fit experimental X-ray spectra, as demonstrated in ref 307.
Returning to crystalline phases, a recent study reported on

IrO2 surfaces including various complexions, described by a
GAPmodel.308 Figure 35 shows the newly discoveredmetal-rich

surface complexions, obtained using simulated annealing, and
their corresponding surface free energies. ML-potential-based
simulations of this type build upon DFT-based ab initio surface
studies which are firmly established in the field.309 With greatly
improved computational speed, one may now envision pushing
the limits of such methodology even further: for example, to the
exploration of much larger possible surface reconstructions (just
like the (111)-(7 × 7) reconstruction of silicon, which searches
in smaller unit cells would not have found, but a recent study did

Figure 35.Modeling oxide surfaces with GAP. (a) Surface complexions
for the (111) surface of IrO2, showing the initial structure, a snapshot at
1000 K, and the final equilibrium structure after simulated annealing.
Reprinted with permission from ref 308. Copyright 2020 by the
American Physical Society. (b) Surface free energies, γ, as a function of
oxygen chemical potential, ΔμO, for three different surfaces. Dashed
lines indicate the surface free energies obtained without complexions.
Adapted from ref 308. Original work copyright 2020 by the American
Physical Society.
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using an ML potential310), and to the prediction of the
equilibrium shape of nanoparticles (based on Gibbs−Wulff
constructions) with complex compositions at finite temper-
atures. Finally, with improved information about which specific
surface is expected to form, one may extend the simulation study
from a free surface to one with a molecule attached or to an
entire catalytic reaction system.311

6.5. Functional Properties

Anext step in the application ofML potentials, includingGAP, is
to move from structure to functionality, i.e. to material
properties which are directly related to a practical application.
A very recent example is given by amorphous silicon, for which
structural studies were mentioned in section 6.3.2: Wang et al.
experimentally investigated the behavior of a-Si samples under
tension and compression, finding a much stronger tensile than
compressive strength, and corroborated their mechanical
measurements with atomistic simulations including GAP-18.312

The transition between different solid phases is an interesting
challenge for ML-driven modeling, especially when the process
involves very diverse local environments. The previously
mentioned PCMs are a typical example of this, and
crystallization simulations have initially been carried out with
a GAP model for Ge2Sb2Te5. Figure 34a illustrates the partial
crystallization of Ge2Sb2Te5 using the count of 4-fold rings as a
measure for crystallinity:313 this value is expected to be unity in a
perfect rock salt-type structure. The energy of the system,
accordingly, is lowered notably during the crystallization, by
almost 0.1 eV per atom. In terms of PCM applications, this
simulation mirrors the SET process (amorphous → crystalline
transition; see ref 5).
The transport of heat in a crystalline or noncrystalline system

is a critical functional property in thermoelectric waste-heat
recovery. In principle, ML potentials are well suited to speed up
predictions of such properties, because the latter are again
derived directly from the PES; applications of ML potentials to
the thermal properties of amorphous phases have been
reviewed.314 The prediction of thermal properties for crystals
in the GAP framework was exemplified for zirconium.315 Two
separate studies discussed the thermal properties of crystalline,
diamond-type silicon.196,316 A separate potential was fitted to
describe the thermal conductivity in silicene.317 Finally, a GAP
model was developed for the β polymorph of Ga2O3, specifically
with a view to describing the vibrational and thermal
properties.182

Materials under irradiation are exposed to extreme conditions,
and accordingly the resulting atomistic structures are often very
far from equilibrium. Until now, the interatomic repulsion at
short distances has mainly been discussed as a qualitative feature
of the PES that needs to be taken care of but is not the main
subject of study.
In radiation damage studies, however, a quantitatively accurate

description of interatomic repulsion down to very small
interatomic distances is required, because it is there that the
relevant microscopic processes are taking place. Accordingly, the
energies of the repulsive potential range to the MeV region
(millions of times more than a typical covalent bond energy). A
recently developed GAP model for tungsten318 recovers this
behavior accurately because it has been specifically extended to
describe such small interatomic distances (Figure 36a)similar
GAP models were later developed for a range of refractory
metals.320 Figure 36b provides a comparison of two selected
high-energy events as described by an empirical (Tersoff-III,

“T3”) potential321 and the authors’ GAP for Si.319 While they
both focus on one individual event out of a presumably wide
distribution (and different empirical potentials will again differ
from one to another; ref 319), the authors’ results clearly suggest
that the processes described in these two simulations are
qualitatively different. The absence of physical constraints on
the shape of the interatomic interactions may contribute to

Figure 36. Simulations of matter under extreme conditions using GAP:
here, exemplified by radiation damage. Panel a shows the construction
of a GAP for tungsten with a repulsive term at very short interatomic
distances, for which reference data are computed using DMol rather
than the standard DFTmethod;318 note the energy scale reaching up to
MeV energies. Reprinted figure with permission from ref 318.
Copyright 2019 by the American Physical Society. Panel b is a selected
example of a single impact event in silicon, simulated by an empirical
interatomic potential (left-hand side) and a GAP (right-hand side).319

Only defect atoms are shown, with the color corresponding to the time
the defect was generated, referenced to the primary impact event. Panel
c shows the sputtering yield obtained in simulations with various force
fields compared to experimental data (gray). The GAP model
containing a pair potential term that is repulsive up to MeV energies
(red) predicts a notably higher sputtering yield than the other force-
field models. Reproduced (adapted) from ref 319; original figures
published under the CC BY 4.0 license (https://creativecommons.org/
licenses/by/4.0/).
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allowing the atoms to travel highly complex pathways in the case
of the GAP-based simulation, characterized on the right-hand
side of Figure 36b. The same groups recently published a study
of such high-energy collision events in molybdenum.322

Figure 36c includes a comparison with GAP-18 (labeled there
as “Primary GAP”), which performs worse than the tailor-made
potential, yet still on par with a range of traditionally used
empirical force fields. This may be an important guiding point
for the future construction of general-purpose GAPs: even in
extreme situations, one would like them to revert at least to the
physical behavior of empirical force fields. The methodological
steps required for this relate to all three key components of GAP
model fitting (cf. Figure 11): (i) the development of appropriate
reference databases which must include relevant environments
in small simulation cells (as does, for example, the C-GAP-17
model for carbon which contains the results of small-scale
surface simulations at very high temperature122); (ii) the
construction of suitable atomistic descriptors which may include
2-body and other terms in a hierarchical way (cf. section 4.2);
and (iii) the appropriate control of input (regularization) and
output (uncertainty quantification) in the GPR model, both at
the fitting stage and at the stage when the simulations themselves
are being carried out.
Machine-learned force fields are an emerging class of

simulation tools in the area of battery materials research,323−326

and this has included initial applications of GAP models (Figure
37). A long-term goal of such research would be to compute
voltage curves that correspond to the experimental charging and
discharging processes. In 2018, it was proposed to use GAP-
drivenMD to generate relatively small-scale structural models of
porous and other disordered carbon structures273 which find
application in supercapacitors327 and battery anodes. The
reason for focusing on system sizes of about 200 atoms per
cell was the fact that those can then serve as input for DFT
analyses, as discussed for ta-C films above. Accordingly, the
study in ref 273 included initial DFT computations on the
intercalation of Na in “hard” carbon materials, focusing on the
evolution of atomic charges with increasing filling, which may be
linked to previous operando NMR studies in ref 328.
Subsequent work by Huang et al. systematically compared the
insertion of Li, Na, and K ions in various disordered carbon
structures generated, again, in GAP-driven simulations.274

While the previous studies had described the electrode
material with GAP and then subsequently modeled the metal
intercalation using DFT, it is ultimately more desirable to
describe the entirety of the system using amachine-learned force
field, bypassing the requirement for DFT altogether. Fujikake et
al. reported a methodology based on the fitting of energy and
force differences, treating the addition of Li to a disordered
carbon structure as a “perturbation” of the ideal system (which,
in turn, can be fully described by GAPmodels).119 Here we note
the development of neural-network potential models for the Li−
Si system, which is similarly of large importance for battery
anodes.329,330 For electrochemically active systems, especially
for strongly ionic (e.g., transition-metal oxide cathode)
materials, an explicit treatment of the electrostatic interactions
may be required. Indeed, ML potential models for systems in
which charge transfer is important have been proposed, for
example, by Goedecker and colleagues, in the form of charge-
equilibration schemes110 which were recently incorporated in
general “fourth-generation” neural-network potential mod-
els.111,331,332

Existing GAP-generated structures can be used for new
simulations with other methods, which has been exemplified for
supercapacitors333 and catalysts.334 In the first case, pore size
effects were studied with empirical-potential simulations that
built on existing GAP-based structures; in the second case, a
large-scale screening of chemical functionalization was carried
out using DFT. Another recent demonstration was the use of
existing a-C surface structure models to describe the absorption
of biomoleculesseamlessly combined with simpler structure
models of graphene or nanotubes.335 An even earlier study used
the B-GAP fitting database from ref 140 for other types of
structural analyses336fully independent from the potential
model, but making use of the structural diversity that is explored

Figure 37. Early examples of how the GAP framework may be used for
battery materials modeling. (a) Snapshot from an MD simulation
driven by a hierarchical GAP model for Li in carbon structures (ref
119), extending the pure carbon GAP-17 potential122 by adding a
difference term; positions of Li atoms are shown in purple; those of
carbon atoms are for a single snapshot only. Reprinted from ref 119,
with the permission of AIP Publishing. Copyright 2018 AIP Publishing.
(b) Synergies between GAP and DFT modeling in studying energetic
and electronic effects of alkali-metal intercalation in disordered carbon
structures. In this case, disordered and partly graphitized carbon
structures were generated in GAP-MD simulations, and several
randomized cells with varied Li content (x) were used as input for
subsequent DFT computations, yielding total energies which may be
converted into voltages. Adapted from ref 274. Reproduced by
permission of The Royal Society of Chemistry. Copyright 2019 The
Royal Society of Chemistry.
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by GAP-RSS. These examples emphasize the usefulness of
openly available databases of structural data, which might find
use in a variety of future applications.
6.6. Molecular Materials

Modeling molecules and materials are fields that often appear
distinct, pursued by scientific communities with little overlap,
and even the term used for the resulting model is different:
“force fields” or potential-energy surfaces for molecules, and
“interatomic potentials” for materials. We have briefly touched
upon models for isolated molecules in section 5.4, and now we
discuss some applications to “molecular materials”. Either
liquids or crystals, they consist of strongly bonded molecular
units that form extended systems held together by weak
interactions, e.g., van der Waals dispersion or dipolar electro-
statics. This presents an immediate problem for modeling,
because these weak interactions are typically longer-ranged than
the covalent interactions, and their length scale of variation is
much larger than for covalent bonds. For example, the energy of
a covalent bond has significant variation when the bond is
stretched or compressed by a distance on the order of 0.1 Å; in
contrast, intermolecular electrostatic and dispersion interactions
vary significantly only on the length scale of 1 Å or greater.
There are essentially two approaches: the first is to use a

molecular body order expansion in which the total energy is split
up into contributions of each isolated monomer, the interaction
energy of each dimer, each trimer, and so on. In this case, each of
these terms corresponds to just isolated molecules or small
clusters of molecules, and we are back to that modeling problem.
Alternatively, we can consider the entire loosely bound

collection of molecules as an extended material. In this case, we
can use exactly the same descriptors and fitting methodology as
for material systems. The input data also need to be similar:
electronic-structure total energy calculations in the condensed
phase, almost invariably using periodic boundary conditions. In
practice, this limits us to using DFT, rather than the more
accurate correlated wavefunction theory that one would be able
to use for isolated molecules and clusters.
Neural networks for water170,185,337,338 were among the first

models of a molecular material that did not explicitly rely on
prescribing the fixed topology of the molecules. Water is
somewhat of a special case, where the “weak” intermolecular
interactions are relatively strong hydrogen bonds, and so this
“material treatment” can be expected to be more successful. The
great flexibility of the neural network functional form helps to
simultaneously describe the short-range covalent bonds and the
intermolecular interactions. Using GPR would be more difficult,
because one of the key ingredients of those models is an
optimized length scale for the kernel function that generates the
basis. One way to deal with these different interactions is to focus
the ML effort on the short-range part and to describe the long-
range interactions using an analytical baseline model, as detailed
in section 4. This has been done using a long-range pair potential
for dispersion interactions for a phosphorus model that included
the low-density molecular liquid phase163 and earlier for carbon
to deal with the weak dispersion that holds layers of graphite
together.152 Another possibility is to build models that describe
the long-range nature of the interactions at the level of
descriptors, such as models based on long-distance equivar-

Figure 38.Hierarchical GAPmodel for fluid methane (CH4). (a) Different terms in the interaction energy of a pair of methane molecules (geometries
obtained from the condensed phase), with the top panel showing the PBE0 andMBD energy as well as the TS correction using a fixedHirshfeld volume
(denoted TS*). The bottom panel shows theMBD energy on a logarithmic scale as well as the difference betweenMBD andTS*. (b) Two SOAP-GAP
models are fitted separately to reproduce the PBE0 interaction energy and the MBD-TS* difference. The panels show the validation of the interaction
models against their respective references. Numerical errors are given in the legends. (c) Prediction of physical properties, here shown for the density−
pressure isotherms, comparing the performance of the GAP (magenta, without; yellow, with path-integral MD tomodel quantum nuclear effects) with
experimental data (cyan); the results of various empirical force fields are indicated by gray lines; the black bars indicate the size of statistical error.
Details are given in ref 172. Adapted with permission from ref 172. Copyright 2019 American Chemical Society.
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iants339 (LODE) that combine atomic neighborhood density
features similar to SOAP with an artificial “far field atom-density
potential” that captures long-range interactions.340

Another example of a purely “material-type” model is the
application to the prototypical hybrid perovskite, methylammo-
nium lead iodide, which we discussed in connection with active
learning (cf. Figure 13).123 The methylammonium cation did
not need to be defined as a separate topological unit, nor did its
connectivity need to be fixed. All that enters the fit is a collection
of atomic coordinates and associated energies, forces, and virial
stresses. It may be expected that other hybrid materials,
containing perhaps very complex organic molecules, will provide
rewarding targets for investigations with similar machine-
learned potentials; similar work was done (using a neural-
network model) for one of the prototypical metal−organic
frameworks, MOF-5.282

One very effective way to use GPR for describing molecular
materials with high accuracy is to combine the above-mentioned
two approaches as follows. The total energy is separated into
intramolecular (“monomer”) and intermolecular terms as usual,
but the intermolecular part (the “interaction energy”) is not
treated by a further molecular body order expansion but rather
by the material model framework using SOAP as atom-centered
descriptors and GAP for regression. This solves the problem of
disparate length scales.
We present two examples of this approach, both using

hierarchical modeling in several different ways. In the first one,
the total energy of fluid methane was broken up into the
following terms:172

E E E E Etot monomer GAP short GAP MBD TS= + + +− − * (83)

with the last three constituting the intermolecular terms. The
monomer termwas a simple force field with two- and three-body
terms fitted to CCSD(T) data on isolated methane molecules.
The “GAP-short” term represents the short-range part of the
interaction energy and was fitted to interaction energies
computed using DFT-PBE0341and since there is no
dispersion in this DFT method, the resulting interaction is
mostly repulsive and can be adequately captured with a finite-
range potential. The last two terms together account for
dispersion. Of these, “TS*” is a pair potential along the lines of
the Tkatchenko−Scheffler342 scheme using a fixed C6
coefficient (obtained by averaging it over methane conforma-
tions), and the “GAP-MBD” term is the difference between the
many-body dispersion energy343 and the TS* baseline. Having
subtracted TS*, the remainder of the MBD energy could be
described by a SOAP-GAP model with 5 Å cutoff with an error
of less than 1 meV per molecule. Both GAP models used
condensed-phase data with 27 methane molecules in the unit
cell. Figure 38 shows the validation of the two separate
intermolecular fits (a−b) and the successful prediction of the
density as a function of temperature and pressure (c), once path
integral molecular dynamics (PIMD)344 was applied to the
combined potential. Note that applying PIMD results in up to a
10% shift in the predicted mass density. The gray lines in Figure
38c represent results from a variety of empirical force fields,
some of which have been directly parametrized to reproduce the
densityso they do this successfully, but not for the right reason,
in the sense that they do not represent the correct potential-
energy surface.
The second example is molecular crystal-structure predic-

tion,175 using a double-hierarchical model in which both the
molecular monomers and their interaction energy are described,

separately, by respective SOAP-GAP fitseach using the
semiempirical DFTB model345 with the TS correction342 as
baseline model and DFT+MBD343 as its ultimate target. The
intramolecular GAP model is fitted to the following difference,

E E EGAP
intra

DFT MBD DFTB TS≈ −+ + (84)

and is trained on isolated molecules with geometries obtained
from the crystal, illustrated in Figure 39a. The GAP interaction
energy is fitted to the difference of differences,

Figure 39. GAP models for molecular crystal-structure prediction. (a)
Illustration of the hierarchical construction of the ML model.
Intramolecular and intermolecular terms are fitted independently,
and both are difference models with DFT at the PBE+MBD level being
the higher level of theory and the semiempirical DFTB+TS serving as
the lower level baseline (cf. Figure 18a). The database of the
intramolecular model consisted of isolated molecules, whereas that of
the intermolecular model contained small clusters obtained fromDFTB
relaxations of crystals. The molecule shown is tricyano-1,4-dithiino[c]-
isothiazole, which was target XXII in the sixth blind test of organic
crystal-structure prediction.346 Results of independent crystal structure
searches performed with the DFTB+TS baseline (panel b) and the
DFTB+TS+GAP model (panel c) on lattice energies (left) and rank
order (right), with respect to the PBE+MBD reference (computed
without further relaxation). The red dot indicates the experimentally
found crystal structure. The large overall shift in the DFTB+TS energies
is due to the incorrect monomer geometry of the baseline model.
Reprinted from ref 175; original figures published under the CCBY-NC
3.0 license (https://creativecommons.org/licenses/by-nc/3.0/).
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E E

(system) (monomers)

(system) (monomers)

GAP
inter

DFT MBD DFT MBD

DFTB TS DFTB TS

≈ [ − ] −

[ − ]
+ +

+ +
(85)

and is trained on clusters (referred to as “X-mers” in the original
paper), again carved from crystal configurations obtained by
simulations using the baselinemodel. TheGAP corrections were
shown to significantly improve on the energy prediction of the
baseline model both in an absolute sense and in ranking low-
energy crystal polymorphs (Figure 39b and c), with savings in
computational cost of over a factor of 300 for a full crystal-
structure search. Note that the computational cost of evaluating
the combined model was shown to be dominated by the
semiempirical baseline, with the GAP model taking less than 2%
of the total time.175

When modeling molecular materials nowadays, one is almost
always looking out for ways to go beyond standard DFT. Since
this is now routine for the ML modeling of isolated molecules
(see, e.g., ref 180), even considering excited states,347−349 it is
natural to use the techniques illustrated here to carry over this
high level of accuracy to periodic systems. Reference electronic-
structure methods and training databases have to be chosen
carefully, but it is now within reach to train intermolecular
potentials using symmetry adapted perturbation theory,350

random phase approximation,164 or even quantum Monte
Carlo351 data.

7. APPLICATIONS (II): BEYOND FORCE FIELDS

Even though the bulk of this review focuses on the central
problem of fitting interatomic potentials, GPR is applicable to a
wide range of atomic-scale properties. Early work on molecular
ML used descriptors for the molecular structure such as
Coulomb matricesin combination with GPR/KRRto
model a couple dozen properties of small organic mole-
cules.232,235,352,353 In a systematic comparison including differ-
ent descriptors and regression techniques, kernel methods were
shown to match, and often outperform, nonlinear techniques
including graph convolutional networks354 (see also section
5.4).
Several of the efforts aimed at learning properties other than

the potential energy link back to the problem of constructing
force fields. This is the case, for example, for the prediction of
atomic charges355,356 and molecular multipoles81,357,358 that are
then used to define an electrostatic baseline to model long-range
interactions. Other examples are the direct prediction of the
lattice energy of molecular crystals, using as training and as
inputs only the geometries optimized with an empirical force
field359 (which is a simpler learning task than training a fully
general potential for the same class of systems), and the
estimation of free-energy surfaces,360 which involve finite-
temperature sampling with a (traditional or machine-learning)
force field. Although the present review focuses on fully
atomistic models, the construction of ML-based coarse-grained
force fields is a burgeoning research field where initial progress
has been made with GPR-based and other ML methods.361−365

It is also possible to use GPR for Bayesian optimization
(BO),366 which attempts to find the global PES minimum by
using the predicted value and predicted variance to optimize the
choice of sampling points. ML schemes have been applied to
accelerate the search of the most stable configurations367,368 and
of saddle-point structures associated with an activated
transition.369−372 In this case, a GP model of a PES is iteratively

generated, but it is generally considered to be only an aid for
finding the global minimum. This approach has been used for
finding minimum-energy crystal structures373,374 by iteratively
proposing structures that maximize the likely energy gain,
relaxing them with DFT, and adding the resulting structures and
energies to the fitting database for the PES model of the next
iteration. After the first iteration, the potential is only fit to DFT
local minima. BO approaches have been used for ionic diffusion
paths:375 for this application, the PES was expressed as a
function of the position of a single diffusing atom; the fitted
energies were computed after relaxing all other atomic positions
with DFT, and BO was used to simultaneously optimize the
positions of the migration path end points (local minima) and
the energy barriers along the path (saddle points). GPR and the
predicted uncertainty were used in constructing a surrogate
model for nudged-elastic-band computations.376 Hammer and
co-workers combined structure optimization with a GPR
model368 and showed how their atomistic structure learning
(ASLA) technique377 can be coupled with a GPR-based
potential model fit to accelerate the global search for stable
structures.378

In the remainder of this section, we provide an overview of
several applications of GPR to properties that are different from
potential-energy surfaces. We have selected these applications to
highlight how atomistic ML based on local representations can
provide surrogate models for any atomic-scale property that can
be computed by electronic-structure methodsincluding atom-
centered scalar properties (NMR chemical shieldings), tensorial
properties (dipole moments and polarizabilities), scalar fields
(the electron density), and energy-dependent properties (the
density of states). The main take-home message is that even
though the overall GPR scheme presented in the previous
sections is general enough to underpin ML predictions of
arbitrary properties, their specific nature requires careful
consideration of the structure of the model, which needs to
mirror the symmetry properties and physical behavior of the
target.

7.1. NMR Chemical Shieldings

The vast majority of the models we discuss in this review rely on
an atom-centered decomposition of the target property. As a
consequence, they can be applied in the most straightforward
way to the prediction of properties that are inherently atom-
centered,379 such as the chemical shieldings of nuclei that
determines the characteristic signature of a material or a
molecule in nuclear magnetic resonance experiments. NMR
measurements usually determine chemical shif ts, i.e. differences
between the NMR shieldings of the sample and of a reference.
Even though they are exquisitely sensitive probes of the chemical
environment of nuclei, the small changes in shieldings/shifts
that are necessary e.g. to distinguish different polymorphs of the
same molecular crystal cannot be interpreted on a qualitative
level, and theoretical predictions are invaluable to assist the
analysis of experiments. Models for the prediction of chemical
shieldings in solution380 and for polypeptides381,382 have been
among the first applications of artificial neural networks in
chemistry. With the development of frameworks to compute the
magnetic shieldings of nuclei using DFT,383,384 such as the
gauge including projector augmented wave (GIPAW) method,
it has become possible to construct regression models that are
based on a first-principles computational framework.
The fact that electronic-structure calculations provide

chemical shieldings for a specific nuclear configuration, rather
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than the average over molecular fluctuations that is probed
experimentally, makes a DFT-based ML model particularly
useful for solid-state NMR, in which fluctuations around
equilibrium configurations are less pronounced. Early models
based on a neural network for 17O and 29Si shieldings in silica385

were recently complemented by a framework enabling
predictions for 1H, 13C, 15N, and 17O in molecular crystals,386

which relies on a GPR model using SOAP kernels that
incorporates many of the techniques discussed in the present
review, including multiscale kernels and sparse models. This
“ShiftML” model387 achieves an accuracy comparable to the
reference DFT calculations and can be combined with
experimentally determined shifts to assign the crystal structure
of a sample to the most compatible polymorph among a set of
candidates (Figure 40). In combination with model error

estimation, it is also possible to establish, in a quantitative
manner, the reliability of such assignment388 and to use the ML
prediction to interpret solid-state NMR experiments.389

7.2. Dielectric Response Properties

The response of the energy of a system, U, to an applied electric
field, E, gives rise to a hierarchy of dielectric response properties,
∂nU/∂ Enthese include the polarization, μ, the polarizability,
α, and higher-order responses such as the hyperpolarizability, β.
These quantities are inherently tensorial, and so they require
regression models that incorporate the covariance of the tensor
with respect to rigid rotations of the system. As anticipated in
section 3.4, many early attempts to build regressors for dielectric
properties, as well as multipolemoments, relied on the definition
of a local reference frame attached to the molecular building
blocks.81,83 Another approach, reflecting well-established
practices in the construction of molecular dipole moment
surfaces,390,391 involves associating formal charges to each atom
and combining them with the atomic positions to compute a

formal polarization vectorthis approach is also readily
applicable to neural-network models.84,238 Fully symmetry-
adapted models, instead, define a kernel or feature basis that
reflects the covariant properties of the target. Early proponents
of the application of covariant models to the prediction of
tensorial properties relied on the kernel framework80,91

described in section 3.4, as well as on an alternative formulation
that uses formal atomic charges to determine an atom-centered
reference framewhich can be elegantly expressed in terms of
an “operator ML” formalism.82

The earliest applications of the SA-GPR approach on which
we focus in this review tackled the problem of modeling the
dielectric response series of water oligomers up to the third
order, and the electronic dielectric constant of bulk water.91

These benchmarks highlighted the success of SA-GPR across a
range of orders of tensor and its ability to handle systems that
cannot be split into well-defined molecular units. However, it is
with the AlphaML model of molecular polarizability99,393 of
organic molecules that SA-GPR proved its ability to achieve an
accuracy at least as good as that of DFT. This accuracy was
achieved for both the scalar and the tensorial part of α across
large swathes of chemical space, even when extrapolating to
much larger and more complex models than those included in
the training seta reflection of the transferability afforded by
atom-centered decomposition of the targets. The fact that SA-
GPR is an extension of scalar GPR means that developments
designed originally for scalar learning can be transferred
straightforwardly to tensor learning; for example, the use of
multiscale kernels that combine several length scales with
optimized weights improves the model performance over
individual models (Figure 41, right panel). The standard result
that [k(A, A′)]ζ is also a valid invariant kernel, used to introduce
nonlinearity in SOAP GPR models, cannot be used directly to
predict covariant properties, since a spherical harmonic raised to
a power greater than one is a sum of spherical harmonics of
different orders. One simple way to incorporate nonlinear
models in SA-GPR involves using products of covariant and
invariant kernels,

A A k A Ak ( , ) ( , ) 1′ [ ′ ]λ ζ− (86)

which is still a covariant kernel of order λ. In the case of
polarizability learning, this combination of spherical and scalar
kernels was found to improve the performance of the models by
a factor of 2−3 (Figure 41, left panel).
The prediction of molecular dipole moments is particularly

interesting. Being the simplest possible dielectric response, and
the simplest nontrivial multipole, dipoles have been used as
benchmarks for many different methods, including “operator
ML”,82 learning the position of Wannier centers,394 as well as
learning of atomic charges.84,238,390,391 As discussed in ref 392,
different approaches can be linked to a different physical model
of the origin of the polarization. A λ-SOAP model describes a
combination of atom-centered dipoles, which is most effective to
describe local polarization effects, while a model based on
atomic charges is more suitable to describe the presence of
charged groups or long-range charge transfer. Figure 42
illustrates predictions of molecular dipole moments at the
B3LYP-DFT level that combine a λ-SOAP model for atom-
centered dipoles and a scalar SOAP model for atomic partial
charges. In general, the combination of the two models gives
predictions that are better than either model by itself. In
particular, a substantial contribution from the scalar part of the
model improves significantly the transferability of this “MuML”

Figure 40. NMR chemical shift prediction. The figure shows a
comparison between the 1H chemical shifts for a set of hypothetical
polymorph structures of cocaine, obtained using a crystal structure
prediction algorithm, and those of the most stable polymorph,
determined experimentally. For each candidate structure an aggregate
RMSD is shown between experimentally measured shifts and shifts
calculated using either GIPAW-DFT (blue) or ShiftML (red). The gray
zone represents the confidence intervals of the GIPAW-DFT 1H
chemical shift RMSD. Candidates that have RMSDs within this range
would be determined as correct crystal structures using a chemical shift-
driven solid-state NMR crystallography protocol. Adapted from ref 386.
Original figure published under the CC BY 4.0 license (https://
creativecommons.org/licenses/by/4.0/).
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model, which is trained on small organic compounds from the
QM7b dataset,352 to larger molecules and to compounds with
substantial charge transfer. This more flexible model achieves an
error for the out-of-sample predictions on the QM9 dataset232

that is smaller than that of an “operator ML” model trained on
the larger molecules. A comparable “in-sample” MuML model
reduces the error further by a factor of 3.
In combination with ML potentials, the possibility of

computing the dielectric response of molecules and con-
densed-phase systems makes it possible to inexpensively
evaluate spectroscopic observables. For instance, the infrared
(IR) spectrum can be obtained by Fourier-transforming the

dipole moment correlation function, ⟨μ(t)μ(0)⟩, along an MD
trajectory;395 a similar expression for the polarizability, α, yields
the Raman spectrum, and a combination of the two can be used
to calculate the sum-frequency generation (SFG) spectrum. The
theoretical calculation of light scattering also requires tensor
properties; for example, second-harmonic scattering (SHS) is
determined by the first hyperpolarizability tensor, β.83,396 This
strategy has been applied to the IR and Raman spectra of
molecules84 and condensed phases86,203,394 and even to
incorporate the effects of the quantum-mechanical behavior of
light nuclei on the spectroscopic properties of complex
molecules and condensed phases85,397a remarkable feat that

Figure 41. Learning tensorial properties. The figure shows learning curves for the λ = 0 (top) and λ = 2 (bottom) components of the per-atom
polarizability for the QM7b dataset.352 Polarizabilities were calculated using CCSD, and the test set in all cases consists of 1811molecules. (a, b) Effect
of the kernel exponent. Nonlinear (ζ = 2, 4) SA-GPR SOAP kernels yield much better asymptotic learning performance than the linear (ζ = 1) form. A
radial cutoff of rc = 4Å is used throughout. (c, d) Effect of the environment cutoff radius. Polarizability is a property that depends strongly on long-range
correlations, and so a large cutoff distance is usually beneficial. However, a multiscale kernel built by combining kernels with different cutoffs, with
weights that are optimized by cross-validation, yields a small but consistent improvement over each of the individual models. Adapted from ref 99.

Figure 42. Learning dipole moments. The figure shows atom-centered contributions to the dipole moment of different polyglycine molecules from the
monomer to the 7-mer. (a) Results of a “vector” (λ = 1) SA-GPR model in which the predicted dipole is made up of atom-centered dipoles (gray
vectors). (b) Results of a scalar (λ = 0) GPR model, where atom-centered charges (whose magnitude is indicated by the green/purple color scale) are
predicted instead and used to calculate the molecular dipole moment. For this model, the green vectors show the predicted charges multiplied by the
atomic displacements. (c) Results of a model in which scalar and vector SA-GPR are combined, and the prediction is a combination of atom-centered
dipoles and charges (red vectors give the weighted sum of the two contributions). Below each molecule, the black vector gives the molecular dipole
moment calculated using the reference electronic-structure method (B3LYP-DFT), and the gray, green, or red vector gives the total GPR prediction.
Adapted from ref 392.
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would have been all but impossible without ML models that are
capable to accurately reproduce all of the properties that are
accessible to electronic-structure calculations.

7.3. Electron Density

The electron density, ρ̃(r), of a molecule or material provides all
of its ground-state properties in principle, and as such it presents
a natural target for ML models. Many techniques have been
proposed in recent years, differing not only by the structural
representation or the regression algorithm but also by the way
the density is discretized. Early efforts, most notably the
foundational work of ref 399, used the coefficients of an
expansion in plane waves. Being global, and dependent on
translations and rotations of the atoms, this approach suffers
from poor transferability. Another method, first introduced in
ref 400, is based on the separate prediction of the density at each
point, r, in terms of a description of an atomic environment
centered at r. This is usually combined with neural-network
models401−403 that must allow for very fast training and
estimation, because for each configuration millions of grid
points have to be individually learned and predicted.
An alternative approach, which combines the transferability of

a local model with a relatively small number of prediction
targets, relies on a decomposition of the total electron density
into atom-centered terms of the form

Ar r( ) ( , )
i A

i∑ρ ρ̃ = ̃
∈ (87)

where each of these atom-centered terms is given by
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using a basis of radial functions Rn(r) and spherical harmonic
Y r( ),̂λ

μ and emphasizing that the expansion coefficients are taken
to be a function of the local atomic environmentAi. Although for
simplicity we do not indicate it here, the basis functions and the
coefficients usually depend on the chemical nature of the central
atom. For each value of n and λ, the c ñλμ(Ai) transform as
spherical harmonics, making them amenable to learning by SA-
GPR.404 One subtlety, which can be readily resolved in the case
of GPRmodels, involves the nonorthogonality of basis functions
centered on different atoms. The density expansion coefficients
c ̃ cannot be computed directly by projecting the density on the
basis functions. Such a projection, instead, yields a set of weights,
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that are related to the expansion coefficients by Sc ̃ = w̃, where S
indicates the overlap matrix between basis functions. However,
it was found thatbecause the overlap matrix is often ill-
conditioneddetermining the coefficients and learning them
independently leads to inaccurate models; instead, one has to
build a GPR framework in which the entire decomposition is
learned at once.
The loss function to be minimized, L(A), for each training

structure, A, is given by
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that depends on the SA-GPR coefficients through

c A k A M c M( ) ( , ) ( )n i
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∈ ′

′
(91)

where M indicates a set of representative environments (that
could in principle be different depending on the nature of the
central atom and the density basis function associated with the
coefficient).
The final expression for the regression weights,

c K SK I K w( )T T2 1σ= + ̃− (92)

shows how the nonorthogonal nature of the targets leads to the
coupling of kernel blocks that are associated with different
centers and basis functions. By learning the entire decom-
position at once, it was possible to predict the electron density
for a set of hydrocarbons with the minimum error possible given
the decomposition.404 The models are transferable due to the
local nature of the decomposition and are straightforwardly
extrapolated to larger molecules. In fact, the accuracy of the local
density expansion plays a crucial role in determining the
prediction accuracy for ρ̃(r), which was addressed in subsequent
work398,405 by using resolution of the identity basis sets.406

Figure 43 shows the accuracy that can be obtained for an
enkephalin molecule using a model trained only on dimers of
small organic fragments.398 The error is concentrated on the
oligopeptide backbone, a chemical motif that is not present in
the training set. The availability of an accurate, transferable
prediction of the electron charge density opens up the way to
obtain ML models of similar quantities, such as the on-top
density407 or the local spin density.
7.4. Density of States

The electronic density of states (DOS) is a fundamental
fingerprint of the electronic structure of a material, and DOS
plots derived from DFT computations are found in countless
publications and probed for chemical insight.408 We discuss here
a recently developed approach to machine learning aspects of
the electronic DOS for atomistic systems using GPR. This is
motivated in two ways: first, if successful, it would allow for an
inexpensive prediction of the electronic DOS for much larger
systems that are accessible to direct DFT evaluation; second, it
would allow one to compute derived properties, such as the band
width.
Once an electronic-structure computation for a given

atomistic system has been carried out, the DOS is convention-
ally obtained as

E
N

E kDOS( )
2

( ( ))
k n

n
k

bands

∑ ∑ δ ε= −
(93)

where the sum runs over the bands and the k-point sampling of
the Brillouin zone and εn(k) are the single-particle eigenvalues of
the electronic Hamiltonian.
Following the notation of section 2, we denote a global

property by the capital letter, Y, and the approximation of this
property by the GPR model by Ỹ. In line with the general linear
structure of GPR models discussed earlier, a transferable
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prediction of properties of the entire stucture can be obtained in
terms of a sum of local, atom-centered contributions, y ,i ̃ viz.

Y y
i

i

atoms

∑̃ = ̃
(94)

where the sum runs over all atoms in the structure, and each local
term is a GPR model that depends on a representation of the
environment (e.g., based on SOAP). Figure 44a shows this
generic construction in the red panel, for directly regressing
different quantities that are all derived from the DOS: the Fermi
energy εF, the DOS value at the Fermi level DOS(ϵF), and the
“band energy”, Eband (by integration over the filled bands, not to
be confused with the individual eigenvalues, ϵn(k)).
Furthermore, one can fit models for the DOS itself. This is

useful because one may be interested in predicting the DOS and
comparing it to experimental observations and also because
predictions for several derived quantities can be made from the
predicted DOS. Naively, one might represent the (continuous)
DOS by discretizing the energy into a grid of values Ej, with j
being a running index and the step size denoted δE, and model
the DOS value at each energy level independently,

Y E E E j EDOS( )j j j
DOS

0 δ= = + (95)

Just as before, we model each global quantity as a sum of local
atomic contributions,

Y yj
i

j i
DOS

atoms

,
DOS∑̃ = ̃

(96)

Alternatively, instead of modeling the DOS, one can work with
the integrated DOS (IDOS) up to a given energy value, Ej,

E E EIDOS( ) d DOS( )j

Ej∫=
−∞ (97)

Figure 43.GPR model for the electron density. (a) Chemical structure
of the enkephalin pentapeptide studied here. (b) Electron density
prediction for the same molecule, using a model trained on dipeptides.
Three isosurfaces of the predicted density are shown (0.5, 0.1, and
0.001 electrons bohr−3). (c) Difference between the predicted and
calculated electron densities (showing isosurfaces of ±0.01 electrons
bohr−3, with positive deviations in yellow and negative deviations in
blue). Figure adapted from ref 398. Original figure published under the
CC BY-NC 3.0 license (https://creativecommons.org/licenses/by-nc/
3.0/).

Figure 44. (a) Machine learning the electronic density of states (DOS)
in the framework of GPR. Three approaches for estimating properties Y
are shown in a highly schematic way: these properties could be scalar
properties derived from the DOS (red), values of the DOS itself on a
discrete grid of energy values (blue), or values of the cumulative
distribution function (CDF; green); see text for details. (b) Average
errors for the prediction of quantities that can be computed from the
electronic DOS in amorphous silicon,212 either directly (red) or using
two different representations of the DOS curves: the pointwise
approach (blue) and that obtained by differentiating the CDF (green).
The error bars represent the standard error of the mean. Errors are
expressed as percentage of the intrinsic variability within the dataset.
Drawn with data from ref 212.
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The discretized representation of the IDOS, to which we refer
here as the cumulative distribution function (CDF), is

Y yj
j

j

j
CDF

1

∑=
′=

′
(98)

which again can be fitted as a sum over local contributions,
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j i
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atoms

,
CDF∑̃ = ̃

(99)

and it was found in ref 212, and is shown in Figure 44b, that
fitting the CDF consistently improves the accuracy of its
property predictions over learning the DOS itself (and also over
fitting properties directly). This improvement can be under-
stood in terms of the link between the Euclidean distance
between CDFs and the Wasserstein distance between the
underlying distributions409the latter being a better notion of
similarity between spectra that often differ by small shifts in the
positions of sharp peaks. Once the CDF is known, differentiation
yields the DOS. Note that the kind of local model in ref 212
differs from previous work that instead learned simultaneously
the charge density and the DOS using a regular 3D grid of points
extending throughout the simulation box.401

The fact the fitting the DOS is better than fitting derived
properties directly is a consequence of the locality properties of
the DOS (in fact, the local density of states is computed regularly
by many electronic-structure packages by projecting electronic
states onto atom-centered basis functions). In constrast, the
Fermi energy is determined by a global charge neutrality
constraint that depends on the overall distribution of energy
levels throughout the sample. These observations highlight the
interplay between the physical nature of the target quantities and
the structure of the regression model.
Work on learning densities of states is at an early stage, but

efforts are also underway using different methodologies
including neural networks,410−413 with ref 411 also employing
atom-centered descriptors, and KRR.414 We note that if the
structures in the database (for which the DOS computation with
the reference method is carried out) are sufficiently small, the
reference DOS can be evaluated with more accurate and
computationally expensive methodsspecifically, hybrid DFT,
which was recently demonstrated for silicon;164 the latter work
will be discussed below. In all these cases, an accurate and
inexpensive ML model of the DOS provides a simple yet useful
probe into the electronic properties of materials simulated by
ML potentialsallowing one, for example, to estimate the role
played by electronic excitations on the thermophysical proper-
ties of materials or to perform simulations that directly
incorporate the role of finite electronic temperature.415,416

8. CONCLUSIONS AND OUTLOOK
Machine learning methods have arrived in theoretical and
computational chemistry, and they are here to stay. In the
present work, we have reviewed Gaussian process regression
(GPR), one of the approaches to “learning” (fitting, regressing)
atomic propertiesscalars, vectors, and higher-order tensors.
The applications of GPR are diverse, ranging from the
prediction of local atomic properties such as NMR chemical
shifts and dipole moments to the construction of accurate
interatomic potentials, or force fields, e.g. in the Gaussian
approximation potential (GAP) framework. Having been
considered a highly specialized technique that requires expert

knowledge until recently, ML methods are now poised to
achieve more widespread use in chemistry. Methodological
developments and extensive tests for numerical accuracy have
been done, and there is no doubt that further optimizations are
possible and important. Furthermore, it is also timely to
implement protocols in a widely accessible fashion, enabling
researchers to apply these methods to answer pressing scientific
questions. We summarize how we see the field at present and
where we envision it developing in the coming years.
The title of the present work refers to “materials and

molecules”, and this wording reflects a separation that has widely
been made in theory and computational modeling. Individual
molecules are considered to be isolated systems and indeed are
often experimentally studied as such (e.g., in gas-phase
spectroscopic measurements); even in a condensed-phase
molecular system, there is a clear separation into strong covalent
interactions within a molecule and much weaker ones that
couple molecules. In contrast, materials are extended systems
where such a separation is not normally well-defined. This
distinction has been reflected in the scope of most atomisticML-
based models reported to date being focused either on materials
or on isolated molecules. In both cases, these new methods have
achieved a step change in the system size that can be treated with
first-principles accuracy and predictive power.
We envision that in the future, the conceptual separation

between materials and molecules will be less distinct and
ultimately cease to exist, because there is no fundamental
requirement for it. Topology-free potentials, which do not
depend on any fixed definition of bonds, have become more
flexible and accurate by using ML methods and are increasingly
able to match the accuracy of traditional bonded force fields.
They can therefore reproduce the part of the configuration space
that does not involve changes in bonding topology, while
simultaneously describing more general configurations, includ-
ing bond breaking and formation, more accurately than
traditional reactive potentials.
In the interest of making atomistic ML models, such as GPR,

broadly useful to various communities, further work is needed in
terms of protocols and workflowssuch that the construction
of a new model no longer requires the user to have detailed
knowledge of the ML methodology itself. In one extreme, this
could be achieved by the on-the-fly fitting schemes that aim to
accelerate ab initioMD. It may be expected that in the medium
term, any such simulation that can generate sufficient data (i.e. a
few hundred or a thousand configurations of the full simulated
system) with the reference method will benefit from GAP or
similar acceleration, as long as it is dependent on reaching long
time rather than large length scales. A critical prerequisite for this
is a good understanding of the predicted error or other
uncertainty quantification methods, which constitute an active
field of research in GPR modeling and in MLmore generally. At
the other extreme, we envision the use of highly general and
flexible GAP models which we call “general-purpose”, in which
the development of reference databases becomes a centrally
important methodological aspect. We have introduced such
models for a number of challenging elemental systems (C, Si,
P)although constructing suitable databases and ML poten-
tials of the same scope for general multicomponent systems with
complex phase behavior will be an even larger challenge.
Most GAP models in current use rely on the combination of

low-body-order descriptors and SOAP descriptors, with
appropriate scaling factors, as described in ref 122. There is
active development going on in terms of SOAP and related
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many-body representations,51 which are typically different from
the ways that chemists think in terms of bond distances and
angles. In particular, the atomic cluster expansion (ACE)68,417 is
a generalization of SOAP which explicitly keeps the low-body-
order terms, which have been so successful in classical force
fieldswhile also remaining computationally efficient up to
high body order.
In terms of computational cost, GPR models constitute a

middle ground between mathematically simpler (less flexible,
cheaper) andmore complex and flexible regressionmethods that
are more demanding at least at the fitting stage. Examples of the
former are fast linear models such as MTP, SNAP, and the
aforementioned ACE, and these are well suited for very large-
scale simulations. Regarding the latter, it is envisioned that with
sufficient amounts of data, in the future one will be able to
construct even “deeper” neural networks, not just of the feed-
forward type but including message passing networks, that can
capture increasingly subtle features of the target function. It is
likely that a range of regression methods will continue to be
used, each suited to a particular purpose.
Being a Bayesian method, GPR relies on the specification of a

prior, which can be regarded as a bias that we place on the
functional space, based on our prior knowledge of the fitting
problem. In the case of GAPs, the prior imposes locality and
ensures the smoothness of the potential but is otherwise rather
“permissive” and does not impart to the model further physical
knowledge of specific atomic interactions. Incorporating physics
into the form of the potential (while retaining sufficient
flexibility) is a development direction which has the potential
to reduce the amount of data required in the fitting and improve
transferability of GAPs. A concrete example is given by the
construction of atomistic regression models for ionic charges
based on local environments and the direct inclusion of such
properties (which may also include higher-order multipoles)

into the fitting of a more accurate force field that explicitly treats
long-range electrostatic interactions. Conceptual steps in this
direction have been made using neural-network models early
on356 and also more recently.331 One may furthermore think of
the on-the-fly learning of other parameters, such as those
required for the explicit construction of many-body dispersion
corrections rather than learning the latter only implicitly through
the data from the reference method.163 Such an approach would
enable straightforward and routine applications of ab initio MD
at levels of theory which so far have been out of reach, even in
cases where “only” the many-body dispersion parameters or
another part of the computation, instead of the full potential-
energy surface, need to be machine-learned.
Will ML models replace electronic-structure calculations and

empirical force fields? We do not think so. The former will
always be required to create reference data, while empirical force
fields, being orders of magnitude faster than ML models, will
continue to be used. Hence, rather than being a replacement,
ML models can serve as the necessary “glue” that ties together
modeling on different length scales in a systematic manner, thus
enabling the program of first-principles modeling to be carried
beyond electronic-structure calculations. We are now in the
position to create models which combine very large-scale (10
nm and beyond) simulation with the accurate prediction of
relevant atomistic properties. Recent work exemplified this
synergy, combining the prediction of atomic forces (giving
access to MD simulations for a 100,000-atom system, see Figure
45) with an ML model for the electronic density of states,
together affording insight into the structural and electronic
transitions in pressurized disordered silicon.164 Accurate
prediction of ground-state energetics together with those of
properties related to electronic, optical, or magnetic excitations
is set to remove a critical roadblock.

Figure 45. GPR models provide a unified view into structural and electronic properties of complex systemshere exemplified for dense disordered
silicon, simulated using a system containing 100,000 atoms. The upper panels show atomic structures, obtained from a GAP-driven molecular-
dynamics simulation in which an a-Si sample was compressed from ambient pressure to 20 GPa. The simulation revealed a series of structural
transitions, from a low-density amorphous (LDA)/high-density amorphous (HDA) phase persisting up to about 11 GPa, through a distinct very-high-
density amorphous (VHDA) phase with much higher coordination numbers at about 13 GPa, to the eventual formation of a polycrystalline structure
with simple hexagonal grains. The lower panels show the corresponding electronic structures as described by the machine-learned densities of states
(ML-DOS), which were also obtained in a GPR framework. Adapted from ref 164, where more details may be found.
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In conclusion, data-driven techniques are poised to become
an integral part of the molecular and materials modeling toolkit,
helping to solve challenging scientific problems in years to come.
We look forward to the time when machine-learning methods
will have truly arrived in the community and their use in the
context of atomic-scale simulation will be so natural and
ubiquitous that it will not even merit special emphasis.
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